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Scheme S1. Preparation of Hbmzbc ligand.
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Scheme S2. Coordination modes of Hbmzbc ligand in 1 and 2.

Figure S1 The 2D layered structure of 2 view along a axis showing the terminal

bmzbc™ ligands (wires mode) as suspensions hang at one side of the layer.
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Figure S2 Two neighboring layers discriminated by ball and wire modes, respectively,
are interdigitated with each other through the hanging bmzbc™ ligands penetrating into

the naosized cavities of the metal-organic squares in 2.

Figure S3 The two interdigitated layers discriminated by ball and wire modes,

respectively, are packed along the ¢ direction to generate a 3D packing.
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Figure S4 Simulated and experimental powder X-ray diffraction patterns for 1 (left)
and 2 (right).
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Figure S5 TGA curve for 1 and 2.
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Figure S6 Temperature dependence of in-phase () and out-of-phase (y") of 1 (left)

and 2 (right) at different frequencies in the absence of dc field, no obvious frequency

dependence can be observed.
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Figure S7 Field dependence of the magnetization of 1 (left) and 2 (right) measured at

1.9 K.
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Figure S8. Cole-Cole plots for 1 under 2 kOe dc field. The solid lines are the best fit

obtained with a sum of two modified Debye functions Debye model.
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Figure S9. Frequency dependence of the in-phase (y', top) and out-of-phase (x”,
bottom) ac susceptibility of 2 at different temperatures. The solid lines represent the

best fitting with the sum of two modified Debye functions.



Equations:

(a) The sum of two modified Debye functions:
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(equ S1)
Both the x versus T plot and the x" versus T plot were fitted to equation S1
synchronously, affording seven parameters xi, x2, X, 1, @y, T; and 1; at each

temperature. The results are listed in Table S1 and depicted as Fig. S9.

Table S1. Linear combination of two modified Debye model fitting parameters from
2 K to 4 K of 2 under 2k Oe dc field.

T(K) r(emimol™) | yi(cmd.mol™) | go(cm3.mol™) | 74(s) o 7(s) 1) R

2 1.36995 0.47777 0.02578 0.1177 0.00003 | 0.00628 | 0.28304 | 1.6x10*
3 1.11036 0.28482 0.05833 0.09118 | 0.00997 | 0.00428 | 0.23058 | 3.1x10*
4 0.93571 0.19492 0.0714 0.08305 | 0.02639 | 0.00238 | 0.15692 | 3.7x10*




