SUPPLEMENTARY INFORMATION

Synthesis and anticancer activity of carbosilane metallodendrimers based on arene ruthenium (II) complexes.

Marta Maroto-Díaz ^{*ac*}, Benelita T. Elie ^{*d,e*}, Pilar Gómez-Sal ^{*a*}, Jorge Pérez-Serrano ^{*b*}, Rafael Gómez^{* *ac*}, Maria Contel^{* *d,e*}, F. Javier de la Mata^{* *ac*}

^aDepartamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain. E-mail: javier.delamata@uah.es. Fax: +34 91 885 4683

^bDepartamento de Biomedicina y Biotecnología, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Spain.

^cNetworking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.

^dDepartment of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, New York 11210, United States. E-mail: mariacontel@brooklyn.cuny.edu

^eBiology PhD Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, United States.

Table of Contents

- 1. Synthesis of dendritic ligands 3, 6 and 9
- Synthesis of carbosilane metallodendrimers based on arene ruthenium (II) complexes 13-15 and 19-21
- 3. Figure S1-S9. Selected ¹H-NMR and ¹³C-NMR spectra of dendritic ligands (1-9)
- 4. **Figure S10-S17.** Selected ¹H-NMR and ¹³C-NMR spectra of carbosilane metallodendrimers based on arene ruthenium (II) complexes (**10**, **11**, **13-15**, **17**, **18**)
- 5. Scheme S1. Figure S18-S19. ¹H and ESI-TOF mass spectra of the reaction S1
- 6. Scheme S2. Figure S20-S21. ¹H and ¹³C-NMR spectra of the reaction S2
- 7. Scheme S3. Figure S22. ¹H and ¹³C-NMR spectra of the reaction S3
- 8. Figure S23-S35. Stability tests
- Figure S36-S45. Fluorescence titration curve of HSA with compound 10-11, 13-15 and 17-18
- 10. Table S1-S2. Crystal and structure refinement data for compound 10

1. Synthesis of dendritic ligands 3, 6 and 9 and NMR spectra data

Second generation dendrimers. G_2 -[NCPh(p-N)] $_8$ (**3**), G_2 -[NCPh(o-N)] $_8$ (**6**) and G_2 -[NCPh(o-OH)] $_8$ (**9**).

To a solution of G_2 -[NH₂]₈ (240 mg, 0.14 mmol) in THF, the corresponding aldehyde, 4-pyridinecarboxaldehyde (127.3 mg, 1.19 mmol) for (**3**), 2pyridinecarboxaldehyde (127.3 mg, 1.19 mmol) for (**6**), and salicylaldehyde (145.1 mg, 1.19 mmol) for (**9**) was added. The mixture was stirred under inert atmosphere at room temperature in the presence of anhydrous MgSO₄ for 24 hour. Afterwards, the solvent was rotary evaporated to give an oil that was purified by size exclusion chromatography.

 G_2 -[NCPh(p-N)]₈ (3). Yellow pale oil, yield 250 mg (72%). ¹H-NMR (CDCl₃): δ (ppm) = -0.13 (s, 12H, $-CH_3SiCH_2CH_2CH_2Si$; -0.07(s, 48H, $(CH_3)_2SiCH_2CH_2CH_2N$; 0.48 (overlapping br m, 64H, -SiCH₂CH₂CH₂Si, -CH₃SiCH₂CH₂CH₂Si and -(CH₃)₂SiCH₂CH₂CH₂N); 1.25 (overlapping br m, 24H, - $-CH_3SiCH_2CH_2CH_2Si),$ SiCH₂CH₂CH₂Si and 1.65 16H. (br m, $(CH_3)_2SiCH_2CH_2CH_2N$; 3.59 (t, ${}^{3}J(_{H-H}) = 6.8$ Hz, 16H, $-(CH_3)_2SiCH_2CH_2CH_2N$); 7.54 (m, 16H, Ar); 8.63 (m, 16H, Ar); 8.20 (s, 8H, $-CH_{imine}$). ${}^{13}C{}^{1}H{}-NMR$ $(CDCl_3): \delta$ (ppm) = -4.8 (-(CH_3)_2SiCH_2CH_2CH_2N); -3.2 (-CH_3SiCH_2CH_2CH_2Si); 13.2 (-(CH₃)₂SiCH₂CH₂CH₂CH₂N); 18.6, 18.7, 18.9, 20.1 (-SiCH₂CH₂CH₂Si and -CH₃SiCH₂CH₂CH₂Si); 25.4 (-(CH₃)₂SiCH₂CH₂CH₂N); 65.4 (-(CH₃)₂SiCH₂CH₂CH₂N); 122.0, 143.1, 150.5 (C_{Ar}); 158.9 (-CH_{imine}). ²⁹Si-NMR (CDCl₃): δ (ppm) = -SiCH₂CH₂CH₂Si is not observed; 0.85 (-CH₃SiCH₂CH₂CH₂Si); 1.88 (-(CH₃)₂SiCH₂CH₂CH₂N). ¹⁵N NMR (CDCl₃): δ (ppm) = -64.5 (N_{pvr}); -32.2

S3

(N_{imine}). Elemental Analysis (%): Calc. For C₁₂₈H₂₂₀N₁₆Si₁₃ (2348.34): C, 65.27; H, 9.44; N, 9.54; Found: C, 64.98; H, 9.33; N, 9.26.

