Supporting Information

A new quinoline-based fluorescent probe for Cd²⁺ and Hg²⁺ with an opposite response in 100% aqueous environment and living cell imaging

Hong-Lin Lu,^a Wei-Kang Wang,^b Xing-Xing Tan,^a Xiao-Fei Luo,^a Mao-Lin Zhang,^a Mei Zhang^{a,*} and Shuang-Quan Zang^{a,*}

^a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China

^b Basic Medical College, Zhengzhou University, Zhengzhou 450001, China

Fig. S1.¹H NMR spectrum of compound 1 in CDCl₃.

Fig. S2. ¹³C NMR spectrum of compound 1 in CDCl₃.

Fig. S3. ESI-MS spectrum of compound 1 in methanol.

Fig. S4. ¹H NMR spectrum of L in CDCl₃.

Fig. S5. ¹³C NMR spectrum of L in CDCl₃.

Fig. S6. ESI-MS spectrum of L in methanol.

Fig. S7. Fluorescence decay curve of L at 415 nm in aqueous solution ($\lambda_{ex} = 243$ nm).

Fig. S8. Fluorescence decay curve of L at 415 nm in the presence of 10 equiv Cd²⁺ in aqueous solution ($\lambda_{ex} = 243$ nm).

Fig. S9. ESI-MS spectrum of L in the presence of $CdCl_2$ in methanol.

Fig. S10. ¹H NMR (400 MHz) spectral changes of L in CD₃OD/D₂O (4:1) upon addition of CdCl₂ at 298 K. (a) L, (b) L + Cd²⁺ (1:0.5), (c) L + Cd²⁺ (1:1), (d) L + Cd²⁺ (1:2), (e) L + Cd²⁺ (1:5), where * denotes the residual proton signal from D₂O and \approx denotes the residual proton signal from CD₃OD.

Fig. S11. Fluorescence decay curve of L at 415 nm in the presence of 10 equiv Hg²⁺ in aqueous solution ($\lambda_{ex} = 243$ nm).

Fig. S12. ESI-MS spectrum of L in the presence of $HgCl_2$ in methanol.

Fig. S13. ¹H NMR (400 MHz) spectral changes of L in CD₃OD/D₂O (4:1) upon addition of HgCl₂ at 298 K. (a) L, (b) L + Hg²⁺ (1:0.5), (c) L + Hg²⁺ (1:1), (d) L + Hg²⁺ (1:2), (e) L + Hg²⁺ (1:5), where * denotes the residual proton signal from D₂O and \approx denotes the residual proton signal from CD₃OD.

Fig. S14. Benesi–Hildebrand plot of L (10 μ M) assuming 1:1 stoichiometry between L and Cd²⁺ in aqueous solution. The binding constant of L-Cd²⁺ was 1.03 × 10⁴ M⁻¹.

Fig. S15. Benesi–Hildebrand plot of L (10 μ M) assuming 1:1 stoichiometry between L and Hg²⁺ in aqueous solution. The binding constant of L-Hg²⁺ was 8.08 × 10⁴ M⁻¹.

Fig. S16. Job's plot for L with Cd^{2+} in aqueous solution measured at 415 nm.

Fig. S17. Job's plot for L with Hg^{2+} in aqueous solution measured at 415 nm.

Fig. S18. Fluorescence responses ($\lambda_{ex} = 243 \text{ nm}$) of L (10 µM) at 415 nm in aqueous solutions. Brick-red bar: a free probe. Olive bar: a probe (10 µM) treated with 10 equiv Cd²⁺. Black bars: a probe (10 µM) treated with the marked metal ions (10 equiv) followed by 10 equiv of Cd²⁺.

Fig. S19. Fluorescence spectra of L (10 μ M) upon titrating different molar ratio of Cd²⁺ and Hg²⁺: 10 equiv. Cd²⁺ (First) + 10 equiv. Hg²⁺ (Second) + 10 equiv. Cd²⁺ (Third) in aqueous solutions. The excitation wavelength was 243 nm.

Fig. S20. Fluorescence responses ($\lambda_{ex} = 243 \text{ nm}$) of L (10 µM) at 415 nm in aqueous solutions. Brick-red bar: a free probe. Olive bar: a probe (10 µM) treated with 10 equiv Hg²⁺. Black bars: a probe (10 µM) treated with the marked metal ions (10 equiv) followed by 10 equiv of Hg²⁺.

Fig. S21. Fluorescence spectral changes of L (10 μ M) at 415 nm treated with 1 eqv. Cd²⁺ (red line), 1 eqv. Hg²⁺ (green line) and 1 eqv. S²⁻ (orange line).

