Supporting Information

Christoph Kreitner^{*a,b*}, and Katja Heinze^{*a,**}

^a Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University of Mainz,

Duesbergweg 10-14, 55128 Mainz, Germany

^b Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany

Figure S1 ¹H NMR spectrum (400 MHz) of 1(PF₆) in CD₃CN.

Figure S2 ¹³C NMR spectrum (100 MHz) of 1(PF₆) in CD₃CN.

Figure S4 13 C NMR spectrum (100 MHz) of 2(PF₆) in CD₃CN.

Figure S6 ¹³C NMR spectrum (100 MHz) of 3(PF₆) in CD₃CN.

Figure S7 ¹H NMR spectrum (400 MHz) of 4(PF₆) in CD₃CN.

Figure S8 ¹³C NMR spectrum (100 MHz) of 4(PF₆) in CD₃CN.

Figure S10 13 C NMR spectrum (100 MHz) of 5(PF₆) in CD₃CN.

Figure S11 ¹H NMR spectrum (400 MHz) of 6(PF₆) in CD₃CN.

Figure S12 ¹³C NMR spectrum (100 MHz) of 6(PF₆) in CD₃CN.

Figure S13 Aromatic region of the ¹H-¹³C HSQC NMR spectrum of 6(PF₆) in CD₃CN.

Figure S14 Aromatic region of the ¹H-¹³C HMBC NMR spectrum of 6(PF₆) in CD₃CN.

Figure S15 ESI mass spectra of a) $1(PF_6)$, b) $2(PF_6)$, c) $3(PF_6)$, d) $4(PF_6)$, e) $5(PF_6)$, and f) $6(PF_6)$ in CH₃CN. Insets show experimental and calculated isotope pattern of the most intense peak.

Figure S16 IR spectra of complexes a) $1(PF_6)$, b) $2(PF_6)$, c) $3(PF_6)$, d) $4(PF_6)$ and e) $6(PF_6)_2$ in the solid state (KBr disk).

Table S1 Selected molecular orbitals of 1^+ , 2^+ , 3^+ , and 4^+ (B3LYP, def2-SV(P), ZORA, COSMO(acetonitrile)) including orbital number (energy *E* in eV) (contour value 0.07). Hydrogen atoms are omitted for clarity.

Table S2 DFT calculated spin densities of complexes $1^+ - 4^+$ after single and double oxidation as well as single and double reduction (B3LYP, def2-SV(P), ZORA, COSMO(acetonitrile); contour value: 0.01).

Figure S17 DFT calculated spin densities of the singly and doubly oxidized complexes 6^{3+} and 6^{4+} as well as the singly and doubly reduced complexes 6^+ and 6^0 (B3LYP, def2-SV(P), ZORA, COSMO(acetonitrile); contour value: 0.01).

Table S3 Selected molecular orbitals of 6^{2+} (B3LYP, def2-SV(P), ZORA, COSMO(acetonitrile)) including orbital number (energy *E* in eV) (contour value 0.07). Hydrogen atoms are omitted for clarity.

Table S4 Selected vertical TD-DFT transitions of 1^+ (B3LYP, def2-SV(P), ZORA, COSMO(acetonitrile)) sorted by their energy including difference density plots $|\Psi_{ES}|^2 - |\Psi_{GS}|^2$ (contour value 0.005, purple: depletion, orange: gain in electron density). Hydrogen atoms are omitted for clarity.

	$\widetilde{\upsilon}$ / cm ⁻¹	λ / nm	$f_{ m osc}$	$ \Psi_{\rm ES} ^2 - \Psi_{\rm GS} ^2$		\widetilde{v} / cm ⁻¹	λ / nm	$f_{ m osc}$	$ \Psi_{\rm ES} ^2 - \Psi_{\rm GS} ^2$
1	13967	716	4.30.10-8		10	22891	437	0.00001	
2	14972	668	0.00066		13	24853	402	0.09267	
3	17170	582	0.00723		14	25051	399	0.03568	

Table S5 Selected vertical TD-DFT transitions of 2^+ (B3LYP, def2-SV(P), ZORA, COSMO(acetonitrile)) sorted by their energy including difference density plots $|\Psi_{ES}|^2 - |\Psi_{GS}|^2$ (contour value 0.005, purple: depletion, orange: gain in electron density). Hydrogen atoms are omitted for clarity.