 $G_{2}-[NCPh(o-N)]_{8}(6)$. Brown oil, yield 273 mg (79%). ¹H-NMR (CDCl₃): δ (ppm) = -0.11 (s, 12H, -CH₃SiCH₂CH₂CH₂Si); -0.05 (s, 48H, -(CH₃)₂SiCH₂CH₂CH₂N); 0.53 (overlapping br m, 64H, -SiCH₂CH₂CH₂CH₂Si, -CH₃SiCH₂CH₂CH₂Si and -(CH₃)₂SiCH₂CH₂CH₂CH₂N); 1.28 (overlapping br m, 24H, -SiCH₂CH₂CH₂Si and -CH₃SiCH₂CH₂CH₂Si); 1.69 (br m, 16H, -(CH₃)₂SiCH₂CH₂CH₂N); 3.63 (t, ${}^{3}J(_{H-H}) =$ 7.0 Hz, 16H, -(CH₃)₂SiCH₂CH₂CH₂CH₂N); 7.28 (m, 8H, Ar); 7.71 (m, 8H, Ar); 7.97 (m, 8H, Ar); 8.62 (m, 8H, Ar); 8.35 (s, 8H, $-CH_{imine}$). ${}^{13}C{}^{1}H{}-NMR$ (CDCl₃): δ $(ppm) = -4.8 (-(CH_3)_2SiCH_2CH_2CH_2N); -3.2 (-CH_3SiCH_2CH_2CH_2Si); 13.2 (-$ (CH₃)₂SiCH₂CH₂CH₂N); 18.6, 18.7, 18.9, 20.2 (-SiCH₂CH₂CH₂Si_{core} and -25.5 (-(CH₃)₂SiCH₂CH₂CH₂N); CH₃SiCH₂CH₂CH₂Si); 65.1 (-(CH₃)₂SiCH₂CH₂CH₂N); 121.3, 124.7, 136.6, 149.5, 161.8 (C_{Ar}); 154.8 (-CH_{imine}). ²⁹Si-NMR (CDCl₃): δ (ppm) = -SiCH₂CH₂CH₂Si is not observed; 0.90 (-CH₃SiCH₂CH₂CH₂Si); 1.90 (-(CH₃)₂SiCH₂CH₂CH₂N). ¹⁵N NMR (CDCl₃): δ (ppm) = -67.4 (N_{pvr}); -38.0 (N_{imine}). Elemental Analysis (%): Calc. For $C_{128}H_{220}N_{16}Si_{13}$ (2348.34): C, 65.47; H, 9.44; N, 9.54; Found: C, 65.04; H, 8.96; N, 9.72.

G₂-[NCPh(*o*-OH)]₈(**9**). Yellow oil, yield 306 g (84%). ¹H-NMR (CDCl₃): δ (ppm) = = -0.09 (s, 12H, -C**H**₃SiCH₂CH₂CH₂CH₂Si) ; -0.04 (s, 48H, -(C**H**₃)₂SiCH₂CH₂CH₂CH₂CH₂N); 0.54 (overlapping br m, 64H, -SiC**H**₂CH₂C**H**₂Si, -CH₃SiC**H**₂CH₂C**H**₂Si and -(CH₃)₂SiC**H**₂CH₂CH₂N); 1.27 (overlapping br m, 24H, -SiCH₂C**H**₂C**H**₂CH₂Si and -CH₃SiCH₂C**H**₂CH₂Si); 1.66 (br m, 16H, -(CH₃)₂SiCH₂C**H**₂CH₂N); 3.55 (t, ³*J* ($_{H-H}$) = 6.5 Hz, 16H, -(CH₃)₂SiCH₂CH₂C**H**₂CH₂N); 6.85 (m, 8H, Ar); 6.94 (m, 8H, Ar); 7.26 (m, 16H, Ar); 8.30 (s, 8H, -C**H**_{imine}); -OH is not observed. ¹³C{¹H}-NMR (CDCl₃): δ $(ppm) = -4.8 \ (-CH_3)_2SiCH_2CH_2CH_2N); \ -3.2 \ (-CH_3SiCH_2CH_2CH_2CH_2Si); \ 13.0 \ (-(CH_3)_2SiCH_2CH_2CH_2CH_2N); \ 18.6, \ 18.7, \ 18.9, \ 20.1 \ (-SiCH_2CH_2CH_2CH_2Si) \ and \ -CH_3SiCH_2CH_2CH_2CH_2Si); \ 25.7 \ (-(CH_3)_2SiCH_2CH_2CH_2N); \ 62.9 \ (-(CH_3)_2SiCH_2CH_2CH_2CH_2N); \ 117.2, \ 118.5, \ 118.9, \ 131.2, \ 132.2, \ 164.6 \ (C_{Ar}); \ 161.6 \ (-CH_{imine}). \ ^{29}Si-NMR \ (CDCl_3): \ \delta \ (ppm) = -SiCH_2CH_2CH_2Si \ is \ not \ observed; \ 0.97 \ (-CH_3SiCH_2CH_2CH_2Si); \ 2.00 \ (-(CH_3)_2SiCH_2CH_2CH_2N). \ ^{15}N \ NMR \ (CDCl_3): \ \delta \ (ppm) = -82.9 \ (N_{imine}). \ Elemental \ Analysis \ (\%): \ Calc. \ For \ C_{136}H_{228}N_8O_8Si_{13} \ (2468.43): \ C, \ 66.17; \ H, \ 9.31; \ N, \ 4.54; \ Found: \ C, \ 65.78; \ H, \ 9.19; \ N, \ 4.95.$

2. Synthesis and characterization of carbosilane metallodendrimers based on arene ruthenium (II) complexes 13-15 and 19-21

Neutral N- metallodendrimers. G_0 -[NCPh(p-N)Ru(η^6 -p-cymene)Cl₂]₁ (13), G_1 -[NCPh(p-N)Ru(η^6 -p-cymene)Cl₂]₄ (14) and G_2 -[NCPh(p-N)Ru(η^6 -p-cymene)Cl₂]₈ (15).

