Supporting Information

Coordination and supramolecular assembly of {Cd₂Ge₈V₁₂O₄₈} building block and Cucurbit[6] to form rotaxane-shaped hybrids

Mei-Jie Wei, Hong-Ying Zang*, En-Long Zhou, Kui-Zhan Shao, Bai-Qiao Song, Guo-Gang Shan, Xin-Long Wang*, Zhong-Min Su

Institute of Functional Material Chemistry, Key Lab of Polyoxometalate, Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, People's Republic of China.E-mail: <u>zanghy100@nenu.edu.cn</u>; <u>wangxl824@nenu.edu.cn</u>Fax: +860431-85684009; Tel: +860431-85099108

Crystal data for $1:C_{58}H_{180}N_{46}O_{128}V_{24}Ge_{16}Cd_8$; *P*-1; a = 12.434(5) Å, b = 12.685(5) Å, c = 30.441(5) Å; V = 4647(3) Å³; Z = 1; 26717reflns measured, 16334 unique ($R_{int} = 0.0515$); final $R_I = 0.0549$, $wR_2 = 0.1309$ for 16334 observed reflections [$I > 2\sigma$ (I)]. CCDC- (1403847) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif for 1.

Crystal data for **2**: $C_{46}H_{98}N_{34}O_{67}V_{12}Ge_8Cd_4$; *C2/c*; *a* = 15.524(5) Å, *b* = 19.795(5) Å, *c* = 36.902(5) Å; *V* = 11306(5) Å^3; *Z* = 4; 32176reflns measured, 9937 unique (R_{int} = 0.0617); final R_I = 0.0675, wR_2 = 0.1914 for 9937 observed reflections [*I*> 2 σ (*I*)]. CCDC-(1403848) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif for **2**.

Experimental characterization Materials and Instrumentation

All reagents were of AR grade and used without further purification. IR spectra (4000-400 cm⁻¹) were recorded in KBr discs on a Nicolet Magna 560 IR spectrometer(Resolution: 2 cm⁻¹, Number of scan: 16 times). Powder X-ray diffraction (PXRD) patterns were recorded on a Siemens D 5005 diffractometer with Cu-K α (λ = 1.5418 Å) radiation in the range of 3-50°C.TGA was performed on a Perkin-Elmer TGA analyzer heated from room temperature to 900°C under nitrogen gas with a heating rate of 10°C/min.Variable temperature magnetic susceptibility measurements were carried out in an applied magnetic field of 1000 Oe in the temperature range of 2-300 K with a Quantum Design MPMS XL-7 magnetometer.

Synthesis of 1.

NH₄VO₃ (0.0432 g, 0.36mmol), GeO₂(0.0760 g,0.74mmol), CdCl₂·2.5H₂O (0.1014 g, 0.36mmol), H₃BO₃(0.0316 g,0.52mmol), and en (0.20 mL) were added to H₂O (10 mL) solution with stirring. The final solution was transferred into a 20 mL Teflon-lined autoclave, before CB6 (0.11 g, 0.11mmol) was added, then sealed, and kept at 170 °C for 4 days. After cooling to room temperature, reddish brown crystals were collected(Yield: 0.0518 g, 48.6% based on V). Elem anal. Calcd forC₅₈H₁₈₀N₄₆O₁₄₄V₂₄Ge₁₆Cd₈: C,10.16; H, 2.65; N, 9.40%.Found: C, 10.01; H, 2.33; N, 9.18%. IR (KBr): v= 3331(m), 3282(m), 3188(w), 2929(m), 2883(w), 1741(s), 1682(m), 1645(m), 1587(w), 1483(m), 1458(w), 1419(m), 1383(m), 1329(m), 1284(w), 1242(m), 1194(m), 1147(w), 985(s), 800(s), 733(w), 669(m), 544(m) cm⁻¹.

Synthesis of 2.

NH₄VO₃ (0.0154 g, 0.13mmol), GeO₂(0.0271 g,0.26mmol), CdCl₂·2.5H₂O (0.0362 g, 0.13mmol), H₃BO₃(0.0113 g,0.19mmol), and en (0.071 mL) were added to H₂O (5 mL) solution with stirring. The final solution was transferred into a 20 mL Teflon-lined autoclave, before CB6 (0.057 g, 0.057 mmol) was added, then sealed, and kept at 170 °C for 4 days. After cooling to room temperature, reddish brown crystals were harvested(Yield: 0.0223 g, 53.8% based on V).Elem anal. Calcd forC₂₃H₅₄N₁₇O₄₀V₆Ge₄Cd₂: C,14.38; H, 2.57; N, 12.40%. Found: C,14.01; H, 2.35; N,12.14%. IR (KBr): v= 3344(m), 3280(m), 3195(w), 2931(m), 2881(w), 1740(s), 1682(m), 1643(m), 1589(w), 1481(m), 1419(m), 1380(m), 1329(m), 1294(w), 1240(m), 1194(m), 1147(w), 987(s), 800(s), 733(w), 671(m), 546(m) cm⁻¹.