	$\widetilde{\upsilon}$ / cm ⁻¹	λ / nm	$f_{ m osc}$	$ \boldsymbol{\varPsi}_{\mathrm{ES}} ^2 - \boldsymbol{\varPsi}_{\mathrm{GS}} ^2$		\widetilde{v} / cm ⁻¹	λ / nm	$f_{ m osc}$	$ \boldsymbol{\varPsi}_{\mathrm{ES}} ^2 - \boldsymbol{\varPsi}_{\mathrm{GS}} ^2$
1	12179	821	4.57·10 ⁻⁷		15	24593	407	0.02282	
2	12929	773	0.00062		14	24780	404	0.10567	

Table S6 Selected vertical TD-DFT transitions of 3^+ (B3LYP, def2-SV(P), ZORA, COSMO(acetonitrile)) sorted by their energy including difference density plots $|\Psi_{ES}|^2 - |\Psi_{GS}|^2$ (contour value 0.005, purple: depletion, orange: gain in electron density). Hydrogen atoms are omitted for clarity.

$\widetilde{\boldsymbol{v}}$ /	λ1	£	12 12 12 12	v /	λ1	ſ	
cm ⁻¹	nm	J osc	$ \boldsymbol{\Upsilon}_{\mathrm{ES}} ^{-} - \boldsymbol{\Upsilon}_{\mathrm{GS}} ^{-}$	cm ⁻¹	nm	nm $f_{\rm osc}$ $ \Psi_{\rm ES} $	$ \boldsymbol{\Upsilon}_{\mathrm{ES}} ^{-} - \boldsymbol{\Upsilon}_{\mathrm{GS}} ^{-}$

Table S7 Selected vertical TD-DFT transitions of 4⁺ (B3LYP, def2-SV(P), ZORA, COSMO(acetonitrile)) sorted by their energy including difference density plots $|\Psi_{ES}|^2 - |\Psi_{GS}|^2$ (contour value 0.005, purple: depletion, orange: gain in electron density). Hydrogen atoms are omitted for clarity.

$\widetilde{oldsymbol{v}}$ /	λ1	£		ũ /	λ/	f	111 2 - 111 2
cm^{-1}	nm	Jose	$ \mathbf{r}_{\rm ES} = \mathbf{r}_{\rm GS} $	cm ⁻¹	nm	Jose	$ \Psi_{\rm ES} ^2 - \Psi_{\rm GS} ^2$

Table S8 Selected vertical TD-DFT transitions of 6^{2+} (B3LYP, def2-SV(P), ZORA, COSMO(acetonitrile)) sorted by their energy including difference density plots $|\Psi_{ES}|^2 - |\Psi_{GS}|^2$ (contour value 0.005, purple: depletion, orange: gain in electron density). Hydrogen atoms are omitted for clarity.

v /	λ1	f	$ W_{-} ^2 - W_{-} ^2$
cm ^{−1}	nm	Josc	I ESI I GSI

1	13941	717	2.65.10-6
3	14926	670	0.00063
2	15509	645	5.04.10-6
12	15932	628	0.00149
21	16101	621	4.49·10 ⁻⁶
25	16358	611	1.44.10-6
6	16487	607	0.00070
19	16676	600	2.95.10-6
26	16800	595	3.25.10-7
23	16842	594	0.00013

11	17953	557	0.02374
10	18348	545	0.02801
7	18491	541	0.00986
9	18780	533	0.05506
8	18854	530	0.01090
13	20498	488	0.07937
14	20813	481	0.05640
22	21003	476	0.00912
15	21806	459	0.34875
18	22284	449	0.13827

Figure S18 Absorption spectra of 6^{2+} after addition of 1.50, 1.75 and 2.00 equivalents of $(NH_4)_2[Ce(NO_3)_6]$ as oxidant $(6^{3+}\rightarrow 6^{4+})$.

