Electronic Supplementary Information for the paper

Orbitally induced hierarchy of exchange interactions in zigzag antiferromagnetic state of honeycomb silver delafossite Ag₃Co₂SbO₆

E.A. Zvereva^{1,*}, M.I. Stratan¹, A.V. Ushakov², V.B. Nalbandyan⁴, I.L. Shukaev⁴, A.V. Silhanek⁵, M. Abdel-Hafiez,^{5,6,7}, S.V. Streltsov^{2,3}, and A.N. Vasiliev^{1,3,8}

> ¹Faculty of Physics, Moscow State University, 119991 Moscow, Russia *zvereva@mig.phys.msu.ru
> ²Institute of Metal Physics, S. Kovalevskoy St. 18, 620990 Ekaterinburg, Russia ³Ural Federal University, 620002 Ekaterinburg, Russia
> ⁴Chemistry Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia
> ⁵ Département de Physique, Université de Liége, B-4000 Sart Tilman, Belgium
> ⁶Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt/M, Germany
> ⁷Faculty of Science, Physics Department, Fayoum University, 63514 Fayoum, Egypt.
> ⁸National University of Science and Technology "MISiS", 119049 Moscow, Russia

Contents

2
3
4
5
6

References

Table S1. Known Ag₃M₂RO₆ and Ag₃MRXO₆ delafossite-related mixed oxides

Only Ag_2SnO_3 [42, 43] has been prepared by direct synthesis and characterized by single-crystal diffraction. All other compounds have been prepared by ion exchange from the sodium or lithium counterparts; they exhibit very similar powder diffraction patterns typical of the rhombohedral $AgFeO_2$ type; almost all show one or two weak and diffuse superstructure reflection; however, interpretations of these patterns are different.

Composition	Comments
$Ag_{3}(AgSn_{2})O_{6}$ [42,	The basic structure is double-layered P6 ₃ 22 honeycomb type, but there is an
43]	incommensurate modulation with $a = 29.22$ Å.
Ag ₃ LiTi ₂ O ₆ [44]	Powder pattern indexed as a trigonal superstructure. No structure refinement.
Ag ₃ M ₂ SbO ₆	No superlattice reflections found. The structures were refined within disordered
(M = Ni, Zn) [31]	$Ag(M_{2/3}Sb_{1/3})O_2 R \overline{3} m$ model, although the authors assumed high degree of local
	order.
Ag ₃ LiM ₂ O ₆	No indexing; disordered $Ag(Li_{1/3}M_{2/3})O_2$ formulas were used although one or two
(M = Ti, Sn) [45]	superlattice reflections were visible.
Ag ₃ Co ₂ SbO ₆ [46]	The superstructure was refined within the trigonal P3 ₁ 12 model. However, accuracy
	was low, and monoclinic symmetry could not be excluded as discussed in the present
	paper.
Ag ₃ LiRu ₂ O ₆ [47]	Paradoxically, superstructure was refined omitting the unique superstructure reflection;
	monoclinic C2/m model was used although no splitting of reflections from the
	rhombohedral subcell was detected. It was assumed that each layer was ordered but
	their stacking was disordered.
Ag ₃ LiRu ₂ O ₆ [48]	No superlattice reflections found. The structure was refined within disordered
	Ag($Li_{1/3}Ru_{2/3}$)O ₂ R $\overline{3}$ m model. Lattice parameters differ significantly (by 2.0-2.4%)
	from the subcell parameters in the preceding work [42].
Ag ₃ LiM ₂ O ₆	Superlattice reflections were found in both X-ray and electron diffraction. Each layer is
(M = Rh, Ir) [49]	assumed to be fully ordered. However, the structures were refined within disordered
	$Ag(Li_{1/3}M_{2/3})O_2 R \overline{3} m model.$
Ag ₃ Ni ₂ BiO ₆ [50]	Indexed as a trigonal superstructure (P3 ₁ 12). No structure refinement.
Ag ₃ NaFeSbO ₆ [51]	Indexed as a trigonal superstructure (P3 ₁ 12). Structural model was depicted but not
	refined.
$Ag_3LiMTeO_6 (M =$	Superlattice reflections are visible but not discussed. No indexing, no lattice
Co, Ni, Zn) [52],	parameters.
Ag ₃ LiMnSbO ₆ [53]	
$Ag_3LiMSbO_6(M =$	Indexed as a trigonal superstructure ($P3_112$). No structure refinement.
Al, Cr, Fe, Ga) [53]	

Formula	Ag ₃ Co ₂ SbO ₆	Ag ₃ Zn ₂ SbO ₆			
Formula weight	659.2	672.1			
Crystal system	monoclinic	monoclinic			
Space group	C2/m	C2/m			
Z	2	2			
a, Å	5.3770(13)	5.3829(2)			
b, Å	9.3118(22)	9.3102(3)			
c, Å	6.4810(14)	6.5046(2)			
β, °	106.512(7)	106.306(4)			
V, Å ³	311.12(2) 312.87(2)				
Sample preparation	Amorphous admixture (beryllium carbonate or coffee) to reduce texture				
Diffractometer	Rigaku D/max-RC	ARL X'tra			
Diffraction geometry	Bragg-Brentano				
Wavelength selection	Secondary-beam monochromator	Solid-state Si(Li) detector			
Wavelength (CuKa), Å	1.5406, 1.5444				
U, kV	55	40			
I, mA	180	40			
Receiving slit, mm	0.3	0.4			
Angular range, °	10–100	12–101.4			
Step size, °	0.02	0.02			
Count time, s	3	2.4			
Number of data points	4500	4470			
Number of hkl	170				
Number of variables	179	179			
Number of variables	55	179 57			
	55 0.0769	179 57 0.0605			
$\frac{R_{\rm wp}}{R_{\rm exp}}$	0.0769 0.0276	179 57 0.0605 0.0423			
$ \frac{R_{\rm wp}}{R_{\rm exp}} $ $ \frac{R_{\rm exp}}{R_{\rm F}^2} $	0.0769 0.0198	179 57 0.0605 0.0423 0.0228			
	179 55 0.0769 0.0276 0.0198 7.830	179 57 0.0605 0.0423 0.0228 2.067			