X-ray Crystallographic study.

The single-crystal X-ray diffraction measurements were performed at room temperature with a Bruker Apex II CCD using graphite-monochromated Mo-K*a* radiation ($\lambda = 0.71073$ Å). Absorption corrections were applied using multi-scan technique and performed by using the SADABS program. All of the structureswere solved by directmethods¹ and refined by F^2 fullmatrix refinementusing the SHELXTL package² within WINGX³. Carbon-bonded hydrogen atoms were placed in geometrically calculated positions; hydrogen atoms on water molecules were not assigned or directly included in the molecule formula. Crystallographic data for **1** and **2** are illustrated in Table S1 and selected bond lengths and angles are listed from Table S2 to Table S5, respectively. In addition, the bond valence sums⁴ for terminal O2, O21, O23, O27, O30, O32, O35 and O45atoms on the Ge atoms in **1** and O3, O4, O18 andO21 atoms on the Ge atoms in **2** are in the range of 0.947 to 1.167, which indicates that these O atoms belong to OH groups. Other similar OH groups have also been seen in previous reports⁵⁻⁶.

Fig. S1 The experimental and simulated X-ray powder diffraction patterns of 1.

Fig. S2 The experimental and simulated X-ray powder diffraction patterns of 2.

Fig S3.Infrared absorption spectrum of compounds 1 and 2.

 Table S1. Crystal data and structure refinements for compound 1 and compound 2.

Compound reference	1	2
Chemical formula	$C_{58}H_{180}N_{46}O_{128}V_{24}Ge_{16}Cd_8\\$	$C_{46}H_{98}N_{34}O_{67}V_{12}Ge_8Cd_4$
Formula Mass	6853.68	3841.18
Crystal system	Triclinic	Monoclinic
<i>a</i> /(Å)	12.434(5)	15.524(5)
<i>b</i> /(Å)	12.685(5)	19.795(5)
$c/(\text{\AA})$	30.441(5)	36.902(5)
$\alpha/^{\circ}$	87.927(5)	90.000(5)
$\beta/^{\circ}$	87.149(5)	94.457(5)
γ/°	75.801(5)	90.000(5)
Unit cell volume/(Å) ₃	4647(3)	11306(5)

Temperature/K	293(2)	293(2)
Space group	P-1	C2/c
No of formula units per unit cell, Z	1	4
No of reflections measured	26717	32176
No of independent reflections	16334	9937
R _{int}	0.0515	0.0617
Final R_l values $(l \ge 2\sigma(l))^a$	0.0549	0.0675
Final $wR(F_2)$ values $(I > 2\sigma(I))^b$	0.1309	0.1914
Final R_1 values (all data)	0.0974	0.0991
Final $wR(F_2)$ values (all data)	0.1526	0.2158
Goodness of fit on F_2	1.008	1.013

 ${}^{a}R_{I} = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|. \ {}^{b}wR_{2} = |\Sigma w(|F_{o}|^{2} - |F_{c}|^{2})| / \Sigma |w(F_{o})^{2}|^{1/2}$

Table S2.Selected bond lengths $[{\rm \AA}]$ for compound 1.

V(1)-O(22) 1.620(7)	Ge(1)-O(28)	1 715(6)
		1./13(0)
V(1)-O(10) 1.930(7)	Ge(1)-O(19)	1.730(7)
V(1)-O(25) 1.944(7)	Ge(1)-O(27)	1.760(7)
V(1)-O(9) 1.945(6)	Ge(1)-O(26)	1.768(7)
V(1)-O(24) 1.970(7)	Ge(2)-O(21)	1.717(7)
V(2)-O(29) 1.616(7)	Ge(2)-O(25)	1.731(6)
V(2)-O(15) 1.923(6)	Ge(2)-O(7)	1.767(7)
V(2)-O(47) 1.953(7)	Ge(2)-O(26)	1.782(7)
V(2)-O(31) 1.955(7)	Ge(3)-O(24)	1.727(7)
V(2)-O(28) 1.970(7)	Ge(3)-O(23)	1.740(7)
V(3)-O(46) 1.601(7)	Ge(3)-O(11)	1.761(7)
V(3)-O(15) 1.919(7)	Ge(3)-O(44)	1.772(6)
V(3)-O(47) 1.923(7)	Ge(4)-O(31)	1.734(7)
V(3)-O(36) 1.972(7)	Ge(4)-O(30)	1.743(6)
V(3)-O(17) 2.014(7)	Ge(4)-O(13)	1.745(7)
V(4)-O(16) 1.599(7)	Ge(4)-O(44)	1.771(7)
V(4)-O(15) 1.915(6)	Ge(5)-O(45)	1.712(7)
V(4)-O(20) 1.937(6)	Ge(5)-O(5)	1.714(7)
V(4)-O(19) 1.983(7)	Ge(5)-O(36)	1.737(6)
V(4)-O(17) 1.999(7)	Ge(5)-O(34)	1.767(7)
V(5)-O(18) 1.611(7)	Ge(6)-O(43)	1.722(6)
V(5)-O(8) 1.909(7)	Ge(6)-O(32)	1.728(7)
V(5)-O(20) 1.935(7)	Ge(6)-O(3)	1.744(7)
V(5)-O(7) 1.992(7)	Ge(6)-O(42)	1.777(6)
V(5)-O(19) 1.995(6)	Ge(7)-O(2)	1.708(7)
V(6)-O(6) 1.600(7)	Ge(7)-O(40)	1.727(7)
V(6)-O(8) 1.933(7)	Ge(7)-O(39)	1.741(7)
V(6)-O(9) 1.952(6)	Ge(7)-O(42)	1.758(7)