	ϋ / cm ⁻¹	λ / nm	$f_{ m osc}$	$ \boldsymbol{\varPsi}_{\mathrm{ES}} ^2 - \boldsymbol{\varPsi}_{\mathrm{GS}} ^2$
1	4255	2350	4.63·10 ⁻⁷	
2	4495	2225	0.00026	
3	7172	1394	0.06523	
4	8319	1202	2.50.10-6	
5	8674	1153	0.00050	
11	13059	766	0.00423	
6	14873	672	0.00036	
9	15530	644	8.00.10-8	
7	15758	635	0.19415	

Table S9 Selected vertical TD-DFT transitions of 6^{3+} (B3LYP, def2-SV(P), ZORA, COSMO(acetonitrile)) sorted by their energy including difference density plots $|\Psi_{ES}|^2 - |\Psi_{GS}|^2$ (contour value 0.005, purple: depletion, orange: gain in electron density). Hydrogen atoms are omitted for clarity.

8	15988	626	0.04104		
10	16361	611	5.85·10 ⁻⁶		
19	17520	571	0.00070		
13	17850	560	0.00943		
44	17998	556	0.01475		
37	18303	546	0.01029		
21	19180	521	0.01038		
24	19526	512	0.05026		
25	19889	503	0.00272		
30	20522	487	0.00723		

Figure S19 UV-Vis absorption spectra of 1^+ (top, blue) and 3^+ (bottom, red) in dry acetonitrile upon addition of $0\rightarrow 1$ equivalents of $(NH_4)_2[Ce(NO_3)_6]$ as oxidant.

Figure S20 Fit of the IVCT band of 6^{3+} (generated in situ by oxidation of 6^{2+} with one equivalent of $(NH_4)_2[Ce(NO_3)_6]$ in acetonitrile). The figure shows the experimental spectrum (black), the fit of the spectral range between 3500 and 16000 cm⁻¹ (red, dashed), the band fits of the LMCT bands (grey) and the fit of the IVCT band (red).

MOTA

Fit parameters:

IVCT:

		LMC1 2:
$\tilde{\nu}_{\max} = 8585 \text{ cm}^{-1}$	$\tilde{\nu}_{\text{max}} = 13780 \text{ cm}^{-1}$	$\tilde{\nu}_{max} = 15225 \text{ cm}^{-1}$
$\varepsilon_{\rm max} = 2600 \ { m M}^{-1} \ { m cm}^{-1}$	$\varepsilon_{\text{max}} = 4010 \text{ M}^{-1} \text{ cm}^{-1}$	$\varepsilon_{\rm max} = 3640 \ {\rm M}^{-1} \ {\rm cm}^{-1}$
$\tilde{\nu}_{1/2} = 6020 \text{ cm}^{-1}$	$\tilde{\nu}_{1/2} = 1480 \text{ cm}^{-1}$	$\widetilde{\nu}_{1/2}=2900~cm^{-1}$

Figure S21 Spectral decomposition of the emission spectra of **a**) $\mathbf{1}^+$ **b**) $\mathbf{2}^+$ **c**) $\mathbf{3}^+$ and **d**) $\mathbf{4}^+$ (recorded at 155 K in butyronitrile solution) into individual gaussians. Vibrational progression energies are 740 cm⁻¹ ($\mathbf{1}^+$), 710 cm⁻¹ ($\mathbf{2}^+$) and 670 cm⁻¹ ($\mathbf{3}^+$ and $\mathbf{4}^+$).^{1,2}

Figure S22 Emission spectra of $[Ru(bpy)_3](PF_6)_2$ in butyronitrile in the temperature range between 300 K and 200 K.

