Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Microwave-assisted ionothermal synthesis of a water-stable Eu-coordination polymer: Ba²⁺ ion detector and fluorescence thermometer

Ze-Ping Wang,^a Bing Hu, *a Xing-Hui Qi,^{ab} Nan-Nan Shen,^{ac} and Xiao-Ying Huang^a

^b College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350002, P.R. China

^c University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

Fax: +86 591 63173146; Tel: +86 591 63173146; E-mail: hubing@fjirsm.ac.cn

^{*a*} State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China

2	e	с з (/= (/	
D-H…A	d(D-H) (Å)	$d(H \cdots A)$ (Å)	$d(D \cdots A)$ (Å)	<(DHA) (°)
O(5)-H(5A)···O(1)	0.82	1.86	2.569(15)	144.3
O(6)-H(6A)····O(4)	0.82	1.96	2.623(14)	137.6
O(5B)-H(5B)····O(1)	0.82	1.85	2.56(2)	144.7
O(6B)-H(6B)-O(4)	0.82	1.87	2.579(15)	144.1
O(12A)-H(12B)····O(10)	0.82	1.89	2.586(8)	142.6
O(12B)-H(12C)···O(11)	0.82	1.84	2.553(8)	144.4
O(9)-H(9A)····O(3)#1	0.82	1.70	2.514(5)	172.2

Table S1 Hydrogen bonds for [HMIm]Eu(DHBDC)₂ (1).

Symmetry transformations used to generate equivalent atoms: #1 x-1/2, y-1/2, -z+1/2.

D-H…A	d(D-H) (Å)	$d(H \cdots A)$ (Å)	$d(D{\cdots}A)({\rm \AA})$	<(DHA) (°)
O(5)-H(5)···O(2)#10	0.818(10)	2.37(3)	2.769(3)	111(3)
O(5)-H(5)-O(4)	0.818(10)	1.816(19)	2.559(3)	150(3)
O(6)-H(6)-O(2)	0.817(10)	2.05(2)	2.756(3)	145(3)
O(6)-H(6)-O(4)#11	0.817(10)	2.21(3)	2.687(3)	117(3)
C(3)-H(3A)····O(3)#1	0.95	2.39	3.247(4)	149.3
C(6)-H(6A)···O(1)#9	0.95	2.31	3.242(4)	166.5
O(5)-H(5)···O(2)#10	0.818(10)	2.37(3)	2.769(3)	111(3)
O(5)-H(5)-O(4)	0.818(10)	1.816(19)	2.559(3)	150(3)
O(6)-H(6)-O(2)	0.817(10)	2.05(2)	2.756(3)	145(3)
O(6)-H(6)-O(4)#11	0.817(10)	2.21(3)	2.687(3)	117(3)
C(3)-H(3A)····O(3)#1	0.95	2.39	3.247(4)	149.3
C(6)-H(6A)····O(1)#9	0.95	2.31	3.242(4)	166.5
O(5)-H(5)···O(2)#10	0.818(10)	2.37(3)	2.769(3)	111(3)
O(5)-H(5)-O(4)	0.818(10)	1.816(19)	2.559(3)	150(3)
O(6)-H(6)-O(2)	0.817(10)	2.05(2)	2.756(3)	145(3)
O(6)-H(6)-O(4)#11	0.817(10)	2.21(3)	2.687(3)	117(3)
C(3)-H(3A)····O(3)#1	0.95	2.39	3.247(4)	149.3
C(6)-H(6A)····O(1)#9	0.95	2.31	3.242(4)	166.5

Table S2 Hydrogen bonds for Ba(DHBDC) (2).

Symmetry transformations used to generate equivalent atoms:

#1 x, y-1, z; #2 -x+1, -y+1, -z; #3 x-1, y, z; #4 -x, -y+1, -z+1; #5 -x+1, -y, -z; #6 -x, -y, -z+1; #7 -x, -y, -z; #8 x+1, y, z; #9 x, y+1, z; #10 x-1, y, z+1; #11 x+1, y, z-1.

Fig. S1 TGA curves of compounds 1 and 2.

Fig. S2 Solid state excitation spectrum of **Eu-CP** (1) ($\lambda_{em} = 615$ nm).

Fig. S3 Photos of M^{*n*+}@Eu-CP samples after immersing in metal ion solutions.

Fig. S4 The EDS spectrum of solid state sample of Ba^{2+} (a Eu-CP prepared from 0.01 mol/L Ba^{2+} aqueous solution.

Fig. S5 Solid state fluorescent emission spectra of Ba-CP (2), $Ba^{2+}@Eu-CP$ (from 0.10 mol/L Ba^{2+} solution) and H₂DHBDC ligand ($\lambda_{ex} = 365$ nm) at room temperature.