V(6)-O(7)	1.965(7)	Ge(8)-O(41)	1.709(7)
V(6)-O(39)	1.979(7)	Ge(8)-O(35)	1.736(7)
V(7)-O(1)	1.604(7)	Ge(8)-O(17)	1.737(7)
V(7)-O(20)	1.935(7)	Ge(8)-O(34)	1.761(7)
V(7)-O(41)	1.961(7)	Cd(1)-N(2)	2.271(13)
V(7)-O(8)	1.962(7)	Cd(1)-N(1)	2.333(13)
V(7)-O(40)	1.970(7)	Cd(2)-N(4)	2.285(10)
V(8)-O(4)	1.603(7)	Cd(2)-N(3)	2.384(9)
V(8)-O(38)	1.924(7)	Cd(3)-N(8)	2.282(10)
V(8)-O(10)	1.927(7)	Cd(3)-N(7)	2.295(11)
V(8)-O(3)	1.995(6)	Cd(3)-N(13)	2.434(11)
V(8)-O(11)	1.996(6)	Cd(4)-N(9)	2.257(9)
V(9)-O(12)	1.598(7)	Cd(4)-N(11)	2.281(10)
V(9)-O(37)	1.918(7)	Cd(4)-N(12)	2.298(10)
V(9)-O(38)	1.929(6)	Cd(4)-N(10)	2.325(9)
V(9)-O(13)	1.994(7)	Cd(1)-O(5)	2.299(6)
V(9)-O(11)	1.995(6)	Cd(1)-O(40)	2.304(7)
V(10)-O(14)	1.577(7)	Cd(1)-O(43)	2.362(7)
V(10)-O(37)	1.952(7)	Cd(1)-O(41)	2.366(7)
V(10)-O(47)	1.958(7)	Cd(2)-O(24)	2.307(7)
V(10)-O(36)	1.982(7)	Cd(2)-O(31)	2.317(7)
V(10)-O(13)	1.991(7)	Cd(2)-O(28)	2.325(6)
V(11)-O(33)	1.608(7)	Cd(2)-O(25)	2.348(6)
V(11)-O(38)	1.933(7)	Cd(3)-O(49)	2.304(7)
V(11)-O(37)	1.947(7)	Cd(3)-O(50)	2.428(8)
V(11)-O(43)	1.958(6)	Cd(3)-O(29)	2.432(8)
V(11)-O(5)	1.970(6)	Cd(4)-O(22)	2.425(7)
V(12)-O(48)	1.597(7)	V(1)-V(12)	2.793(2)
V(12)-O(9)	1.913(7)	V(2)-V(3)	2.851(3)
V(12)-O(10)	1.915(6)	V(3)-V(10)	3.003(2)
V(12)-O(3)	2.016(7)	V(3)-V(4)	3.010(3)
V(12)-O(39)	2.018(6)	V(4)-V(5)	3.026(2)
		V(5)-V(7)	2.854(3)
		V(5)-V(6)	3.015(2)
		V(6)-V(12)	3.036(2)
		V(8)-V(12)	3.022(2)
		V(8)-V(9)	3.038(2)
		V(9)-V(11)	2.859(3)
		V(9)-V(10)	3.018(2)