To a solution of the dendritic ligand (86.5 mg, 0.33 mmol of G_0 -[NCPh(p-N)]₁; 95 mg, 0.09 mmol of G_1 -[NCPh(p-N)]₄; 96.8 mg, 0.04 mmol of G_2 -[NCPh(p-N)]₈) in dichlorometane was slowly added the dimer [Ru(η^6 -p-cymene)Cl₂]₂ (101 mg, 0.16 mmol for G_0 -[NCPh(p-N)Ru(η^6 -p-cymene)]₁ (13); 114 mg, 0.19 mmol for G_1 -[NCPh(p-N)Ru(η^6 -p-cymene)]₄ (14) and 101 mg, 0.16 mmol for G_2 -[NCPh(p-N)Ru(η^6 -p-cymene)]₄ (14) and 101 mg, 0.16 mmol for G_2 -[NCPh(p-N)Ru(η^6 -p-cymene)]₈ (15). The reaction was allowed to stir at room temperature for 5h. The mixture solution was concentrated, and the product, a yellow-orange solid, was precipitated with diethyl ether and dried *in vacuo*.

 G_0 -[NCPh(p-N)Ru(η^6 -p-cymene)Cl₂]₁ (13). Yellow-orange solid, yield 102 mg (55%). ¹H-NMR (CDCl₃): δ (ppm) = 0.52 (overlapping m, 8H, -Si(CH₂CH₃)₃ and -SiCH₂CH₂); 0.92 (m, 9H, -Si(CH₂CH₃)₃); 1.30 (d, ${}^{3}J$ (_{*H*-*H*}) = 6.9 Hz, 6H, -(CH₃)₂CH_{cve}); 1.68 (m, 2H, -SiCH₂CH₂CH₂N); 2.09 (s, 3H, -CH_{3cve}); 2.98 (m, 1H, - $(CH_3)_2 CH_{cve}$; 3.66 (t, ${}^{3}J_{(H-H)} = 6.6$ Hz, 2H, -SiCH₂CH₂CH₂N); 5.22 (d, ${}^{3}J_{(H-H)} =$ 6.0 Hz, 2H, Ar_{cve}); 5.44 (d, ${}^{3}J(_{H-H}) = 6.0$ Hz, 2H, Ar_{cve}); 7.59 (m, 2H, Ar); 9.08 (m, 2H, Ar); 8.25 (s, 1H, -CH_{imine}). ¹³C {¹H}-NMR (CDCl₃): δ (ppm) = 3.4 (-Si(CH₂CH₃)₃); 7.6 (-Si(CH₂CH₃)₃); 9.1 (-SiCH₂CH₂); 18.4 (-CH_{3cve}); 22.4 (- $(CH_3)_2CH_{cve}$; (-SiCH₂CH₂CH₂N); $(-(CH_3)_2CH_{cve});$ 25.3 30.8 65.6 (-SiCH₂CH₂CH₂N); 82.3, 83.2 (-CH_{cve}); 97.4, 103.7 (C_{cve}); 122.6, 144.6, 155.4 (CAr); 157.4 (-CH_{imine}). ²⁹Si-NMR (CDCl₃): δ (ppm) = 7.11 (-Si(CH₂CH₃)₃). Elemental Analysis (%): Calc. For C₂₅H₄₀Cl₂N₂RuSi (568.66): C, 57.68; H, 7.71; N, 2.49; Found: C, 57.76; H, 7.42; N, 2.57.