¹ Z. Murtaza, D. K. Graff, A. P. Zipp, L. A. Worl, Jones, Wayne E. Jr., W. D. Bates and T. J. Meyer, *J. Phys. Chem.*, 1994, **98**, 10504–10513.

² K. Heinze, K. Hempel and M. Beckmann, Eur. J. Inorg. Chem., 2006, 2006, 2040–2050.

Figure S23 Variable-temperature emission plot $\ln(\phi)$ vs. T^{-1} of $[\operatorname{Ru}(\operatorname{bpy})_3](\operatorname{PF}_6)_2$ in air-equilibrated butyronitrile in the temperature range between 300 K and 200 K. Activation barrier ΔE of 36.0 kJ mol⁻¹ has been determined from the fit using Meyer's equation (literature value of $\Delta E = 42.6$ kJ mol⁻¹ for degassed butyronitrile).³

Figure S24 DFT calculated spin densities of the ³MLCT states of 6^{2+} (B3LYP, def2-SV(P), ZORA, COSMO(acetonitrile); contour value: 0.01). The relative electronic energies are given in parentheses.

³ B. Durham, J. V. Caspar, J. K. Nagle and T. J. Meyer, J. Am. Chem. Soc., 1982, **104**, 4803–4810.

Figure S25 Difference of the emission spectra of 6^{2+} at 155 K in butyronitrile solution upon excitation at 560 nm and 480 nm.

Derivation of the equation used to fit the $\ln(\phi)$ vs. T^{-1} plots

Excited state reaction pathways:

$^{1}\text{GS} \rightarrow ~^{1}\text{MLCT}$	Excitation
¹ MLCT $\xrightarrow{\phi \sim 1}$ ³ MLCT	Intersystem crossing
${}^{3}\text{MLCT} \xrightarrow{k_{\text{nr}}} {}^{1}\text{GS}$	Direct non-radiative deactivation
${}^{3}\text{MLCT} \xrightarrow{k_{r}} {}^{1}\text{GS}$	Phosphorescence
	$k_{nr} + k_r = k_1$
${}^{3}\text{MLCT} \rightleftharpoons {}^{3}\text{MC}$ k_{-2}	³ MLCT- ³ MC surface crossing
${}^{3}\mathrm{MC} \xrightarrow{k_{3}} {}^{1}\mathrm{GS}$	³ MC deactivation pathways
${}^{3}\mathrm{MC} \xrightarrow{k_{4}} \mathrm{photo} \mathrm{products}$	
³ MLCT \rightleftharpoons ³ LL'CT k_{-5}	³ MLCT- ³ LL'CT surface crossing $K_{LL'CT/MLCT} = \frac{k_5}{k_{-5}}$
$^{3}LL'CT \xrightarrow{k_{6}} {}^{1}GS$	³ LL'CT deactivation

We assume that the 3LL'CT state is chemically stable.

Based on the above reactions, the lifetime τ_0 of the ³MLCT state can be expressed as follows:

$$\frac{1}{\tau_0} = k_1 + k_2 \left(\frac{k_3 + k_4}{k_{-2} + k_3 + k_4} \right) + k_5 \left(\frac{k_6}{k_{-5} + k_6} \right) \tag{1}$$

In principle, all rate constants have to be considered as temperature-dependent. However, Meyer^[4] argued, that the rate constants k_1 and k_3 for intersystem crossing describe processes at the respective Franck-Condon point and therefore are independent from the temperature. For the same reason, k_6 can be considered temperature-independent.