Fig. S22. Fluorescence responses ($\lambda_{ex} = 243 \text{ nm}$) of L (10 µM) at 415 nm treated with marked anions (10 equiv) followed by 10 equiv Cd²⁺ in aqueous solutions. Green bar: a free probe (10 µM). Red bar: a probe (10 µM) treated with Cd²⁺ (10 equiv). Black bars: a probe (10 µM) treated with the marked anions and GSH (10 equiv) followed by 10 equiv of Cd²⁺.

Fig. S23. Fluorescence responses ($\lambda_{ex} = 243 \text{ nm}$) of L (10 µM) at 415 nm treated with marked anions (10 equiv) followed by 10 equiv Hg²⁺ in aqueous solutions. Green bar: a free probe (10 µM). Red bar: a probe (10 µM) treated with Hg²⁺ (10 equiv). Black bars: a probe (10 µM) treated with the marked anions and GSH (10 equiv) followed by 10 equiv of Hg²⁺.

Fig. S24. Crystal structures of L-Cd²⁺ complex (a) and L-Hg²⁺ complex (b). All hydrogen atoms were omitted for clarify.

Fig. S25. Frontier molecular orbitals of L.

Fig. S26. DFT optimized structures of L.

Fig. S27. DFT optimized structures of complex L-Cd²⁺.

Fig. S28. Frontier molecular orbitals of L-Cd²⁺.

Fig. S29. DFT optimized structures of complex $L-Hg^{2+}$.

Fig. S30. Frontier molecular orbitals of L-Hg²⁺.

Fig. S31. Reversibility of Cd²⁺ (10 μ M) coordination to L (10 μ M) by EDTA disodium (10 μ M) in aqueous solution. The excitation wavelength was 243 nm.

Fig. S32. Reversibility of Hg²⁺ (10 μ M) coordination to L (10 μ M) by Na₂S (10 μ M) in aqueous solution. The excitation wavelength was 243 nm.

Compound	L-Cd ²⁺
Empirical formula	C ₂₅ H ₂₉ CdCl ₂ N ₃ O ₅
Formula weight	634.82
Temperature (K)	293(2)
Crystal system	Monoclinic
Space group	P21/c
<i>a</i> (Å)	9.7380(3)
<i>b</i> (Å)	18.6367(5)
<i>c</i> (Å)	15.4077(5)
α (°)	90
eta (°)	107.382(3)
γ (°)	90
$V(Å^3)$	2668.55(14)
Ζ	4
$D_c (\mathrm{Mg/m^3})$	1.580
$\mu (\mathrm{mm}^{-1})$	0.962
F(000)	1260
Reflns collected	10888
Independent reflns	4695
Completeness	99.9 %
R(int)	0.0322
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4695 / 0 / 328
GOF on F^2	0.965
${}^{a}R_{1}[I>2\sigma\left(I\right)], wR_{2}$	0.0375, 0.0749
R_1 [all data], wR_2	0.0567, 0.0818
	$(1)^{1/2}$

 Table S1. Crystallographic data and structure refinement parameters for complex L

 Cd²⁺.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR_{2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma w(F_{o}^{2})^{2}]^{1/2}$

$L-Hg^{2+}$			
$C_{25}H_{29}Cl_2HgN_3O_5$			
723.00			
293(2)			
Monoclinic			
P21/c			
12.6620(3)			
11.8788(2)			
18.7193(4)			
90			
98.172(2)			
90			
2786.97(10)			
4			
1.723			
5.753			
1416			
26353			
4897			
99.8 %			
0.0432			
Full-matrix least-squares on F^2			
4889 / 122 / 348			
1.083			
0.0395, 0.0941			
0.0558, 0.0999			

Table S2. Crystallographic data and structure refinement parameters for complex L-Hg²⁺.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR_{2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma w(F_{o}^{2})^{2}]^{1/2}$