 G_{l} -[NCPh(p-N)Ru(η^{6} -p-cymene)Cl₂]₄ (14). Yellow-orange solid, yield 74.8 mg (55%). ¹H-NMR (CDCl₃): δ (ppm) = -0.04 (br s, 24H, -(CH₃)₂SiCH₂CH₂CH₂N); 0.54 (overlapping m, 24H, $-SiCH_2CH_2CH_2Si$ and $-SiCH_2CH_2CH_2N$); 1.30 (overlapping br m, 32H, -(CH₃)₂CH_{cve} and -SiCH₂CH₂Si); 1.66 (br m, 8H, -SiCH₂CH₂CH₂N); 2.07 (s, 12H, -CH_{3cye}); 2.97 (br m, 4H, -(CH₃)₂CH_{cye}); 3.63 (br m, 8H, -SiCH₂CH₂CH₂N); 5.24 (m, 8H, Ar_{cve}); 5.46 (m, 8H, Ar_{cve}); 7.55 (m, 8H, Ar); 9.04 (m, 8H, Ar); 8.20 (s, 4H, -CH_{imine}). ¹³C {¹H}-NMR (CDCl₃): δ (ppm) = -3.1 (- $(CH_3)_2SiCH_2CH_2CH_2N);$ 13.2 (-SiCH₂CH₂CH₂N); 17.5, 18.3. 18.6 (-SiCH₂CH₂CH₂Si); 20.3 (-CH_{3cye}); 22.5 (-(CH₃)₂CH_{cye}); 25.4 (-SiCH₂CH₂CH₂N); 30.3 (-(CH₃)₂CH_{cve}); 65.4 (-SiCH₂CH₂CH₂N); 82.3, 83.3 (-CH_{cve}); 97.4, 103.6 (C_{cve}) ; 122.7, 144.5, 155.4 (CAr); 157.6 (-CH_{imine}). ²⁹Si-NMR (CDCl₃): δ (ppm) = 0.60 (-SiCH₂CH₂CH₂Si), 2.00 (-(CH₃)₂SiCH₂CH₂CH₂N). Elemental Analysis (%): Calc. For C₉₆H₁₄₈Cl₈N₈Ru₄Si₅ (2242.59): C, 51.42; H, 6.65; N, 5.00; Found: C, 51.35; H, 6.49; N, 4.67.

G₂-[NCPh(*p*-N)Ru(η⁶-*p*-cymene)Cl₂]₈ (**15**). Yellow-orange solid, yield 89.6 mg (45%). ¹H-NMR (CDCl₃): δ (ppm) = -0.09 (s, 12H, -C**H**₃SiCH₂CH₂CH₂CH₂Si); -0.03 (s, 48H, -(C**H**₃)₂SiCH₂CH₂CH₂CH₂N); 0.54 (overlapping br m, 64H, -SiC**H**₂CH₂CH₂C**H**₂Si, -CH₃SiC**H**₂CH₂CH₂Si and -(CH₃)₂SiC**H**₂CH₂CH₂N); 1.29 (overlapping br m, 72H, -SiCH₂CH₂CH₂Si, -CH₃SiCH₂C**H**₂CH₂CH₂CH₂Si and -(C**H**₃)₂CH_{cye}); 1.66 (br m, 16H, -(CH₃)₂SiCH₂CH₂CH₂N); 2.06 (s, 24H, -C**H**_{3cye}); 2.97 (br m, 8H, -(CH₃)₂C**H**_{cye}); 3.63 (br m, 16H, -(CH₃)₂SiCH₂CH₂CH₂CH₂CH₂N); 5.24 (br m, 16H, Ar_{cye}); 5.45 (br m, 16H, Ar_{cye}); 7.56 (br m, 16H, Ar); 9.05 (br m, 16H, Ar); 8.22 (br s, 8H, -C**H**_{imine}). ¹³C

{¹H}-NMR (CDCl₃): δ (ppm) = -4.7 (-(CH₃)₂SiCH₂CH₂CH₂CH₂N); -3.1 (-CH₃SiCH₂CH₂CH₂Si); 13.3 (-(CH₃)₂SiCH₂CH₂CH₂N); 18.4, 18.6, 19.0, 20.1 (-SiCH₂CH₂CH₂CH₂Si, -CH₃SiCH₂CH₂CH₂CH₂Si and -CH_{3cye}); 22.5 (-(CH₃)₂CH_{cye}); 25.4 (-(CH₃)₂SiCH₂CH₂CH₂N); 30.8 (-(CH₃)₂CH_{cye}); 65.4 (-(CH₃)₂SiCH₂CH₂CH₂N); 82.3, 83.3 (-CH_{cye}); 97.5 (C_{cye}) 122.7, 144.6, 155.4 (CAr); 157.6 (-CH_{imine}). ²⁹Si-NMR (CDCl₃): δ (ppm) = -SiCH₂CH₂CH₂CH₂Si is not observed; 0.88 (-CH₃SiCH₂CH₂CH₂CH₂Si); 2.06 (-(CH₃)₂SiCH₂CH₂CH₂CH₂N). Elemental Analysis (%): Calc. For C₂₀₈H₃₃₂Cl₁₆N₁₆Ru₈Si₁₃ (4797.89): C, 52.07; H, 6.97; N, 4.67; Found: C, 52.43; H, 7.08; N, 4.75.

Chelating N,O- neutral metallodendrimers. G_0 -[NCPh(o-O)Ru(η^6 -p-cymene)Cl]₁ (19), G_1 -[NCPh(o-O)Ru(η^6 -p-cymene)Cl]₄ (20) and G_2 -[NCPh(o-O)Ru(η^6 -p-cymene)Cl]₈(21).

