Syntheses, structures and antitumor activity of four new

organotin(IV) carboxylates based on 2-thienylselenoacetic acid

Yuan-Yuan Zhang^a, Ru-Fen Zhang^a, Shao-Liang Zhang^a, Shuang Cheng^b, Qian-Li Li^a,

Chun-Lin Ma*a

^aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng,
252059, China.Email: <u>macl856@163.com</u>, <u>macl@lcu.edu.cn</u>
^bSchool of Agriculture, Liaocheng University, Liaocheng, 252059, China.

Supporting Information

Table of contents

1	. Experimental section
	Scheme S1 The syntheses procedures of complexes S1, S3
	Synthesis of complexes S1 and S3
2	. X-ray crystallography5
	Table S1. Selected bond lengths [Å] and angles [°] for complex 15
	Table S2. Selected bond lengths [Å] and angles [°] for complex 2
	Table S3. Selected bond lengths [Å] and angles [°] for complex 36
	Table S4. Selected bond lengths [Å] and angles [°] for complex 4
	Table S5. Crystallographic data and structure refinement parameters for complexes S1, S37
	Table S6. Selected bond lengths [Å] and angles [°] for complex S17
	Table S7. Selected bond lengths [Å] and angles [°] for complex S38
3	. Figures of crystal
st	tructure9
	Figure S1. Crystal structure of complex S19
	Figure S2. Crystal structure of complex S39

1. Experimental section

R=Me, S_1

Scheme S1 The syntheses procedures of complexes S1, S3

Synthesis of complex S1, S3

[Me₃Sn(O₂CCH₂C₄H₃S-*o*)]_n (S1): The reaction was carried out under nitrogen atmosphere by use of standard Schlenk techniques. The 2-thiopheneacetic acid (0.142 g, 1.0 mmol) was added to the solution of benzene (30 ml) together with sodium ethoxide (0.068 g, 1.0 mmol), and the mixture was stirred for 0.5 h. Then the trimethyltin chloride (0.199 g,1.0 mmol) was added to the reactor, the mixture was stirred at 50 °C for 12 h and then filtered. The solvent was gradually removed by evaporation under reduced pressure until a white powder was obtained. The powder was then recrystallized from ether, and the colorless crystals were recovered. Yield: 60%. M.P. 130-133 °C. Anal. Calc. for C₉H₁₄O₂SSn: C 35.42, H 4.59%; Found: C 35.54, H 4.68%. IR (KBr, cm⁻¹): v(Sn-O), 478; v(O-Sn-O), 631; v(Sn-C), 552; v(COO)_{as}, 1569; v(COO)_s, 1372; [Δν = v(COO)_{as} - v(COO)_s], 197. ¹H NMR (CDCl₃, ppm): δ 6.96-7.26 (m, 3H, -C₄H₃S), 1.55 (s, 2H, -CH₂), 0.50 (s, ²J_{SnH} = 70.1 Hz, 9H, 3CH₃). ¹³C NMR (CDCl₃, ppm): δ 119.87-132.28 (C₄H₃S), 170.94 (COO), 31.46 (*CH*₂-COO), -1.23 (¹J_{SnC} = 493 Hz, Sn-*CH*₃). ¹¹⁹Sn NMR (CDCl₃, ppm): δ -142.4.

[(Me₂Sn)₄(μ_3 -O)₂(O₂CCH₂C₄H₃S-*o*)₄] (S3): Complex S3 was synthesized in a similar way to complex S1, by using 2-thiopheneacetic acid (0.142 g, 1.0 mmol), benzene (30 ml), sodium ethoxide (0.068 g, 1.0 mmol), dimethyltin dichloride (0.110 g, 0.5 mmol). The powder was recrystallized from ether, and the colorless crystals of complex S3 were recovered. Yield: 58%. M.P. 135-138 °C. Anal. Calc. for C₃₂H₄₄O₁₀S₄Sn₄: C 32.22, H 3.69%; Found: C 32.09, H 3.85%. IR (KBr, cm⁻¹): v(Sn-O), 476; v(O-Sn-O), 698; v(Sn-C), 545; v(COO)_{as}, 1569; v(COO)_s, 1382; [Δv = v(COO)_{as} - v(COO)_s], 187. ¹H NMR (CDCl₃, ppm): δ 6.97-7.26 (m, 12H, 4C₄H₃S), 1.25 (s, ²J_{SnH} = 92.5 Hz, 24H, 8CH₃). ¹³C NMR (CDCl₃, ppm): δ 124.80-126.78 (C₄H₃S), 171.23 (COO), 29.71 (*CH*₂-COO), 4.38 (¹J_{SnC} = 824 Hz, Sn-*CH*₃). ¹¹⁹Sn NMR (CDCl₃, ppm): δ -175.63, -182.44.

