Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Coordination Complexes of Niobium and Tantalum Pentahalides with a

Bulky NHC Ligand

Marco Bortoluzzi, Eleonora Ferretti, Fabio Marchetti, Guido Pampaloni, Stefano Zacchini

Supporting Information

Table of contents	Page
Figure S1. DFT C-PCM/ ω B97X/BS1 calculated structure of [NbCl ₄ (Ipr)] ⁺	S2
Table S1 . Selected bonding parameters for $[NbCl_4(Ipr)]^+$	S2
Figure S2 . DFT C-PCM/ ω B97X/BS1 calculated structure of [NbBr ₄ (Ipr)] ⁺	S 3
Table S2 . Selected bonding parameters for $[NbBr_4(Ipr)]^+$	S 3
Figure S3 . DFT C-PCM/ ω B97X/BS1 calculated structure of [TaCl ₄ (Ipr)] ⁺	S4
Table S3 . Selected bonding parameters for $[TaCl_4(Ipr)]^+$	S4
Figure S4 . DFT C-PCM/ ω B97X/BS1 calculated structure of [TaBr ₄ (Ipr)] ⁺	S5
Table S4 . Selected bonding parameters for $[TaBr_4(Ipr)]^+$	S5
Figure S5 . DFT C-PCM/ ω B97X/BS1 calculated structure of [NbCl ₄ (Ipr) ₂] ⁺	S 6
Table S5 . Selected bonding parameters for $[NbCl_4(Ipr)_2]^+$	S6
Figure S6 . DFT C-PCM/ ω B97X/BS1 calculated structure of [NbBr ₄ (Ipr) ₂] ⁺	S7
Table S6 . Selected bonding parameters for $[NbBr_4(Ipr)_2]^+$	S7
Figure S7 . DFT C-PCM/ ω B97X/BS1 calculated structure of $[TaCl_4(Ipr)_2]^+$	S 8
Table S7 . Selected bonding parameters for $[TaCl_4(Ipr)_2]^+$	S8
Figure S8 . DFT C-PCM/ ω B97X/BS1 calculated structure of $[TaBr_4(Ipr)_2]^+$	S 9
Table S8 . Selected bonding parameters for $[TaBr_4(Ipr)_2]^+$	S9
Figure S9. DFT C-PCM/ ω B97X/BS1 calculated structure of Nb ₄ F ₁₀ (Ipr)	S10
Table S9 . Selected bonding parameters for $Nb_4F_{10}(Ipr)$	S10
Figures S10-S24. NMR spectra of the metal complexes	S11-S16

Figure S1. DFT C-PCM/ ω B97X/BS1 calculated structure of the [NbCl₄(Ipr)]⁺ cation belonging to [NbCl₄(Ipr)][NbCl₆]. Dichloromethane as implicit solvent. Hydrogen atoms have been omitted for clarity.

Table S1. Selected computed bond lengths (Å) and angles (°) for the cation $[NbCl_4(Ipr)]^+$ belonging to $[NbCl_4(Ipr)][NbCl_6]$.

Bond		Angle	
Nb-C	2.327	C–Nb–Cl	80.3
Nb-Cl	2.251		82.6
	2.251		127.6
	2.303		127.6
	2.305	N-C-N	106.0
C–N	1.349		
	1.349		

Figure S2. DFT C-PCM/ ω B97X/BS2 calculated structure of the [NbBr₄(Ipr)]⁺ cation belonging to [NbBr₄(Ipr)][NbBr₆]. Dichloromethane as implicit solvent. Hydrogen atoms have been omitted for clarity.

Table S2. Selected computed bond lengths (Å) and angles (°) for the $[NbBr_4(Ipr)]^+$ cation belonging to $[NbBr_4(Ipr)][NbBr_6]$.