To a solution of *N*,*O*-Schiff base dendrimer (90.6 mg, 0.32 mmol of G_0 -[NCPh(o-OH)]₁; 96.0 mg, 0.09 mmol of G_1 -[NCPh(o-OH)]₄, 100.0 mg, 0.04 for G_2 -[NCPh(o-OH)]₈) in dry ethanol, was added triethylamine (34.60 mg, 0.36 mmol for G_0 -[NCPh(o-OH)]₁; 36.95 mg, 0.36 mmol for G_1 -[NCPh(o-OH)]₄; 34.63 mg, 0.34 mmol for G_2 -[NCPh(o-OH)]₈. The yellow suspension was stirred at room temperature for 30 mins. Immediately, [Ru(η^6 -p-cymene)Cl₂]₂ (101 mg, 0.16 mmol for G_0 -[NCPh(o-O)Ru(η^6 -p-cymene)Cl]₁ (**19**); 109 mg, 0.18 mmol for G_1 -[NCPh(o-O)Ru(η^6 -p-cymene)Cl]₄ (**20**) and 99.2 mg, 0.16 mmol for G_2 -[NCPh(o-O)Ru(η^6 -p-cymene)Cl]₈ (**21**) was added to the reaction mixture and allowed to stir overnight at room temperature. The solvent was evaporated under reduced pressure and the resulting solid was purified by an extraction of CH₂Cl₂/H₂O. Then, the organic phase was dried over MgSO₄ and the solution was filtered and evaporated. The G_1 -[NCPh(o-O)CPh(o

O)Ru(η^6 -*p*-cymene)Cl]₄ and G₂-[NCPh(*o*-O)Ru(η^6 -*p*-cymene)Cl]₈ complexes were purified by sized exclusion chromatography.

G₀-[NCPh(*o*-O)Ru(η⁶-*p*-cymene)Cl]₁ (**19**). Brown solid, 144 mg (81%). ¹H-NMR (CDCl₃): δ (ppm) = 0.56 (overlapping m, 8H, -Si(CH₂CH₃)₃ and -SiCH₂CH₂); 0.95 (m, 9H, -Si(CH₂CH₃)₃); 1.12 (d, ³*J* (*_{H-H}*) = 6.9 Hz, 3H, -(CH₃)₂CH_{cye}); 1.23 (d, ³*J* (*_{H-H}*) = 6.9 Hz, 3H, -(CH₃)₂CH_{cye}); 1.83 (br m, 1H, -SiCH₂CH₂CH₂N); 2.07 (br m, 1H, -SiCH₂CH₂CH₂N); 2.19 (s, 3H, -CH_{3cye}); 2.77 (m, 1H, -(CH₃)₂CH_{cye}); 4.00 (br m, 1H, -SiCH₂CH₂CH₂N); 4.20 (br m, 1H, -SiCH₂CH₂CH₂N); 5.01 (m, 1H, Ar_{cye}); 5.37 (m, 3H, Ar_{cye}); 6.39 (m, 1H, Ar); 6.92 (m, 2H, Ar); 7.13 (m, 1H, Ar); 7.66 (s, 1H, -CH_{imine}). ¹³C {¹H}-NMR (CDCl₃): δ (ppm) = 3.3 (-Si(CH₂CH₃)₃); 7.6 (-Si(CH₂CH₂CH₂N); 30.6 (-(CH₃)₂CH_{cye}); 73.1 (-SiCH₂CH₂CH₂N); 80.2, 82.1, 83.2, 85.9 (-CH_{cye}); 97.4, 101.6 (C_{cye}); 114.1, 119.3, 122.4, 134.4, 134.6, 163.4 (CAr); 165.0 (-CH_{imine}). ²⁹Si-NMR (CDCl₃): δ (ppm) = 7.10 (-**Si**(CH₂CH₃)₃). Elemental Analysis (%): Calc. For C₂₆H₄₀ClNORuSi (547.24): C, 57.07; H, 7.37; N, 2.56; Found: C, 57.39; H, 7.20; N, 2.83.

G₁-[NCPh(*o*-O)Ru(η⁶-*p*-cymene)Cl]₄ (**20**). Brown solid, yield 136 mg (70%). ¹H-NMR (CDCl₃): δ (ppm) = 0.01 (br s, 24H, -(C**H**₃)₂SiCH₂CH₂CH₂CH₂N); 0.59 (overlapping m, 24H, -SiC**H**₂CH₂C**H**₂Si and -SiC**H**₂CH₂CH₂N); 1.10 (m, 12H, -(C**H**₃)₂CH_{*cye*}); 1.23 (m, 12H, -(C**H**₃)₂CH_{*cye*}); 1.28 (br m, 8H, -SiCH₂C**H**₂CH₂CH₂S*i*); 1.82 (br m, 4H, -SiCH₂C**H**₂CH₂N); 2.03 (br m, 4H, -SiCH₂C**H**₂CH₂N); 2.19 (s, 12H, -C**H**_{3*cye*}); 2.74 (br s, 4H, -(CH₃)₂C**H**_{*cye*}); 3.96 (br m, 4H, -SiCH₂CH₂C**H**₂N); 4.24 (br m, 4H, -SiCH₂CH₂C**H**₂N); 5.01 (m, 4H, Ar_{*cye*}); 5.38 (m, 12H, Ar_{*cye*}); 6.40 (m, 4H, Ar); 6.92 (m, 8H, Ar); 7.12 (m, 4H, Ar); 7.66 (s, 4H, -C**H**_{imine}). ¹³C {¹H}-NMR (CDCl₃): δ (ppm) = -3.1 (-(CH₃)₂SiCH₂CH₂CH₂N); 13.0 (-SiCH₂CH₂CH₂CH₂N); 17.6, 18.6, 18.7 (-SiCH₂CH₂CH₂CH₂Si and -CH_{3cye}); 21.7, 22.9 (-(CH₃)₂CH_{cye}); 25.9 (-SiCH₂CH₂CH₂CH₂N); 30.6 (-(CH₃)₂CH_{cye}); 73.0 (-SiCH₂CH₂CH₂N); 80.2, 82.2, 83.4, 86.1 (-CH_{cye}); 97.3, 101.5 (C_{cye}); 114.1, 119.3, 122.3, 134.6, 163.3 (CAr); 164.9 (-CH_{imine}). ²⁹Si-NMR (CDCl₃): δ (ppm) = 0.60 (-SiCH₂CH₂CH₂CH₂Si); 2.01 (-(CH₃)₂SiCH₂CH₂CH₂N). Elemental Analysis (%): Calc. For C₁₀₀H₁₄₈Cl₄N₄O₄Ru₄Si₅ (2156.79): C, 55.59; H, 6.62; N, 2.70; Found: C, 55.93; H, 6.89; N, 2.58.