2. X-ray crystallography

Complex 1				
Sn(1)-C(7)	2.133(8)	Sn(1)-C(8)	2.114(9)	
Sn(1)-C(9)	2.118(8)	Sn(1)-O(1)	2.408(6)	
Sn(1)-O(2)#1	2.191(6)	Sn(2)-C(16)	2.120(10)	
Sn(2)-C(17)	2.112(8)	Sn(2)-C(18)	2.106(10)	
Sn(2)-O(3)	2.384(6)	Sn(2)-O(4)#2	2.174(6)	
O(1)-C(6)	1.248(9)	O(2)-C(6)	1.273(10)	
O(3)-C(15)	1.236(10)	O(4)-C(15)	1.266(10)	
Se(1)-C(4)	1.852(13)	Se(1)-C(5)	1.947(10)	
Se(2)-C(13)	1.894(12)	Se(2)-C(14)	1.943(10)	
O(2)#1-Sn(1)-O(1)	172.7(2)	C(8)-Sn(1)-C(9)	121.6(4)	
C(8)-Sn(1)-C(7)	122.4(4)	C(9)-Sn(1)-C(7)	115.3(4)	
O(4)#2-Sn(2)-O(3)	170.7(2)	C(17)-Sn(2)-C(18)	120.9(4)	
C(17)-Sn(2)-C(16)	119.4(4)	C(18)-Sn(2)-C(16)	119.2(4)	

 Table S1 Selected bond lengths [Å] and angles [°] for complex 1.

Symmetry code for complex 1: #1 -x+1, y-1/2, -z+1/2 #2 -x+2, y+1/2, -z+1/2

Complex 2			
Sn(1)-O(1)	2.198(5)	Sn(1)-O(2)	2.388(5)
Sn(1)-C(7)	2.136(6)	Sn(1)-C(13)	2.130(7)
Sn(1)-C(19)	2.145(7)	Se(1)-C(4)	1.905(8)
Se(1)-C(5)	1.973(7)	O(1)-Sn(1)-O(2)	176.16(16)
C(13)-Sn(1)-O(1)	95.0(2)	C(7)-Sn(1)-C(19)	119.4(3)
C(13)-Sn(1)-C(19)	111.3(3)	C(13)-Sn(1)-C(7)	128.6(3)
C(4)-Se(1)-C(5)	99.3(3)	C(6)-C(5)-Se(1)	110.5(5)
~			

 Table S2 Selected bond lengths [Å] and angles [°] for complex 2.

Symmetry code for complex **2**: #1 y+1, -x+y+1, -z+2 #2 x-y, x-1, -z+2

Complex 3			
Sn(1)-C(9)	2.140(13)	Sn(1)-C(10)	2.140(12)
Sn(1)-O(5)	2.090(6)	Sn(1)-O(5)#1	2.163(6)
Sn(1)-O(2)	2.364(7)	Sn(2)-C(7)	2.149(11)
Sn(2)-C(8)	2.109(10)	Sn(2)-O(5)	2.077(6)
Sn(2)-O(1)	2.326(7)	Sn(2)-O(3)	2.276(8)
Se(1)-C(4)	1.961(12)	Se(1)-C(5)	1.992(11)
Se(2)-C(12)	1.960(13)	Se(2)-C(13)	2.002(15)
C(9)-Sn(1)-C(10)	144.9(6)	O(5)-Sn(1)-C(9)	104.8(4)
O(5)-Sn(1)-O(2)	89.5(3)	O(5)-Sn(1)-O(5)#1	77.5(3)
O(5)#1-Sn(1)-O(2)	166.2(3)	C(8)-Sn(2)-C(7)	153.7(4)
O(5)-Sn(2)-O(3)	77.6(3)	O(5)-Sn(2)-C(8)	105.6(3)
O(5)-Sn(2)-O(1)	93.1(3)	O(3)-Sn(2)-O(1)	170.3(3)
C(8)-Sn(2)-O(3)	93.7(3)	C(4)-Se(1)-C(5)	97.9(5)

 Table S3 Selected bond lengths [Å] and angles [°] for complex 3.

Symmetry code for complex **3**: #1 -x+1, -y+2, -z

Table S4	Selected	bond leng	ths [Å]	and angles	[°] for con	plex 4.
		4 /		4.7		

Complex 4			
Sn(1)-O(1)	2.191(6)	Sn(1)-O(4)	2.169(6)
Sn(1)-O(14)	2.083(6)	Sn(1)-O(16)	2.074(6)
Sn(1)-O(18)	2.058(5)	Sn(2)-O(6)	2.143(6)
Sn(2)-O(8)	2.196(6)	Sn(2)-O(15)	2.100(6)
Sn(2)-O(16)	2.112(5)	Sn(2)-O(17)	2.082(5)
Sn(3)-O(10)	2.159(6)	Sn(3)-O(12)	2.165(6)
Sn(3)-O(13)	2.105(6)	Sn(3)-O(17)	2.085(6)
Sn(3)-O(18)	2.120(5)	O(18)-Sn(1)-O(16)	104.3(2)
O(18)-Sn(1)-O(14)	78.3(2)	O(18)-Sn(1)-O(4)	162.0(2)
O(16)-Sn(1)-O(14)	78.5(2)	O(16)-Sn(1)-O(4)	85.3(2)
O(14)-Sn(1)-O(4)	89.0(2)	O(4)-Sn(1)-O(1)	76.9(2)

