Supporting Information

Enhanced catalytic oxidation ability of ternary layered double hydroxides for

organic pollutants degradation

Jean Fahel,^{a1} Sanghoon Kim,^{a1} Pierrick Durand,^b Erwan André,^a Cédric Carteret^{a*}

^a LCPME UMR 7564, CNRS – Université de Lorraine, F-54600 Villers-lès-Nancy, France

^b CRM2 UMR 7036, CNRS – Université de Lorraine, F-54506 Vandœuvre-lès-Nancy,

France

¹ These two authors contributed equally to this work.

	Mg_4Al_2	Cu_4Al_2	Co_4Al_2	$Mg_3Cu_1Al_2$	$Mg_2Cu_2Al_2$
S_{BET} (mg ² g ⁻¹)	55	22	36	57	60
Vp (cm ³ g ⁻¹)	0.26	0.07	0.18	0.15	0.14
	$Mg_3Co_1Al_2$	$Mg_2Co_2Al_2$	$Co_3Cu_1Al_2$	$Co_2Cu_2Al_2$	$Co_1Cu_3Al_2$
S_{BET} (mg ² g ⁻¹)	Mg ₃ Co ₁ Al ₂ 50	Mg ₂ Co ₂ Al ₂ 43	Co ₃ Cu ₁ Al ₂ 50	Co ₂ Cu ₂ Al ₂ 52	Co ₁ Cu ₃ Al ₂ 22

Table S1. The specific surface (S_{BET}) and pore volume (Vp) of LDH materials.

	Mg_4Al_2	Cu_4Al_2	Co_4Al_2	$Mg_3Cu_1Al_2$	$Mg_2Cu_2Al_2$
Zeta potential (mV)	39.4	34.9	28.3	38.2	35.2
<u> </u>					
	$Mg_3Co_1Al_2$	$Mg_2Co_2Al_2$	$Co_3Cu_1Al_2$	$Co_2Cu_2Al_2$	$Co_1Cu_3Al_2$

Table S2. Zeta potential value of LDH materials.

OII	Mg_4Al_2	Cu_4Al_2	Co_4Al_2	$Mg_3Cu_1Al_2$	$Mg_2Cu_2Al_2$
q _e (mg/g)	53.6	72.5	34.4	59.9	56.5
k_1 (min ⁻¹)	0.0308	0.0173	0.0142	0.0329	0.0331
R ²	0.9893	0.9981	0.9797	0.9587	0.9430
	$Mg_3Co_1Al_2$	$Mg_2Co_2Al_2$	$Co_3Cu_1Al_2$	$Co_2Cu_2Al_2$	$Co_1Cu_3Al_2$
q _e (mg/g)	Mg ₃ Co ₁ Al ₂ 63.0	Mg ₂ Co ₂ Al ₂ 50.9	Co ₃ Cu ₁ Al ₂ 25.9	Co ₂ Cu ₂ Al ₂ 30.4	Co ₁ Cu ₃ Al ₂ 30.7
$q_e(mg/g)$ $k_1(min^{-1})$	Mg ₃ Co ₁ Al ₂ 63.0 0.0273	Mg ₂ Co ₂ Al ₂ 50.9 0.0321	Co ₃ Cu ₁ Al ₂ 25.9 0.0109	Co ₂ Cu ₂ Al ₂ 30.4 0.0144	Co ₁ Cu ₃ Al ₂ 30.7 0.0172

Table S3. Kinetic parameters for adsorption of OII, obtained using the pseudo-first order model. C_{initial} = 300 mg / L.

	Mg_4Al_2	Cu_4Al_2	Co_4Al_2	$Mg_3Cu_1Al_2$	$Mg_2Cu_2Al_2$
n	7.7	10.1	7.0	5.0	9.3
K _F (mg/g)/(L/mg) ^{1/n}	63.1	63.0	26.5	33.7	66.1
R ²	0.6473	0.7607	0.7143	0.7620	0.4468
	$Mg_3Co_1Al_2$	$Mg_2Co_2Al_2$	$Co_3Cu_1Al_2$	$Co_2Cu_2Al_2$	$Co_1Cu_3Al_2$
n	Mg ₃ Co ₁ Al ₂ 11.5	Mg ₂ Co ₂ Al ₂ 9.1	Co ₃ Cu ₁ Al ₂ 11.4	Co ₂ Cu ₂ Al ₂ 13.8	Co ₁ Cu ₃ Al ₂ 17.5
n K _F (mg/g)/(L/mg) ^{1/n}	Mg ₃ Co ₁ Al ₂ 11.5 67.3	Mg ₂ Co ₂ Al ₂ 9.1 54.9	Co ₃ Cu ₁ Al ₂ 11.4 46.1	Co ₂ Cu ₂ Al ₂ 13.8 53.5	Co ₁ Cu ₃ Al ₂ 17.5 61.8

Table S4. Fitting parameters obtained using the Freundlcih isotherms model, n stands for the heterogeneity factor, K_F for the Freundlich constant and R^2 for squared correlation coefficient.

Fig. S1. Extracted data from XRD diffractograms: A) Evolution of Full Width at Half Height of the (003) reflection as function of the metal substitution; Evolution of lattice parameters a, c for B) MgCoAl, C) MgCuAl and D) CoCuAl.

Fig. S2. N₂ adsorption-desorption isotherms of LDH materials

Fig. S3. TEM image of A) Mg₄Al₂, B) Mg₂Cu₂Al₂, C) Mg₂Co₂Al₂, D) Co₂Cu₂Al₂

Fig. S4. XRD of Mg_4Al_2 before / after OII adsorption.

Fig. S5. XRD of $Co_3Cu_1Al_2$ before / after orange II degradation.

Fig. S6. FT-IR spectra of $Co_3Cu_1Al_2$ before / after orange II degradation.