 G_2 -[NCPh(o-O)Ru(η^6 -p-cymene)Cl]₈ (21). Brown-red solid, yield 126 mg (68%). ¹H-NMR (CDCl₃): δ (ppm) = -0.06 (br s, 48H, -(CH₃)₂SiCH₂CH₂CH₂N); 0.02 (br s, 12H, -CH₃SiCH₂CH₂CH₂Si); 0.57 (overlapping br m, 64H, -SiCH₂CH₂CH₂Si, - $CH_3SiCH_2CH_2CH_2Si$ and $-(CH_3)_2SiCH_2CH_2CH_2N$; 1.10 (br m, 24H, - $(CH_3)_2 CH_{cve}$; 1.25 (overlapping br 72H. $-SiCH_2CH_2CH_2Si$, m, CH₃SiCH₂CH₂CH₂Si and -(CH₃)₂CH_{cye}); 1.82 (br m, 8H, -(CH₃)₂SiCH₂CH₂CH₂N); 2.03 (br m, 8H, -(CH₃)₂SiCH₂CH₂CH₂N); 2.19 (s, 24H, -CH_{3cve}); 2.75 (br s, 8H, - $(CH_3)_2 CH_{cve}$; 3.94 (br m, 8H, -SiCH₂CH₂CH₂CH₂N); 4.23 (br m, 8H, -SiCH₂CH₂CH₂N); 5.00 (m, 8H, Ar_{cve}); 5.38 (m, 24H, Ar_{cve}); 6.39 (br s, 8H, Ar); 6.91 (overlapping m, 16H, Ar); 7.13 (br s, 8H, Ar); 7.66 (s, 8H, $-CH_{imine}$). ${}^{13}C{}^{1}H{}-NMR$ $(CDCl_3): \delta$ (ppm) = -4.7 (-(CH_3)_2SiCH_2CH_2CH_2N); -3.0 (-CH_3SiCH_2CH_2CH_2Si); 13.1 (-(CH₃)₂SiCH₂CH₂CH₂N); 17.9, 18.6, 18.8, 19.0, 19.3, 20.2, 21.8 (-SiCH₂CH₂CH₂Si, -CH₃SiCH₂CH₂CH₂Si and -CH_{3cve}); 23.0, 25.9 (-(CH₃)₂CH_{cve}); 29.8 (-(CH₃)₂SiCH₂CH₂CH₂N); 30.7 $(-(CH_3)_2CH_{cve});$ 73.1 (-(CH₃)₂SiCH₂CH₂CH₂N); 80.2, 82.3, 83.5, 86.2 (-CH_{cve}); 97.3, 101.6 (C_{cve}); 114.1, 119.4, 122.4, 134.6, 163.4 (CAr); 165.1 (-CH_{imine}). ²⁹Si-NMR (CDCl₃): δ (ppm) = -SiCH₂CH₂CH₂Si is not observed; 0.90 $(-(CH_3)_2SiCH_2CH_2CH_2Si);$ 2.16 (CH₃SiCH₂CH₂CH₂N). Elemental Analysis (%): Calc. For C₂₁₆H₃₃₂Cl₈N₈O₈Ru₈Si₁₃ (4626.29): C, 56.08; H, 7.23; N, 2.42; Found: C, 56.59; H, 7.66; N, 2.44. 3. Selected ¹H NMR and ¹³C NMR spectra of dendritic ligands (1-9)

Fig. S1 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of compound G_0 -[NCPh(*p*-N)]₁ (**1**).

Fig. S2 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of compound G_0 -[NCPh(*o*-N)]₁ (4).

Fig. S3 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of compound G_0 -[NCPh(*o*-OH)]₁(**7**).

Fig. S4 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of compound G_{I} -[NCPh(*p*-N)]₄ (**2**).

Fig. S5 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of compound G_{I} -[NCPh(*o*-N)]₄ (**5**).

Fig. S6 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of compound G_I -[NCPh(*o*-OH)]₄ (8).

Fig. S7 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of compound G_2 -[NCPh(*p*-N)]₈ (**3**).

Fig. S8 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of compound G_2 -[NCPh(*o*-N)]₈ (6).

Fig. S9 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of compound G_2 -[NCPh(*o*-OH)]₈(**9**).

4. Selected ¹H NMR and ¹³C NMR spectra of carbosilane metallodendrimers based on arene ruthenium (II) complexes (10, 11, 13-15, 17,18)

Fig. S10 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of compound G_0 -[NH₂Ru(η^6 -*p*-cymene)Cl₂]₁ (**10**).