Complex	S1	S3
Empirical formula	C ₉ H ₁₄ O ₂ SSn	$C_{32}H_{44}O_{10}S_4Sn_4$
Μ	304.95	1191.67
Crystal system	Monoclinic	Triclinic
space group	<i>P</i> 2(1)/c	<i>P</i> -1
a [Å]	9.5306(8)	11.5630(9)
b [Å]	10.1525(9)	13.9921(11)
c [Å]	13.2324(13)	14.0809(12)
α [°]	90	102.954(2)
β [°]	104.104(2)	99.9210(10)
γ [°]	90	95.8710(10)
V[Å ³]	1241.76(19)	2163.3(3)
Ζ	4	2
Dcalc (Mg/m ³)	1.631	1.829
μ(mm ⁻¹)	2.197	2.523
F(000)	600	1160
Crystal size(mm)	0.36 x 0.29 x 0.27	0.46 x 0.29 x 0.17
Reflections collected	6078	10976
Unique reflections	2171	7479
R(int)	0.0418	0.0401
Goodness-of-fit on F ²	1.022	1.032
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0429$	$R_1 = 0.0541$
	$wR_2 = 0.1150$	$wR_2 = 0.1466$
R indices (all data)	$R_1 = 0.0562$	$R_1 = 0.0732$
	$wR_2 = 0.1247$	$wR_2 = 0.1614$

Table S5 Crystallographic data and structure refinement parameters for complexes S1, S3

 Table S6 Selected bond lengths [Å] and angles [°] for complex S1

Complex S1				
Sn(1)-O(1)	2.363(4)	Sn(1)-O(2)#1	2.202(4)	
Sn(1)-C(7)	2.105(7)	Sn(1)-C(8)	2.120(6)	
Sn(1)-C(9)	2.123(6)	O(1)-Sn(1)-O(2)#1	173.26(14)	
C(7)-Sn(1)-O(1)	86.4(2)	C(8)-Sn(1)-O(1)	90.0(2)	
C(9)-Sn(1)-O(1)	85.4(2)	C(6)-O(1)-Sn(1)	137.6(4)	
C(8)-Sn(1)-C(7)	122.6(3)	C(7)-Sn(1)-C(9)	120.3(3)	
C(8)-Sn(1)-C(9)	116.5(3)			

Symmetry code for complex S1: #1 -x+1, y-1/2, -z+1/2 #2 -x+1, y+1/2, -z+1/2

Complex S3			
Sn(1)-O(2)	2.200(6)	Sn(1)-O(3)	2.277(6)
Sn(1)-O(5)	2.042(5)	Sn(2)-O(4)	2.248(6)
Sn(2)-O(5)	2.028(5)	Sn(2)-O(6)	2.107(6)
Sn(3)-O(5)	2.181(5)	Sn(3)-O(6)	2.056(6)
Sn(3)-O(8)	2.280(6)	Sn(4)-O(6)	2.026(5)
Sn(4)-O(8)	2.467(7)	Sn(4)-O(9)	2.137(6)
O(5)-Sn(1)-O(2)	79.2(2)	O(5)-Sn(1)-O(3)	89.5(2)
O(2)-Sn(1)-O(3)	168.1(2)	C(25)-Sn(1)-C(26)	149.3(4)
O(5)-Sn(2)-O(6)	75.8(2)	O(5)-Sn(2)-O(4)	87.5(2)
O(6)-Sn(2)-O(4)	162.4(2)	C(29)-Sn(2)-C(30)	131.6(4)
O(6)-Sn(3)-O(5)	73.6(2)	O(6)-Sn(3)-O(8)	72.1(2)
O(5)-Sn(3)-O(8)	145.7(2)	C(27)-Sn(3)-C(28)	141.5(4)
O(6)-Sn(4)-O(8)	68.6(2)	O(9)-Sn(4)-O(8)	149.6(2)
O(6)-Sn(4)-O(9)	81.2(2)	C(32)-Sn(4)-C(31)	139.5(4)

 Table S7 Selected bond lengths [Å] and angles [°] for complex S3

3. Figures of crystal structure

Figure S1 The asymmetry unit (a) and 1D infinite zig-zag chain structure (b) of complex S1. Hydrogen atoms are omitted for clarity.

Figure S2 Molecular structure (a) and 1D infinite chain structure connected by C-

H···O and C-H···S hydrogen bonding interactions (b) of complex S3. Hydrogen atoms are omitted for clarity.