Bond		Angle	
Nb-C	2.316	C–Nb–Br	81.4
Nb–Br	2.420		83.0
	2.429		127.2
	2.465		127.7
	2.469	N-C-N	105.7
C–N	1.352		
	1.353		

Figure S3. DFT C-PCM/ ω B97X/BS2 calculated structure of the $[TaCl_4(Ipr)]^+$ cation belonging to $[TaCl_4(Ipr)][TaCl_6]$. Dichloromethane as implicit solvent. Hydrogen atoms have been omitted for clarity.

Table S3. Selected computed bond lengths (Å) and angles (°) for the $[TaCl_4(Ipr)]^+$ cation belonging to $[TaCl_4(Ipr)][TaCl_6]$.

Bond		Angle	
Та–С	2.297	C–Ta–Cl	82.4
Ta–Cl	2.251		84.7
	2.251		127.9
	2.302		127.9
	2.303	N-C-N	105.7
C–N	1.351		
	1.351		

Figure S4. DFT C-PCM/ ω B97X/BS2 calculated structure of the $[TaBr_4(Ipr)]^+$ cation belonging to $[TaBr_4(Ipr)][TaBr_6]$. Dichloromethane as implicit solvent. Hydrogen atoms have been omitted for clarity.

Table S4. Selected computed bond lengths (Å) and angles (°) for the $[TaBr_4(Ipr)]^+$ cation belonging to $[TaBr_4(Ipr)][TaBr_6]$.

Bond		Angle	
Та–С	2.316	C–Ta–Br	82.0
Ta–Br	2.420		83.2
	2.426		127.3
	2.463		127.7
	2.467	N-C-N	105.6
C–N	1.353		
	1.354		

Figure S5. DFT C-PCM/ ω B97X/BS1 calculated structure of the [NbCl₄(Ipr)₂]⁺ cation belonging to [NbCl₄(Ipr)₂][NbCl₆]. Dichloromethane as implicit solvent. Hydrogen atoms have been omitted for clarity.

Table S5. Selected computed bond lengths (Å) and angles (°) for the $[NbCl_4(Ipr)_2]^+$ cation belonging to $[NbCl_4(Ipr)_2][NbCl_6]$.

Bond		Angle	
Nb-C	2.387	C–Nb–C	179.9
	2.387	C–Nb–Cl	79.2
Nb-Cl	2.310		79.2
	2.310		100.7
	2.310		100.8
	2.310		79.2
C–N	1.356		79.2
	1.356		100.7
	1.356		100.8
	1.356	N-C-N	104.7
			104.7

Figure S6. DFT C-PCM/ ω B97X/BS2 calculated structure of the [NbBr₄(Ipr)₂]⁺ cation belonging to [NbBr₄(Ipr)₂][NbBr₆]. Dichloromethane as implicit solvent. Hydrogen atoms have been omitted for clarity.

Table S6. Selected computed bond lengths (Å) and angles (°) for the $[NbBr_4(Ipr)_2]^+$ cation belonging to $[NbBr_4(Ipr)_2][NbBr_6]$.

Bond		Angle	
Nb-C	2.419	C–Nb–C	180.0
	2.419	C–Nb–Br	80.2
Nb–Br	2.475		80.3
	2.475		99.6
	2.475		99.8
	2.475		80.3
C–N	1.363		80.3
	1.363		99.7
	1.363		99.8
	1.363	N-C-N	103.9
			103.9

Figure S7. DFT C-PCM/ ω B97X/BS2 calculated structure of the $[TaCl_4(Ipr)_2]^+$ cation belonging to $[TaCl_4(Ipr)_2][TaCl_6]$. Dichloromethane as implicit solvent. Hydrogen atoms have been omitted for clarity.

Table S7. Selected computed bond lengths (Å) and angles (°) for the $[TaCl_4(Ipr)_2]^+$ cation belonging to $[TaCl_4(Ipr)_2][TaCl_6]$.

Bond		Angle	
Та–С	2.366	С–Та–С	180.0
	2.367	C–Ta–Cl	80.9
Ta–Cl	2.304		80.9
	2.304		99.1
	2.304		99.1
	2.304		80.9
C–N	1.359		80.9
	1.359		99.1
	1.359		99.2
	1.360	N-C-N	104.2
			104.2

Figure S8. DFT C-PCM/ ω B97X/BS2 calculated structure of the $[TaBr_4(Ipr)_2]^+$ cation belonging to $[TaBr_4(Ipr)_2][TaBr_6]$. Dichloromethane as implicit solvent. Hydrogen atoms have been omitted for clarity.

