Electronic Supporting Information for

Electron-rich linear triplatinum complexes stabilized by spinning tetraphosphine, tris(diphenylphosphinomethyl)phosphine

Tomoaki Tanase,* Kanako Koike, Miho Uegaki, Satoko Hatada, Kanako Nakamae, Bunsho Kure,Yasuyuki Ura and Takayuki Nakajima*

Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara 630-8506, Japan. Fax: +81 742 203847; Tel: +81 742 203399; E-mail: tanase@cc.nara-wu.ac.jp

Table S1. Crystallographic and experimental data of 3.2CH₂Cl₂ and 4.2CH₂Cl₂.

 Table S2. Selected bond lengths and angles of 3 and 4.

Figure S1. ESI–TOF mass spectra of 3 in CH₃OH.

Figure S2. ESI–TOF mass spectra of 4 in CH₃OH.

Figure S3. ³¹P{¹H} NMR spectra of 4 at (a) 60 °C, (b) 20 °C, and (c) -30 °C in CD₃CN and the assignments.

Figure S4. Variable temperature UV-vis absorption spectra of 3 in CD₃CN.

Figure S5. (a) Representative MO diagrams from the DFT calculations on

 $[Pt_3(\mu-tdpmp)_2(^tBuNC)_2]^{2+}$ (4) by B3LYP methods with lanl2dz and PCM (CH₂Cl₂),

and (b) the results of TD-DFT calculations.

Figure S6. (a) Representative MO diagrams from the DFT calculations on

 $[Pt_3(\mu-dpmp)_2(^tBuNC)_2]^{2+}$ (2) by B3LYP methods with lanl2dz and PCM (CH₂Cl₂),

and (b) the results of TD-DFT calculations.

Compound	$3 \cdot 2 C H_2 C l_2$	4·2CH ₂ Cl ₂
formula	$C_{98}H_{94}Cl_4N_2F_{12}P_{10}Pt_3$	$C_{90}H_{94}Cl_4N_2F_{12}P_{10}Pt_3$
formula wt	2564.63	2468.55
cryst. syst	triclinic	monoclinic
space group	<i>P</i> -1	$P2_{1}/n$
<i>a</i> , Å	13.328(4)	11.5968(9)
<i>b</i> , Å	14.042(5)	21.9132(13)
<i>c</i> , Å	15.350(5)	18.8936(15)
α, deg	107.847(2)	
β , deg	114.560(5)	97.800(4)
γ, deg	94.641(3)	
<i>V</i> , Å ³	2414.0(14)	4756.9(6)
Ζ	1	2
temp, °C	-120	-120
D_{calcd} , g cm ⁻¹	1.764	1.723
μ , mm ⁻¹ (Mo K α)	4.666	4.732
2θ range, deg	6–55	6–55
R _{int}	0.048	0.044
no. of reflns collected	19548	44367
no. of unique reflns	10465	10690
no. of obsd reflns	7783	6815
$(I > 2\sigma(I))$		
no. of variables	584	548
$R1^a$	0.060	0.037
$wR2^b$	0.145	0.109
GOF	1.095	0.994

Table S1. Crystallographic and experimental data of 3·2CH₂Cl₂ and 4·2CH₂Cl₂.

^{*a*} $R1 = \Sigma ||F_o|| - |F_c||/\Sigma |F_o|$ (for obsd. refs with $I > 2\sigma(I)$). ^{*b*} $wR2 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma w(F_o^2)^2]^{1/2}$ (for all refs).

