Supplementary information

Trans-heteroleptic carboxylate-bridged paddlewheel diruthenium(II, II) complexes with 2,6-bis(trifluoromethyl)benzoate ligands

Yoshihiro Sekine,^{a,b} Wataru Kosaka,^{a,b} Hirohisa Kano,^c Changxiao Dou,^b Taiga Yokoyama,^b and Hitoshi Miyasaka^{*a,b}

a) Institute for Material Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

b) Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan

c) Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

Corresponding author* Prof. Dr. Hitoshi Miyasaka Institute for Materials Research, Tohoku University 2–1–1 Katahira, Aoba-ku, Sendai 980-8577, Japan E-mail: miyasaka@imr.tohoku.ac.jp Tel: +81-22-215-2030 FAX: +81-22-215-2031

Figure S1. Frontier orbitals associated with π^* and δ^* orbitals of the diruthenium unit and their energy levels (eV) for **1** (a and b for [Ru(1)₂] and [Ru(2)₂], respectively), **2** (c), **3** (d), **4** (e), **5** (f), and **6** (g), where the β electron on the δ^* orbital corresponds to the HOMO level of compound.

Table S1. Relevant bond lengths around Ru centers in heteroleptic and previously reported homoleptic $[Ru_2^{II,II}(F_xPhCO_2)_4(THF)_2]$ and related compounds (where O_{eq} means oxygen atoms of equatorial positions) and dihedral angles (°) between the least-squares planes defined by the phenyl ring of the benzoate ligand and the carboxylate-bridging mode (i.e. atom set of Ru_2O_2C) (Set-1 and Set-2: benzoate ligands structurally determined as asymmetric groups)

Compound	Ru-Ru/Å	Averaged Ru-O _{eq} /Å	Ru-O _{ax} /Å	Set-1	Set-2	Ref
$[Ru_2^{II,II}(2,6-(CF_3)_2PhCO_2)_2(CH_3CO_2)_2(THF)_2]$ (unit 1)	2.2637(13)	2.066	2.327(4)	78.1		This work
(unit 2)	2.2638(13)	2.067	2.345(4)	76.5		This work
$[Ru_2^{II,II}(2,6-(CF_3)_2PhCO_2)_2(C_2H_5CO_2)_2(THF)_2](THF)$	2.2696(6)	2.073	2.324(3)	67.0		This work
[Ru2 ^{II,II} (2,6-(CF3)2PhCO2)2(C3H7CO2)2(THF)2]	2.2676(4)	2.066	2.3386(16)	70.5		This work
$[Ru_2^{II,II}(2,6-(CF_3)_2PhCO_2)_2(C_4H_9CO_2)_2(THF)_2]$	2.2638(4)	2.068	2.3506(18)	79.1		This work
[Ru2 ^{II,II} (2,6-CF3PhCO2)2(C(CH3)3CO2)2(THF)2]	2.2632(6)	2.068	2.339(4)	53.2		This work
[Ru2 ^{II,II} (2,6-(CF3)2PhCO2)2(2,3,5,6-F4PhCO2)2(THF)2]	2.2760(5)	2.069	2.351(2)	70.9	43.5	This work
[Ru ₂ ^{II,II} (CH ₃ CO ₂) ₄ (THF) ₂]	2.261(3)	2.060	2.391(5)			1
[Ru ₂ ^{II,II} (CF ₃ CO ₂) ₄ (THF) ₂]	2.276(3)	2.073	2.268(6)			2
$[\operatorname{Ru_2}^{II,II}(\operatorname{PhCO_2})_4(\operatorname{THF})_2]$	2.2642(8)	2.065	2.314(4)			3
[Ru ₂ ^{II,II} (<i>o</i> -FPhCO ₂) ₄ (THF) ₂]	2.2669(2)	2.067	2.312(2)	37.5	17.7	4
$[\operatorname{Ru}_2^{II,II}(m\operatorname{-FPhCO}_2)_4(\operatorname{THF})_2]$	2.2691(4)	2.065	2.331(2)	3.2	19.5	4
[Ru ₂ ^{II,II} (<i>p</i> -FPhCO ₂) ₄ (THF) ₂]	2.2691(4)	2.061	2.331(2)	19.5	15.8	4
[Ru2 ^{II,II} (2,3,5,6-F ₄ PhCO ₂) ₄ (THF) ₂]	2.2731(3)	2.065	2.298(2)	36.7	26.3	4

^{*a*} averaged value. PhCO₂⁻ = benzoate, *o*-FPhCO₂⁻ = *o*-fluorobenzoate, *m*-FPhCO₂⁻ = *m*-fluorobenzoate, *p*-FPhCO₂⁻ = *p*-fluorobenzoate, 2,3,5,6-F₄PhCO₂⁻ = 2,3,5,6-tetrafluorobenzoate.

Simulation of magnetic data

The magnetic susceptibility for S = 1 centers with zero-field splitting (*D*) and a temperature independent paramagnetic (χ_{TIP}) contribution can be expressed as in eqn. (1)⁵

$$\chi = (2Ng^2\beta^2/3k_BT)[\{\exp(-D/k_BT) + (2k_BT/D)(1 - \exp(-D/k_BT))\}/(1 + 2\exp(-D/k_BT)) + TIP \quad (1)$$

where β is Bohr magneton. The abrupt increase of χ at low temperature that can be observed in Figure 2 for the present compounds **1-6** is probably attributed to inter-molecular interactions and/or an extrinsic paramagnetic impurity (ρ) of a ubiquitous Ru₂^{II,III} species (S = 3/2). These effects was taken into account by eqn. (2) in a mean-field approximation level.

$$\chi' = (1 - \rho)(\chi/1 - (2zJ/Ng^2\beta^2)\chi) + \rho(5Ng_{\rm imp}^2\beta^2/4k_{\rm B}T) \quad (2)$$

where z is the number of neighbours and J is the magnitude of the intermolecular interaction. The value of g_{imp} is assumed to be 2.0 by convention. In order to minimize the usual problems of refining many parameters $(g, D, zJ, \chi_{TIP}, \rho)$, the least-squares calculation was performed in a parameter range of g = 2.0 and zJ = 0 based on previously reported magnetic data.

References in ESI

- 1 A. J. Lindsay, G. Wilkinson, M. Motevalli and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1985, 2321.
- A. J. Lindsay, G. Wilkinson, M Motevalli and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1987, 2723.
- 3 S. Furukawa and S. Kitagawa, *Inorg. Chem.*, 2004, **43**, 6464.
- 4 H. Miyasaka, N, Motokawa, R. Atsuumi, H. Kamo, Y. Asai, M. Yamashita, *Dalton Trans.*, 2011, **40**, 673.
- 5 H. Miyasaka, R. Clérac, S. Campos-Fernández, K. R. Dunbar, J. Chem. Soc. Dalton Trans., 2001, 858.