O(22)-V(1)-O(10) 108.0(3) 115.7(3) O(28)-Ge(1)-O(19) O(22)-V(1)-O(25) 109.5(3) O(28)-Ge(1)-O(27) 112.6(3) O(10)-V(1)-O(25) 142.4(3)O(19)-Ge(1)-O(27) 108.6(3)O(22)-V(1)-O(9) 105.1(3) O(28)-Ge(1)-O(26) 107.8(3) O(10)-V(1)-O(9) 84.6(3) O(19)-Ge(1)-O(26) 104.4(3)O(25)-V(1)-O(9) 87.8(3) O(27)-Ge(1)-O(26) 107.2(3)O(22)-V(1)-O(24) 107.0(3) O(21)-Ge(2)-O(25) 115.0(3) O(10)-V(1)-O(24) 87.5(3) O(21)-Ge(2)-O(7) 107.3(3) O(25)-V(1)-O(24) 79.7(3) O(25)-Ge(2)-O(7)114.8(3) O(9)-V(1)-O(24) 147.8(3) O(21)-Ge(2)-O(26) 109.2(3) O(29)-V(2)-O(15) 104.2(4)O(25)-Ge(2)-O(26) 106.0(3)O(29)-V(2)-O(47) 107.6(3) O(7)-Ge(2)-O(26) 104.0(3)O(15)-V(2)-O(47) 82.9(3) O(24)-Ge(3)-O(23) 108.5(3)O(29)-V(2)-O(31) 111.5(4)O(24)-Ge(3)-O(11) 115.3(3) O(15)-V(2)-O(31) 144.2(3)O(23)-Ge(3)-O(11) 112.6(3) O(47)-V(2)-O(31) 88.5(3) O(24)-Ge(3)-O(44) 108.3(3)O(29)-V(2)-O(28) 104.9(4) O(23)-Ge(3)-O(44) 106.0(3)O(15)-V(2)-O(28) 89.6(3) O(11)-Ge(3)-O(44) 105.7(3) O(47)-V(2)-O(28) 147.5(3) O(31)-Ge(4)-O(30) 114.5(3) O(31)-Ge(4)-O(13) O(31)-V(2)-O(28) 79.2(3) 114.8(3) O(46)-V(3)-O(15) 113.4(4) O(30)-Ge(4)-O(13) 107.7(3) O(46)-V(3)-O(47) 107.6(3) O(31)-Ge(4)-O(44) 106.3(3) O(30)-Ge(4)-O(44) O(15)-V(3)-O(47) 83.8(3) 108.8(3)104.1(3) O(46)-V(3)-O(36) 107.2(4) O(13)-Ge(4)-O(44) O(15)-V(3)-O(36) 139.2(3) O(45)-Ge(5)-O(5)115.5(3) O(47)-V(3)-O(36) 80.3(3) O(45)-Ge(5)-O(36) 105.7(3) O(46)-V(3)-O(17) 108.3(3) O(5)-Ge(5)-O(36)113.7(3) O(15)-V(3)-O(17) O(45)-Ge(5)-O(34) 79.3(3) 108.2(3)O(47)-V(3)-O(17) 144.0(3)O(5)-Ge(5)-O(34)106.8(3) O(36)-V(3)-O(17) 92.1(3) O(36)-Ge(5)-O(34) 106.5(3)O(16)-V(4)-O(15) 109.7(3) O(43)-Ge(6)-O(32) 111.1(4)O(16)-V(4)-O(20) 112.8(3) O(43)-Ge(6)-O(3) 111.2(3)O(15)-V(4)-O(20) 137.4(3) O(32)-Ge(6)-O(3) 111.9(3) O(16)-V(4)-O(19) 104.9(4) O(43)-Ge(6)-O(42) 107.8(3) O(15)-V(4)-O(19) 88.9(3) O(32)-Ge(6)-O(42) 108.7(3) O(20)-V(4)-O(19) 79.1(3) O(3)-Ge(6)-O(42) 105.9(3) O(2)-Ge(7)-O(40) O(16)-V(4)-O(17) 106.0(4)114.4(3)O(15)-V(4)-O(17) O(2)-Ge(7)-O(39) 79.7(3) 105.7(3) O(20)-V(4)-O(17) 90.1(3) O(40)-Ge(7)-O(39) 113.8(3) O(19)-V(4)-O(17) 149.1(3) O(2)-Ge(7)-O(42) 108.7(3)O(18)-V(5)-O(8) 112.2(3) O(40)-Ge(7)-O(42) 107.5(3) O(18)-V(5)-O(20) 109.8(3) O(39)-Ge(7)-O(42) 106.3(3)

 Table S3.Selected angles [deg] for compound 1.