	3	4
Pt1-Pt2	2.7779(2)	2.72840(16)
Pt1–P1	2.342(2)	2.3282(11)
Pt1–P2	2.476(2)	2.3529(12)
Pt1-P3*	2.321(2)	2.3105(11)
Pt1–C1	1.991(8)	1.970(5)
Pt2–P4	2.237(2)	2.2378(11)
C1-N1	1.183(12)	1.050(7)
Pt1-Pt2-Pt1*	180	180
Pt2-Pt1-P1	78.05(4)	82.13(2)
Pt2-Pt1-P2	92.37(4)	86.07(2)
Pt2-Pt1-P3*	84.25(4)	90.24(2)
Pt2-Pt1-C1	165.1(2)	178.79(14)
P1-Pt1-P2	91.98(9)	101.17(4)
P1-Pt1-P3*	141.78(8)	134.00(4)
P2-Pt1-P3*	122.66(8)	123.59(3)
P1-Pt1-C1	98.8(2)	96.76(13)
P2-Pt1-C1	102.4(3)	94.64(16)
P3*-Pt1-C1	89.7(2)	90.20(13)
Pt1-Pt2-P4	83.38(4)	83.23(2)
Pt1-Pt2-P4*	96.68(4)	96.77(2)

Table S2. Selected bond lengths (Å) and angles (°) of 3 and 4.^a

^a The atomic numbering schemes are shown in Figure 1.

Figure S1. ESI–TOF mass spectra of 3 in CH₃OH.

Figure S2. ESI–TOF mass spectra of 4 in CH₃OH.

Figure S3. ³¹P{¹H} NMR spectra of 4 at (a) 60 °C, (b) 20 °C, and (c) -30 °C in CD₃CN and the assignments.

Figure S4. Variable temperature UV–vis absorption spectra of **3** in CD₃CN; (a) from 20 $^{\circ}$ C to –30 $^{\circ}$ C, and (b) from 20 $^{\circ}$ C to 60 $^{\circ}$ C.

Figure S5. (a) Representative MO diagrams for the DFT calculations on $[Pt_3(\mu-tdpmp)_2({}^tBuNC)_2]^{2+}$ (4) by B3LYP methods with lanl2dz and PCM (CH₂Cl₂), and (b) the results of TD–DFT calculations.

(a)

(b)

	TD-DFT data			obsd (CH ₂ Cl ₂)	
Eexcited States	energy/eV	λ/nm	f	transitions	λ/nm
E1	2.682	462	0.0001	361→363 (0.67)	
E2	2.986	415	0.4943	$361 \rightarrow 364 (0.11)$ $362 \rightarrow 363 (0.64)$	392
E3	3.044	407	0.036	360→363 (0.67)	
E4	3.276	379	0.0001	362→364 (0.68)	
E5	3.333	372	0.0926	361→364 (0.66) 361→366 (-0.11)	342
E6	3.428	362	0.0244	362→365 (0.67)	
E7	3.433	361	0.0001	361→365 (0.65)	
E8	3.459	358	0.0001	362→366 (0.67)	

Figure S6. (a) Representative MO diagrams for the DFT calculations on $[Pt_3(\mu-dpmp)_2({}^tBuNC)_2]^{2+}$ (2) by B3LYP methods with lanl2dz and PCM (CH₂Cl₂), and (b) the results of TD–DFT calculations.

(a)

(b)

	TD-DFT data			obsd (CH ₂ Cl ₂)	
Eexcited States	energy/eV	λ/nm	f	transitions	λ/nm
E1	2.491	498	0.0001	308→309 (0.69)	496
E2	2.916	425	0.0153	$308 \rightarrow 310 (0.20)$ $308 \rightarrow 312 (0.55)$ $308 \rightarrow 313 (-0.36)$	429
E3	2.981	416	0.2103	$307 \rightarrow 309 (-0.11)$ $308 \rightarrow 310 (0.61)$ $308 \rightarrow 312 (-0.30)$	386
E4	3.039	408	0.0001	308→311 (0.69)	
E5	3.116	398	0.0001	308→314 (0.69)	
E6	3.121	397	0.1255	$307 \rightarrow 309 (-0.13)$ $308 \rightarrow 310 (0.15)$ $308 \rightarrow 312 (0.31)$ $308 \rightarrow 313 (0.58)$	360
E7	3.222	385	0.0001	308→315 (0.70)	
E8	3.269	379	0.0083	308→316 (0.69)	