Table S2. Experimental and refinement details for $Ag_3M_2SbO_6$ (M = Co, Zn)

	Ag ₃ Co ₂ SbO ₆				Ag ₃ Zn ₂ SbO ₆					
Atom	X	У	Z	sof	Uiso	X	У	Z	sof	Uiso
Sb1	0	0	0	0.458(23)	0.016(4)	0	0	0	0.358(7)	0.0203(9)
M1	0	0	0	0.542(23)	0.016(4)	0	0	0	0.642(7)	0.0203(9)
M2	0	0.6661(10)	0	0.729(11)	0.022(4)	0	0.6688(4)	0	0.679(3)	0.0251(5)
Sb2	0	0.6661(10)	0	0.271(11)	0.022(4)	0	0.6688(4)	0	0.321(3)	0.0251(5)
Ag1	0	1/2	1/2	0.962(12)	0.016(3)	0	1/2	1/2	0.977(3)	0.0131(5)
Ag2	1/2	0.3426(6)	1/2	0.927(7)	0.006(3)	1/2	0.3413(3)	1/2	0.9423(16)	0.0183(3)
01	0.618(5)	0.364(2)	0.827(4)	1	0.01	0.598(3)	0.3695(6)	0.8258(10)	1	0.01
02	0.833(7)	1/2	0.173(8)	1	0.01	0.846(3)	1/2	0.1736(18)	1	0.01

Table S3. Atomic coordinates, site occupancies and thermal displacement parameters for $Ag_3M_2SbO_6$ (M = Co, Zn)

Comments. The authors assume that the reported M/Sb mixing is fictitious due to multiple stacking faults whereas each individual layer is essentially ordered with site 1 occupied by Sb only and site 2, by M^{2+} only. Displacement parameters for O1 and O2 were fixed to prevent instability and negative values during the structure refinement process.

	$Ag_3Co_2SbO_6$	$Ag_3Zn_2SbO_6$
M1-O2	1.82(3)×2	1.888(13)×2
-01	1.92(3)×4	1.837(9)×4
average	1.88	1.85
M2-O1	2.06(2)×2	2.171(12)×2
-02	2.24(4)×2	2.227(11)×2
-01	2.34(2)×2	2.322(8)×2
Average	2.21	2.24
Ag1-O2	2.05(5)×2	2.051(11)×2
Ag2-O1	2.04(2)×2	2.052(6)×2
O2-Ag1-O2	180.0	180.0
O1-Ag2-O1	168.8(10)	165.3(2)
M1-O1-M2	102.5 (11)	101.7(4)
M1-O1-M2	93.5(7)	95.0(2)
M2-01-M2	89.8(9)	86.7(3)
M1-O2-M2	98.94(2)×2	98.159(2)×2
M2-O2-M2	87.22(1)	89.791(1)

Table S4. Important interatomic distances (Å) and bond angles (°) in $Ag_3M_2SbO_6$ (M = Co, Zn)

Fig. S1. The magnetization curves for Ag₃Co₂SbO₆ at various temperatures.

References

[31] R. Nagarajan, S. Uma, M.K. Jayaraj, J. Tate, A.W. Sleight. Solid State Sci. 4, 787 (2002).

[42] C. Linke, M. Jansen. Z. anorg. allgem. Chem. 623, 1441 (1997).

[43] T. Oku, A. Carlsson, J.-O. Bovin, C. Svensson, L.R. Wallenberg, C. Linke, M. Jansen. *Acta Cryst. B* 56, 363 (2000).

[44] V.B. Nalbandyan. Russ. J. Inorg. Chem. 45, 1652 (2000).

[45] Y. Hosogi, H. Kato, A. Kudo. J. Mater. Chem. 18, 647 (2008).

[46] V.V. Politaev, V.B. Nalbandyan, A.A. Petrenko, I.L. Shukaev, V.A. Volotchaev,

B.S. Medvedev. J. Solid State Chem. 183, 684 (2010).

[47] S.A.J. Kimber, C.D. Ling, D.J.P. Morris, A. Chemseddine, P.F. Henry and D.N. Argyriou, *J. Mater. Chem.* **20**, 8021 (2010).

[48] K. Ramesha, A.S. Prakash, M. Sathiya, G. Madras, A.K. Shukla. *Mater. Sci. Eng. B* 176, 141 (2011).

[49] V. Todorova, A. Leineweber, L. Kienle, V. Duppel, M. Jansen. J. Solid State Chem. 184, 1112 (2011).

[50] R. Berthelot, W. Schmidt, S. Muir, J. Eilertsen, L. Etienne, A.W. Sleight, M.A. Subramanian, *Inorg. Chem.* **51**, 5377 (2012).

[51] V.V. Politaev, V.B. Nalbandyan. Solid State Sci. 11, 144 (2009).

[52] V. Kumar, N. Bhardwaj, N. Tomar, V. Thakral, S. Uma, Inorg. Chem. 51, 10471 (2012).

[53] N. Bhardwaj, A. Gupta, S. Uma. Dalton Trans. 43, 12050 (2014).