O(8)-V(5)-O(20)	84.6(3)	O(41)-Ge(8)-O(35)	116.2(4)
O(18)-V(5)-O(7)	108.5(3)	O(41)-Ge(8)-O(17)	112.3(3)
O(8)-V(5)-O(7)	78.5(3)	O(35)-Ge(8)-O(17)	108.2(4)
O(20)-V(5)-O(7)	141.6(3)	O(41)-Ge(8)-O(34)	108.0(3)
O(18)-V(5)-O(19)	110.0(3)	O(35)-Ge(8)-O(34)	105.3(3)
O(8)-V(5)-O(19)	137.7(3)	O(17)-Ge(8)-O(34)	106.0(3)
O(20)-V(5)-O(19)	78.8(3)	O(28)-Ge(1)-O(19)	115.7(3)
O(7)-V(5)-O(19)	91.0(3)	O(28)-Ge(1)-O(27)	112.6(3)
O(6)-V(6)-O(8)	112.2(3)	O(19)-Ge(1)-O(27)	108.6(3)
O(6)-V(6)-O(9)	112.7(3)	O(28)-Ge(1)-O(26)	107.8(3)
O(8)-V(6)-O(9)	135.0(3)	O(19)-Ge(1)-O(26)	104.4(3)
O(6)-V(6)-O(7)	106.4(3)	O(27)-Ge(1)-O(26)	107.2(3)
O(8)-V(6)-O(7)	78.6(3)	O(21)-Ge(2)-O(25)	115.0(3)
O(9)-V(6)-O(7)	88.9(3)	O(21)-Ge(2)-O(7)	107.3(3)
O(6)-V(6)-O(39)	105.0(3)	O(25)-Ge(2)-O(7)	114.8(3)
O(8)-V(6)-O(39)	90.0(3)	O(21)-Ge(2)-O(26)	109.2(3)
O(9)-V(6)-O(39)	78.7(3)	O(25)-Ge(2)-O(26)	106.0(3)
O(7)-V(6)-O(39)	148.6(3)	O(7)-Ge(2)-O(26)	104.0(3)
O(1)-V(7)-O(20)	106.9(3)	O(24)-Ge(3)-O(23)	108.5(3)
O(1)-V(7)-O(41)	106.2(4)	O(24)-Ge(3)-O(11)	115.3(3)
O(20)-V(7)-O(41)	89.3(3)	O(23)-Ge(3)-O(11)	112.6(3)
O(1)-V(7)-O(8)	107.4(3)	O(24)-Ge(3)-O(44)	108.3(3)
O(20)-V(7)-O(8)	83.1(3)	O(23)-Ge(3)-O(44)	106.0(3)
O(41)-V(7)-O(8)	146.3(3)	O(11)-Ge(3)-O(44)	105.7(3)
O(1)-V(7)-O(40)	107.9(3)	O(31)-Ge(4)-O(30)	114.5(3)
O(20)-V(7)-O(40)	145.2(3)	O(31)-Ge(4)-O(13)	114.8(3)
O(41)-V(7)-O(40)	79.2(3)	O(30)-Ge(4)-O(13)	107.7(3)
O(8)-V(7)-O(40)	88.4(3)	O(31)-Ge(4)-O(44)	106.3(3)
O(4)-V(8)-O(38)	113.0(3)	O(30)-Ge(4)-O(44)	108.8(3)
O(4)-V(8)-O(10)	112.4(3)	O(13)-Ge(4)-O(44)	104.1(3)
O(38)-V(8)-O(10)	134.6(3)	O(45)-Ge(5)-O(5)	115.5(3)
O(4)-V(8)-O(3)	103.3(3)	O(45)-Ge(5)-O(36)	105.7(3)
O(38)-V(8)-O(3)	90.7(3)	O(5)-Ge(5)-O(36)	113.7(3)
O(10)-V(8)-O(3)	79.0(3)	O(45)-Ge(5)-O(34)	108.2(3)
O(4)-V(8)-O(11)	107.3(3)	O(5)-Ge(5)-O(34)	106.8(3)
O(38)-V(8)-O(11)	78.3(3)	O(36)-Ge(5)-O(34)	106.5(3)
O(10)-V(8)-O(11)	88.4(3)	O(43)-Ge(6)-O(32)	111.1(4)
O(3)-V(8)-O(11)	149.3(3)	O(43)-Ge(6)-O(3)	111.2(3)
O(12)-V(9)-O(37)	111.6(3)	O(32)-Ge(6)-O(3)	111.9(3)
O(12)-V(9)-O(38)	110.2(3)	O(43)-Ge(6)-O(42)	107.8(3)
O(37)-V(9)-O(38)	83.7(3)	O(32)-Ge(6)-O(42)	108.7(3)
O(12)-V(9)-O(13)	109.7(3)	O(3)-Ge(6)-O(42)	105.9(3)
O(37)-V(9)-O(13)	79.6(3)	O(2)-Ge(7)-O(40)	114.4(3)
O(38)-V(9)-O(13)	140.0(3)	O(2)-Ge(7)-O(39)	105.7(3)

