
MnBr₂/(18-crown-6) Coordination Complexes Showing High Room Temperature Luminescence and Quantum Yield

David Hausmann, Ana Kuzmanoski, and Claus Feldmann*

Institut für Anorganische Chemie, Karlsruhe Institute of Technology (KIT) Engesserstrasse 15, D-76131 Karlsruhe, Germany <u>claus.feldmann@kit.edu</u>

SUPPORTING INFORMATION

A comparison of diffractograms that were calculated based on data from single crystal structure analysis and X-ray powder diffraction data of powder samples validates the structure of the compounds $MnBr_2(18$ -crown-6) (1), $Mn_3Br_6(18$ -crown-6)₂ (2) and $Mn_3Br_6(18$ -crown-6) (3) (Figure S1). Certain shifts of the Bragg peaks result from the different temperatures of measurement (single crystal diffraction analysis at -75 °C; powder diffraction analysis at 20 °C).

Figure S1. Comparison of measured (X-ray powder diffraction) and calculated (based on the data from single-crystal structure analysis) powder diffraction patterns of (a) $MnBr_2(18$ -crown-6) (1), (b) $Mn_3Br_6(18$ -crown-6)₂ (2), and (c) $Mn_3Br_6(18$ -crown-6)₂ (3).

Figures S2 to S4 show the packing of the building units in the crystalline lattice, which is illustrated by (2×2) unit cells for MnBr₂(18-crown-6) (1) (Figure S2), Mn₃Br₆(18-crown-6)₂ (2) (Figure S3) and Mn₃Br₆(18-crown-6) (3) (Figure S4).

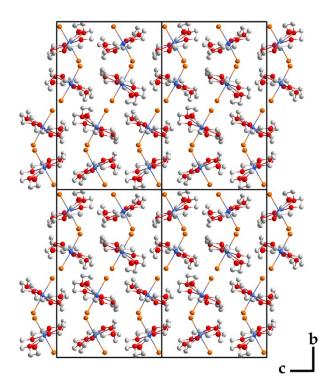


Figure S2. (2×2) unit cells of MnBr₂(18-crown-6) (1) (hydrogen atoms not shown).

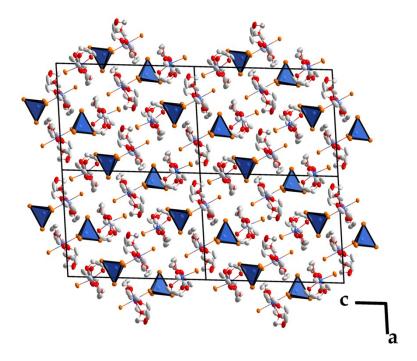


Figure S3. (2×2) unit cells of Mn₃Br₆(18-crown-6)₂ (2) (hydrogen atoms not shown).

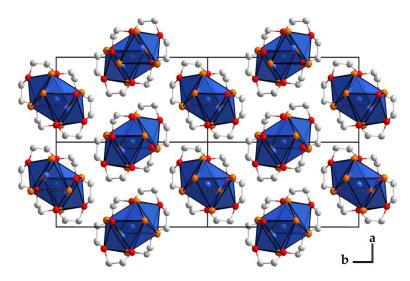


Figure S4. (2×2) unit cells of Mn₃Br₆(18-crown-6) (3) (hydrogen atoms not shown).