Fig. S11 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of compound G_{I} -[NH₂Ru(η^{6} -*p*-cymene)Cl₂]₄ (**11**).

Fig. S12 a) ¹H-NMR and b) ¹³C {¹H}-NMR spectra of compound G_0 -[NCPh(*p*-N)Ru(η^6 -*p*-cymene)Cl₂]₁(**13**).

Fig. S13 a) ¹H-NMR and b) ¹³C {¹H}-NMR spectra of compound G_1 -[NCPh(*p*-N)Ru(η^6 -*p*-cymene)Cl₂]₄(**14**).

Fig. S14 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of compound G_2 -[NCPh(*p*-N)Ru(η^6 -*p*-cymene)Cl₂]₈ (**15**).

Fig. S15 a) ¹H-NMR (300 MHz, CD₃OD) and b) ¹³C {¹H}-NMR (300 MHz, CD₃OD) spectra of compound G_{I} -[[NCPh(*o*-N)Ru(η^{6} -*p*-cymene)Cl]*Cl*]₄ (17).

Fig. S16 a) ¹H-NMR (300 MHz, CD₃OD) and b) ¹³C {¹H}-NMR (300 MHz, CD₃OD) spectra of compound G_2 -[[NCPh(*o*-N)Ru(η^6 -*p*-cymene)Cl]*Cl*]₈ (**18**).

Fig. S17 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of compound G_0 -[NCPh(o-O)Ru(η^6 -p-cymene)Cl]₁ (**19**).

5. ¹H and ESI-TOF mass spectra of the reaction S1

Scheme S1 1 equivalent of ruthenium with 1 equivalent of the G_{I} -[NH₂]₄(II).

Fig. S18¹H-NMR (300 MHz, CDCl₃) spectra of reaction S1.

Fig. S19 ESI-TOF mass spectra of reaction S1.

6. ^{1}H and ^{13}C -NMR spectra of the reaction S2

Scheme S2 $\frac{1}{2}$ equivalent of [Ru] with 1 equivalent of the commercial 4-pyridinecarboxaldehyde.

Fig. S20 ¹H-NMR spectra of commercial 4-pyridinecarboxaldehyde.

Fig. S21 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of reaction S2.

7. ¹H and ¹³C-NMR spectra of the reaction S3

Scheme S3 ¹/₂ equivalent of [Ru] with 2 equivalents of the commercial 4pyridinecarboxaldehyde.

Fig. S22 a) ¹H-NMR (300 MHz, CDCl₃) and b) ¹³C {¹H}-NMR (300 MHz, CDCl₃) spectra of reaction S3.

8. Stability tests

Fig. S23 1 H-NMR (300 MHz, D₂O) of complex 16.

Fig. S24 Time dependent ¹H-NMR (300 MHz, PBS_D₂O) of complex 16 (pH = 7.4).

complex **16** (pH = 7.4).

Fig. S26 Time dependent (from 0 to 72h) overlap ¹H-NMR (300 MHz, DMSO_ d_6) of complex **16**.

Fig. S27 Time dependent ¹H-NMR (300 MHz, DMSO_ d_6) of complex **16**.

Fig. S28 Time dependent (from 0 to 72h) overlap ¹H-NMR (300 MHz, DMSO_ d_6) of complex **17**.

Fig. S29 Time dependent ¹H-NMR (300 MHz, DMSO_ d_6) of complex 17.

Fig. S30 ¹H-NMR (300 MHz, DMSO_ d_6) of complex [Ru(η^6 -*p*-cymene)Cl₂(DMSO)].

Fig. S31 Time dependent ¹H-NMR (300 MHz, DMSO_ d_6) of complex **10.**

C 90096
 C 900970
 C 900970
 C 75974
 C 75974
 C 75947
 C 75947
 C 75947
 C 75947
 C 75947
 C 55406
 C 552130
 C 55213
 C 55213
 C 5521
 C 5521
 C 552
 C 5521
 C 55
 C 5
 C 5
 C 5
 C 5
 C 5
 C 5
 C 5
 C 5
 C 5
 C 5
 C 5
 C 5
 C 5
 C 5
 C 5
 C 5
 C 5
 C 5
 C
 C 5
 C
 C 5
 C
 C 5
 C
 C 5
 C
 C 5
 C
 C
 C 5
 C
 C
 C
 C 5
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Fig. S33 ¹H-NMR (300 MHz, CDCl₃) of complex **13.**

Fig. S34 ¹H-NMR (300 MHz, CDCl₃/DMSO (1:4)) of complex **13.**

Fig. S35 ¹H-NMR (300 MHz, DMSO_ d_6) of complex 14.

9. Fluorescence titration curve of HSA with compound 10-11, 13-15, 17-18

Fig. S36 Fluorescence titration curve of HSA with compound 10.

Fig. S37 Fluorescence titration curve of HSA with compound 11.

Fig. S38 Stern-Volmer plot for HSA fluorescence quenching observed with compound 10, 11, the ruthenium dimer $[Ru(\eta^6-p-cymene)Cl_2]_2$ and cisplatin.

Fig. S39 Fluorescence titration curve of HSA with compound 13.

Fig. S40 Fluorescence titration curve of HSA with compound 14.

Fig. S41 Fluorescence titration curve of HSA with compound 15.