O(12)-V(9)-O(11)	108.9(3)	O(40)-Ge(7)-O(39)	113.8(3)
O(37)-V(9)-O(11)	139.3(3)	O(2)-Ge(7)-O(42)	108.7(3)
O(38)-V(9)-O(11)	78.2(3)	O(40)-Ge(7)-O(42)	107.5(3)
O(13)-V(9)-O(11)	91.3(3)	O(39)-Ge(7)-O(42)	106.3(3)
O(14)-V(10)-O(37)	113.3(4)	O(41)-Ge(8)-O(35)	116.2(4)
O(14)-V(10)-O(47)	110.3(3)	O(41)-Ge(8)-O(17)	112.3(3)
O(37)-V(10)-O(47)	136.4(3)	O(35)-Ge(8)-O(17)	108.2(4)
O(14)-V(10)-O(36)	105.6(4)	O(41)-Ge(8)-O(34)	108.0(3)
O(37)-V(10)-O(36)	88.4(3)	O(35)-Ge(8)-O(34)	105.3(3)
O(47)-V(10)-O(36)	79.2(3)	O(17)-Ge(8)-O(34)	106.0(3)
O(14)-V(10)-O(13)	107.0(4)	O(5)-Cd(1)-O(40)	119.8(2)
O(37)-V(10)-O(13)	78.9(3)	O(5)-Cd(1)-O(43)	65.2(2)
O(47)-V(10)-O(13)	89.5(3)	O(40)-Cd(1)-O(43)	87.4(2)
O(36)-V(10)-O(13)	147.4(3)	O(5)-Cd(1)-O(41)	86.3(2)
O(33)-V(11)-O(38)	109.9(3)	O(40)-Cd(1)-O(41)	64.9(2)
O(33)-V(11)-O(37)	107.1(3)	O(43)-Cd(1)-O(41)	123.3(3)
O(38)-V(11)-O(37)	82.8(3)	O(24)-Cd(2)-O(31)	88.4(2)
O(33)-V(11)-O(43)	105.8(3)	O(24)-Cd(2)-O(28)	122.0(3)
O(38)-V(11)-O(43)	89.2(3)	O(31)-Cd(2)-O(28)	65.2(2)
O(37)-V(11)-O(43)	146.9(3)	O(24)-Cd(2)-O(25)	65.2(2)
O(33)-V(11)-O(5)	105.2(3)	O(31)-Cd(2)-O(25)	119.7(2)
O(38)-V(11)-O(5)	144.8(3)	O(28)-Cd(2)-O(25)	83.9(2)
O(37)-V(11)-O(5)	88.7(3)	O(49)-Cd(3)-O(50)	98.6(3)
O(43)-V(11)-O(5)	79.6(3)	O(49)-Cd(3)-O(29)	71.2(3)
O(48)-V(12)-O(9)	107.4(3)	O(50)-Cd(3)-O(29)	79.4(3)
O(48)-V(12)-O(10)	109.7(3)	N(2)-Cd(1)-N(1)	72.2(5)
O(9)-V(12)-O(10)	85.9(3)	N(4)-Cd(2)-N(3)	74.4(3)
O(48)-V(12)-O(3)	110.1(3)	N(8)-Cd(3)-N(7)	77.0(4)
O(9)-V(12)-O(3)	142.3(3)	N(8)-Cd(3)-N(13)	90.4(4)
O(10)-V(12)-O(3)	78.8(3)	N(7)-Cd(3)-N(13)	96.5(4)
O(48)-V(12)-O(39)	110.2(3)	N(9)-Cd(4)-N(11)	149.8(3)
O(9)-V(12)-O(39)	78.6(3)	N(9)-Cd(4)-N(12)	131.9(3)
O(10)-V(12)-O(39)	139.9(3)	N(11)-Cd(4)-N(12)	77.0(3)
O(3)-V(12)-O(39)	91.3(3)	N(9)-Cd(4)-N(10)	77.2(4)
		N(11)-Cd(4)-N(10)	96.9(4)
		N(12)-Cd(4)-N(10)	119.5(4)

Table 54.5erectedobildienguis [A] for compound2.				
V(1)-O(8)	1.611(8)	Cd(1)-N(1)	2.351(11)	
V(1)-O(9)	1.950(8)	Cd(2)-N(2B)	2.300(10)	
V(1)-O(7)	1.954(8)	Cd(2)-N(2A)	2.304(10)	
V(1)-O(15)#1	1.980(8)	Cd(3)-N(14)	2.231(16)	

 Table S4.Selectedbondlengths [Å] for compound2.

V(1)-O(6)	1.983(8)	Cd(1)-O(20)	2.328(8)
V(2)-O(10)	1.602(8)	Cd(1)-O(17)	2.340(7)
V(2)-O(11)	1.920(8)	Cd(2)-O(2)	2.334(8)
V(2)-O(9)	1.922(8)	Cd(2)-O(1)	2.342(8)
V(2)-O(6)	1.971(8)	Cd(3)-O(25)	2.200(11)
V(2)-O(5)	2.015(8)	Cd(3)-O(24)	2.490(10)
V(3)-O(16)	1.610(8)	Cd(3)-O(22)	2.520(11)
V(3)-O(11)	1.918(8)	Ge(1)-O(2)	1.710(8)
V(3)-O(12)	1.937(7)	Ge(1)-O(3)	1.736(8)
V(3)-O(13)	1.988(8)	Ge(1)-O(6)	1.743(7)
V(3)-O(5)	1.995(8)	Ge(1)-O(29)	1.773(8)
V(4)-O(14)	1.605(9)	Ge(2)-O(1)	1.715(8)
V(4)-O(7)#1	1.908(7)	Ge(2)-O(5)	1.737(8)
V(4)-O(12)	1.940(8)	Ge(2)-O(4)	1.741(9)
V(4)-O(13)	2.001(8)	Ge(2)-O(29)	1.757(8)
V(4)-O(15)	2.007(8)	Ge(3)-O(20)	1.706(8)
V(5)-O(22)	1.605(9)	Ge(3)-O(13)	1.735(7)
V(5)-O(11)	1.927(8)	Ge(3)-O(21)	1.738(8)
V(5)-O(17)	1.953(8)	Ge(3)-O(19)	1.770(7)
V(5)-O(9)	1.970(8)	Ge(4)-O(17)#1	1.722(8)
V(5)-O(20)	1.981(7)	Ge(4)-O(18)	1.740(8)
V(6)-O(30)	1.608(8)	Ge(4)-O(15)	1.741(7)
V(6)-O(12)#1	1.945(8)	Ge(4)-O(19)	1.780(8)
V(6)-O(7)	1.955(7)	V(1)-V(2)	3.003(3)
V(6)-O(2)	1.972(8)	V(1)-V(4)#1	3.015(3)
V(6)-O(1)#1	1.980(8)	V(2)-V(5)	2.858(3)
Cd(3)-N(16A)	2.294(9)	V(2)-V(3)	3.013(3)
Cd(3)-N(15B)	2.315(10)	V(3)-V(4)	3.035(3)
Cd(3)-N(15A)	2.319(10)	V(4)-V(6)#1	2.853(3)
Cd(3)-N(16B)	2.329(10)		