		0	0 1 1 1 1					
	bond lengths (Å)							
Cd(1)-N(2)		2.419(3)	2.419(3) Cd(1)-O(1)					
Cd(1)-Cl(2) 2.4		2.4703(10)	Cd(1)-N(3)	2.656(3)				
	Cd(1)- $Cl(1)$	2.4942(9)	Cd(1)O(2)	2.7543(66)				
	Cd(1)-N(1)	2.498(3)						
-		bond a	ngles (°)					
	N(2)-Cd(1)-Cl(2)	96.69(7)	N(2)-Cd(1)-Cl(1)	97.73(7)				
	Cl(2)-Cd(1)-Cl(1)	165.26(4)	N(2)-Cd(1)-N(1)	130.07(9)				
	Cl(2)-Cd(1)-N(1)	84.84(7)	Cl(1)-Cd(1)-N(1)	88.19(7)				
	N(2)-Cd(1)-O(1)	65.29(8)	Cl(2)-Cd(1)-O(1)	87.53(6)				
	Cl(1)-Cd(1)-O(1) 101.25(6)		N(1)-Cd(1)-O(1)	64.93(8)				
	N(2)-Cd(1)-N(3)	67.83(9)	Cl(2)-Cd(1)-N(3)	95.88(7)				
	Cl(1)-Cd(1)-N(3) 86.79(7		N(1)-Cd(1)-N(3)	161.98(9)				
	O(1)-Cd(1)-N(3) 133.07(8		O(2)-Cd(1)-N(2)	129.088(158)				
	C(11)-O(1)-Cd(1)	116.85(19)	C(20)-N(3)-Cd(1)	107.1(2)				
	C(18)-N(3)-Cd(1)	108.60(19)	C(17)-N(3)-Cd(1)	103.90(19)				
	C(12)-N(2)-Cd(1)	121.7(2)	C(16)-N(2)-Cd(1)	119.9(2)				
	C(2)-N(1)-Cd(1)	122.9(2)	C(10)-N(1)-Cd(1)	117.9(2)				

Table S3. Selected bond lengths (Å) and angles [°] for complex L- Cd^{2+} .

bond lengths (Å)						
Hg(1)-Cl(2)	2.368(2)	Hg(1)-Cl(1)	2.3735(18)			
Hg(1)-N(2)	2.555(5)	Hg(1)-N(1)	2.7123(58)			
Hg(1)-N(3) 2.8031(76)		Hg(1)-O(1)	2.7145(37)			
bond angles (°)						
Cl(2)-Hg(1)-Cl(1) 161.46(8)		Cl(2)-Hg(1)-N(2)	99.04(14)			
Cl(1)-Hg(1)-N(2) 97.21(13) N(2)-Hg(1)-O(1) 62.339(15)	97.21(13)	N(2)-Hg(1)-N(2)	121.746(161)			
	62.339(153)	N(2)-Hg(1)-N(3)	67.449(179)			
N(1)-Hg(1)-Cl(1)	86.353(128)	N(1)-Hg(1)-Cl(2)	92.613(130)			
N(1)-Hg(1)-O(1)	59.438(144)	N(1)-Hg(1)-N(3)	170.548(184)			
N(3)-Hg(1)-Cl(1) 90.350(14	90.350(148)	N(3)-Hg(1)-Cl(2)	87.698(150)			
N(3)-Hg(1)-O(1)	129.601(171)	O(1)-Hg(1)-Cl(1)	91.697(110)			
O(1)-Hg(1)-Cl(2) 103.721(114)		C(16)-N(1)-Hg(1)	116.2(4)			

Table S4. Selected bond lengths (Å) and angles [°] for complex L-Hg²⁺.

Table S5. Fluorescence decay time constants of L, L-Cd²⁺ and L-Hg²⁺.

	A_1	τ_1/ns	A_2	τ_2/ns	<7>/ns	χ^2
L at 415 nm	17%	4.952	83%	0.772	1.493	1.073
L-Cd at 415 nm	57%	2.091	43%	10.048	5.506	1.182
L-Hg at 415 nm	91%	0.672	9%	7.258	1.263	1.073

electronic transition	L oscillator strength (f)	electronic transition	L-Cd ²⁺ oscillator strength (f)	electronic transition	L-Hg ²⁺ oscillator strength (f)
HOMO– 2→LUMO (44%)	0.5442	HOMO-8→L UMO+2 (20%)	0.2336	HOMO- 1→LUMO+6 (38%)	0.1678
HOMO→LU MO+2 (28%)	0.5442	HOMO→LU MO+3 (19%)	0.2336	HOMO→LU MO+4 (13%)	0.1678
HOMO-4→L UMO+1 (62%)	0.1707	HOMO– 7→LUMO (17%)	0.2336	HOMO-5→L UMO (7%)	0.1678
HOMO- 2 \rightarrow LUMO+1 (11%)	0.1707	HOMO-4→L UMO+4 (10%)	0.2336	HOMO– 7→LUMO+2 (22%)	0.1677

Table S6. The contribution of the orbital transitions to the lowest energy transition ofL, L-Cd²⁺ and L-Hg²⁺.