Following Meyer's argumentation, the back reaction from the ³MC state to the ³MLCT state is slow compared to the ³MC state deactivation $(k_{-2} \ll k_3 + k_4)$. Therefore, the first fraction $(\frac{k_3+k_4}{k_{-2}+k_3+k_4})$ of equation (1) equals 1:

⁴ B. Durham, J. V. Caspar, J. K. Nagle and T. J. Meyer, J. Am. Chem. Soc., 1982, **104**, 4803–4810.

$$\frac{1}{\tau_0(T)} = k_1 + k_2(T) + k_5 \left(\frac{k_6}{k_{-5} + k_6}\right) \tag{2}$$

According to Meyer, $k_2(T)$ is composed of a rate constant at infinite temperature (k_2^0) and an Arrhenius-like activation barrier term, taking the ³MLCT⁻³MC activation barrier ΔG_1^{\ddagger} into account.

$$k_2(T) = k_2^0 \exp\left(-\frac{\Delta G_1^{\ddagger}}{RT}\right) \tag{3}$$

For the second fraction $k_5\left(\frac{k_6}{k_{-5}+k_6}\right)$, a differentiation into two limiting cases is necessary:

a) When k_{-5} is small compared to k_6 , the surface crossing to the ³LL'CT state is irreversible and for the lifetime of the ³MLCT state follows:

$$\frac{1}{\tau_0(T)} = k_1 + k_2(T) + k_5(T) \tag{4}$$

In this case, just as above for $k_2(T)$, $k_5(T)$ is composed of a rate constant at infinite temperature and an Arrhenius term, associated with the ³MLCT-³LL'CT activation barrier ΔG_2^{\ddagger} .

$$k_5(T) = k_5^0 \exp\left(-\frac{\Delta G_2^{\ddagger}}{RT}\right) \tag{5}$$

b) When the back reaction from the ³LL'CT to the ³MLCT state is faster than the depopulation of the ³LL'CT state into the ground state ($k_{-5} < k_6$), the ³LL'CT and ³MLCT states are in thermal equilibrium:

$$\frac{1}{\tau_0(T)} = k_1 + k_2(T) + K_{LL'CT/MLCT} \cdot k_6 \tag{6}$$

An exponential term is required to describe the temperature dependence of the last component of the equation in this case as well, but it contains the difference between the Gibbs free enthalpies of the ³LL'CT and ³MLCT states.

$$K_{LL'CT/MLCT} \cdot k_6 = k_6 \exp\left(-\frac{\Delta G^0}{RT}\right) \text{ with } \Delta G^0 = G^0_{LL'CT} - G^0_{MLCT}$$
(7)

Thus, the mathematical description with a sum over two exponential terms, which was used to fit the $\ln(\phi)$ vs. T^{-1} plots, is identical for both limiting cases, although the physical implications differ substantially:

a)
$$\frac{1}{\tau_0(T)} = k_1 + k_2^0 \exp\left(-\frac{\Delta G_1^{\ddagger}}{RT}\right) + k_5^0 \exp\left(-\frac{\Delta G_2^{\ddagger}}{RT}\right)$$
 (8a)

b)
$$\frac{1}{\tau_0(T)} = k_1 + k_2^0 \exp\left(-\frac{\Delta G_1^{\ddagger}}{RT}\right) + k_6 \exp\left(-\frac{\Delta G^0}{RT}\right)$$
 (8b)

A decision between the two cases a) or b) can only be made based on experimental data. When ΔG^0 , the difference between the Gibbs free enthalpies of the ³LL'CT and ³MLCT states, is

negative, a decrease of the ³MLCT lifetime $\tau_0(T)$ with decreasing temperature is expected for case b), while for case a) the lifetime should increase. In this study, the quantum yield $\phi(T)$ instead of the ³MLCT lifetime $\tau_0(T)$ is measured. This, however, does not affect the obtained data neither qualitatively nor quantitatively, because ϕ and $\tau_0(T)$ are linearly related when k_r is independent from the temperature: $\phi(T) = k_r \cdot \tau_0(T)$. This temperature-independence of k_r has been observed in all studies on luminescent polypyridine ruthenium(II) complexes.