 Table S5.Selected angles [deg] for compound 2.

-			
O(8)-V(1)-O(9)	111.4(4)	O(20)#1-Cd(1)-O(20)	123.1(4)
O(8)-V(1)-O(7)	112.7(4)	O(20)#1-Cd(1)-O(17)	85.8(3)
O(9)-V(1)-O(7)	135.9(3)	O(20)-Cd(1)-O(17)	65.9(3)
O(8)-V(1)-O(15)#1	106.1(4)	O(17)#1-Cd(1)-O(17)	119.3(4)
O(9)-V(1)-O(15)#1	88.9(3)	O(2)#1-Cd(2)-O(2)	121.3(4)
O(7)-V(1)-O(15)#1	79.2(3)	O(2)-Cd(2)-O(1)#1	64.9(3)
O(8)-V(1)-O(6)	106.4(4)	O(2)-Cd(2)-O(1)	86.7(3)
O(9)-V(1)-O(6)	79.0(3)	O(1)#1-Cd(2)-O(1)	121.1(4)
O(7)-V(1)-O(6)	88.7(3)	O(25)-Cd(3)-O(24)	98.4(3)
O(15)#1-V(1)-O(6)	147.5(3)	O(25)-Cd(3)-O(22)	70.9(4)
O(10)-V(2)-O(11)	110.4(4)	O(24)-Cd(3)-O(22)	80.6(3)