Table S8. Selected computed bond lengths (Å) and angles (°) for the $[TaBr_4(Ipr)_2]^+$ cation belonging to $[TaBr_4(Ipr)_2][TaBr_6]$.

Bond		Angle	
Та–С	2.393	С–Та–С	180.0
	2.395	C–Ta–Br	81.8
Ta–Br	2.473		81.9
	2.473		98.1
	2.473		98.2
	2.473		81.8
C–N	1.363		81.9
	1.363		98.1
	1.364		98.2
	1.364	N–C–N	103.9
			104.0

Figure S9. DFT EDF2/BS3 calculated structure of $Nb_4F_{10}(Ipr)$. Dichloromethane as implicit solvent. Hydrogen atoms have been omitted for clarity.

Table S9. Selected computed bond lengths (Å) and angles (°) for $Nb_4F_{10}(Ipr)$.

Bond		Angle	
Nb–C	2.273	C–Nb–F _{terminal}	73.1 / 74.4 /
Nb–F _{terminal}	1.868 / 1.879 /	(C-bonded fragment)	86.7 / 119.4 /
(C-bonded fragment)	1.892 / 1.898	C-Nb-F _{bridging}	140.9 / 141.4
Nb–F _{terminal}	1.849 / 1.857 /	(C-bonded fragment)	
(non C-bonded fragment)	1.862 / 1.875 /	Nb-F _{bridging} -Nb	141.4 / 155.1
	1.850 / 1.851 /	(C-bonded–non C-bonded fragments)	
	1.866 / 1.870 /	Nb-F _{bridging} -Nb	149.8 / 163.1
	1.846 / 1.854 /	(non C-bonded–non C-bonded fragments)	
	1.864 / 1.876	F _{bridging} -Nb-F _{bridging}	69.8
Nb–F _{bridging}	2.203 / 2.239	(C-bonded fragment)	
(C-bonded fragment)		F _{bridging} -Nb-F _{bridging}	84.5 / 85.5 /
Nb–F _{bridging}	1.994 / 2.001 /	(non C-bonded fragment)	85.8
(non C-bonded fragment)	2.052 / 2.057 /		
	2.110 / 2.122 /		

Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum (C₇D₈, 298 K) of NbF₅(Ipr), 2.

Figure S12. ⁹³Nb NMR spectrum (C₇D₈, 298 K) of NbF₅(Ipr), **2**.

Figure S13. ${}^{19}F{}^{1}H$ NMR spectrum (C₇D₈, 298 K) of NbF₅(Ipr), 2.

Figure S15. ${}^{13}C{}^{1}H$ NMR spectrum (C₆D₆, 298 K) of NbBr₅(Ipr), **3**.

Figure S16. ¹H NMR spectrum (C₇D₈, 298 K) of TaF₅(Ipr), **4**.

Figure S17. ${}^{13}C{}^{1}H$ NMR spectrum (C₇D₈, 298 K) of TaF₅(Ipr), 4.

80 60 -40 -60 -20 Chemical Shift (ppm)

Figure S19. ¹H NMR spectrum (C_7D_8 , 298 K) of TaCl₅(Ipr), 5.

Figure S20. ${}^{13}C{}^{1}H$ NMR spectrum (C₇D₈, 298 K) of TaCl₅(Ipr), 5.

Figure S22. ${}^{13}C{}^{1}H$ NMR spectrum (C₇D₈, 298 K) of TaBr₅(Ipr), 6.

Figure S23. ¹H NMR spectrum (CD₂Cl₂, 298 K) of [IxylH][TaF₆], 7.

Figure S24. ¹⁹F NMR spectrum (CD₂Cl₂, 298 K) of [IxylH][TaF₆], 7.