Fig. S42 Stern-Volmer plot for HSA fluorescence quenching observed with compound 13, 14, 15, the ruthenium dimer $[Ru(\eta^6-p-cymene)Cl_2]_2$ and cisplatin.

Fig. S43 Fluorescence titration curve of HSA with compound 17.

Fig. S44 Fluorescence titration curve of HSA with compound 18.

Fig. S45 Stern-Volmer plot for HSA fluorescence quenching observed with compound 16, 17, 18, the ruthenium dimer $[Ru(\eta^6-p-cymene)Cl_2]_2$ and cisplatin.

10. Crystal and structure refinement data for compound 10

Empirical formula	$C_{19}H_{37}Cl_2NRuSi$
Formula weight	479.57
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	
Α	7.2564(5) Å
В	11.7148(10) Å
С	13.8168(14) Å
α	78.098(8)°

 Table S1 Crystal and structure refinement data for compound 10.

β	82.292(5)°		
γ	85.667(6)°		
Volume, ^ Å 3	1137.50(17) - Å 3		
Z, Cal.density Mg/m ³	2,1.400		
Absorption coefficient mm ⁻¹	0.979		
F(000)	500		
Crystal size, mm	0.30 x 0.26 x 0.2		
θ range for data collection	3.04° to 27.50°		
Limiting indices	-9<=h<=9,		
	-15<=k<=15,		
	-17<=l<=17		
Reflections collected	9855 / 5217 [R(int) = 0.0858]		
/unique			
Completeness to θ	θ =27.50; 99.8 %		
Absorption correction	Multi-scan		
Max. and min. transmission	0.864 and 0.649		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	5217 / 0 / 217		
Goodness-of-fit on F^2	0.755		
Final R indices [I>2o(I)]	R1 = 0.0487, wR2 = 0.1049		
R indices (all data)	R1 = 0.980 w $R2 = 0.1253$		
I project diff near and halo a^{-3} Å	0.712 and -0.637		
Largest unit, peak and note e. A	0.712 and -0.037		

Selected bond lengths (Å) for compound 10.				
Ru(1)-Cl(1)	2.4246 (12)	Ru (1)-C(4)	2.203 (5)	
Ru(1)-Cl(2)	2.4126 (12)	Ru (1)-C(1)	2.208 (5)	
Ru(1)-N(1)	2.135 (4)	N(1)-C(11)	1.475 (6)	
Ru(1)-Cent	1.668	Si(1)-C(18)	1.861 (5)	
Ru(1)-C(5)	2.163 (5)	Si(1)-C(16)	1.864 (6)	
Ru(1)-C(3)	2.165 (4)	Si(1)-C(14)	1.877 (6)	
Ru(1)-C(2)	2.184 (4)	Si(1)-C(13)	1.878 (5)	
Ru(1)-C(6)	2.192 (5)			
Selected bond angles (°) for compound 10.				
N(1)-Ru(1)-Cl(2)	80.51 (11)	C(18)-Si(1)-C(16)	108.7 (3)	
$N(1) D_{11}(1) C(1)$				
N(1)-Ku(1)-CI(1)	80.89 (11)	C(18)-Si(1)-C(14)	109.0 (3)	
Cl(2)-Ru(1)-Cl(1)	80.89 (11) 87.79 (5)	C(18)-Si(1)-C(14) C(16)-Si(1)-C(14)	109.0 (3) 110.2 (3)	
Cl(2)-Ru(1)-Cl(1) Cent*-Ru(1)-Cl(1)	80.89 (11) 87.79 (5) 128.24	C(18)-Si(1)-C(14) C(16)-Si(1)-C(14) C(18)-Si(1)-C(13)	109.0 (3) 110.2 (3) 109.4 (2)	
Cl(2)-Ru(1)-Cl(1) Cent*-Ru(1)-Cl(1) Cent*-Ru(1)-Cl(1)	80.89 (11) 87.79 (5) 128.24 128.63	C(18)-Si(1)-C(14) C(16)-Si(1)-C(14) C(18)-Si(1)-C(13) C(16)-Si(1)-C(13)	109.0 (3) 110.2 (3) 109.4 (2) 107.6 (2)	
R(1)-Ru(1)-Cl(1) Cl(2)-Ru(1)-Cl(1) Cent*-Ru(1)-Cl(1) Cent*-Ru(1)-Cl(1)	80.89 (11) 87.79 (5) 128.24 128.63 133.35	C(18)-Si(1)-C(14) C(16)-Si(1)-C(14) C(18)-Si(1)-C(13) C(16)-Si(1)-C(13) C(14)-Si(1)-C(13)	109.0 (3) 110.2 (3) 109.4 (2) 107.6 (2) 111.9 (3)	
R(1)-Ru(1)-Cl(1) Cl(2)-Ru(1)-Cl(1) Cent*-Ru(1)-Cl(1) Cent*-Ru(1)-Cl(1) C(11)-N(1)-Ru(1)	80.89 (11) 87.79 (5) 128.24 128.63 133.35 120.2 (3)	C(18)-Si(1)-C(14) C(16)-Si(1)-C(14) C(18)-Si(1)-C(13) C(16)-Si(1)-C(13) C(14)-Si(1)-C(13)	109.0 (3) 110.2 (3) 109.4 (2) 107.6 (2) 111.9 (3)	

Table S2 Selected bond lengths (Å) and angles (°) for compound 10.