O(10)-V(2)-O(9)	109.1(4)	O(2)-Ge(1)-O(3)	114.9(4)
O(11)-V(2)-O(9)	84.2(3)	O(2)-Ge(1)-O(6)	114.1(4)
O(10)-V(2)-O(6)	109.5(4)	O(3)-Ge(1)-O(6)	106.3(4)
O(11)-V(2)-O(6)	139.9(3)	O(2)-Ge(1)-O(29)	107.0(4)
O(9)-V(2)-O(6)	80.0(3)	O(3)-Ge(1)-O(29)	108.9(4)
O(10)-V(2)-O(5)	107.6(4)	O(6)-Ge(1)-O(29)	105.2(4)
O(11)-V(2)-O(5)	79.2(3)	O(1)-Ge(2)-O(5)	112.6(4)
O(9)-V(2)-O(5)	143.0(3)	O(1)-Ge(2)-O(4)	116.4(4)
O(6)-V(2)-O(5)	91.9(3)	O(5)-Ge(2)-O(4)	107.2(4)
O(16)-V(3)-O(11)	108.8(4)	O(1)-Ge(2)-O(29)	108.2(4)
O(16)-V(3)-O(12)	112.3(4)	O(5)-Ge(2)-O(29)	106.6(4)
O(11)-V(3)-O(12)	138.9(3)	O(4)-Ge(2)-O(29)	105.2(4)
O(16)-V(3)-O(13)	105.1(4)	O(20)-Ge(3)-O(13)	115.3(4)
O(11)-V(3)-O(13)	89.5(3)	O(20)-Ge(3)-O(21)	113.8(4)
O(12)-V(3)-O(13)	79.0(3)	O(13)-Ge(3)-O(21)	107.4(4)
O(16)-V(3)-O(5)	105.6(4)	O(20)-Ge(3)-O(19)	107.9(4)
O(11)-V(3)-O(5)	79.7(3)	O(13)-Ge(3)-O(19)	104.8(3)
O(12)-V(3)-O(5)	90.4(3)	O(21)-Ge(3)-O(19)	106.9(4)
O(13)-V(3)-O(5)	149.3(3)	O(17)#1-Ge(4)-O(18)	114.3(4)
O(14)-V(4)-O(7)#1	112.0(4)	O(17)#1-Ge(4)-O(15)	115.9(4)
O(14)-V(4)-O(12)	109.0(4)	O(18)-Ge(4)-O(15)	107.3(4)
O(7)#1-V(4)-O(12)	84.8(3)	O(17)#1-Ge(4)-O(19)	106.2(4)
O(14)-V(4)-O(13)	109.8(4)	O(18)-Ge(4)-O(19)	108.5(4)
O(7)#1-V(4)-O(13)	138.0(3)	O(15)-Ge(4)-O(19)	104.0(4)
O(12)-V(4)-O(13)	78.7(3)	O(20)-Cd(1)-N(1)	105.9(4)
O(14)-V(4)-O(15)	108.9(4)	O(17)#1-Cd(1)-N(1)	85.9(3)
O(7)#1-V(4)-O(15)	79.6(3)	O(17)-Cd(1)-N(1)	151.4(4)
O(12)-V(4)-O(15)	142.1(3)	O(20)-Cd(1)-N(1)#1	119.1(4)
O(13)-V(4)-O(15)	90.3(3)	N(2B)-Cd(2)-O(2)#1	109.7(8)
O(22)-V(5)-O(11)	104.1(5)	N(2A)-Cd(2)-O(2)#1	93.4(7)
O(22)-V(5)-O(17)	111.8(5)	N(2A)#1-Cd(2)-O(2)#1	137.5(8)
O(11)-V(5)-O(17)	144.1(3)	N(2B)-Cd(2)-O(2)	116.3(8)
O(22)-V(5)-O(9)	108.0(4)	N(2A)-Cd(2)-O(2)	137.5(8)
O(11)-V(5)-O(9)	82.8(3)	N(2B)-Cd(2)-O(1)	152.6(7)
O(17)-V(5)-O(9)	87.6(3)	N(2B)#1-Cd(2)-O(1)	83.9(7)
O(22)-V(5)-O(20)	103.8(4)	N(2A)-Cd(2)-O(1)	133.2(8)
O(11)-V(5)-O(20)	89.9(3)	N(2A)#1-Cd(2)-O(1)	96.5(7)
O(17)-V(5)-O(20)	80.3(3)	O(25)-Cd(3)-N(14)	90.1(5)
O(9)-V(5)-O(20)	148.2(3)	O(25)-Cd(3)-N(16A)	168.0(5)
O(30)-V(6)-O(12)#1	107.1(4)	O(25)-Cd(3)-N(15B)	81.9(16)
O(30)-V(6)-O(7)	107.3(4)	O(25)-Cd(3)-N(15A)	88.1(16)
O(12)#1-V(6)-O(7)	83.4(3)	O(25)-Cd(3)-N(16B)	144.5(6)
O(30)-V(6)-O(2)	106.2(4)	N(14)-Cd(3)-O(24)	169.4(4)
O(12)#1-V(6)-O(2)	146.7(3)	N(16A)-Cd(3)-O(24)	92.9(5)
() · · (·) · (-)	(*)		- (-)

99.7(2)	N(15D) Cd(2) O(24)	0.2.7(16)
88.7(3)	N(13B)-Cu(3)-O(24)	92.7(10)
107.1(4)	N(15A)-Cd(3)-O(24)	85.3(16)
89.6(3)	N(16B)-Cd(3)-O(24)	94.5(5)
145.4(3)	N(14)-Cd(3)-O(22)	96.4(5)
78.8(3)	N(16A)-Cd(3)-O(22)	115.1(5)
	N(15B)-Cd(3)-O(22)	150.6(15)
	N(15A)-Cd(3)-O(22)	152.5(15)
	N(16B)-Cd(3)-O(22)	144.2(6)
	88.7(3) 107.1(4) 89.6(3) 145.4(3) 78.8(3)	88.7(3) N(15B)-Cd(3)-O(24) 107.1(4) N(15A)-Cd(3)-O(24) 89.6(3) N(16B)-Cd(3)-O(24) 145.4(3) N(14)-Cd(3)-O(22) 78.8(3) N(16A)-Cd(3)-O(22) N(15B)-Cd(3)-O(22) N(15B)-Cd(3)-O(22) N(16B)-Cd(3)-O(22) N(16B)-Cd(3)-O(22)

References

- 1 G. M. Sheldrick, *SHELXS-97: Program for X-ray crystal structure solution;*, University of Göttingen: Göttingen, Germany, 1997.
- 2 G. M. Sheldrick, *SHELXL-97: Program for X-ray Crystal Structure Refinement;*, University of Göttingen: Göttingen, Germany, 1997.
- 3 L. J. Farrugia, *WINGX: A Windows Program for Crystal Structure Analysis;*, University of Glasgow: Glasgow, UK, 1988.
- 4I. D. Brown, D. Altermatt, ActaCrystallogr. 1985, B41, 244-247.
- 5T. Whitfield, X. Wang, A. J. Jacobson, Inorg. Chem. 2003, 42, 3728-3733.
- 6J. Zhou, J. Zhang, W. H. Fang and G. Y. Yang, Chem. Eur. J. 2010, 16, 13253-13261.