SUPPORTING INFORMATION FOR

Gyroscope Like Molecules Consisting of Trigonal or Square Planar Osmium Rotators Within Three-Spoked Dibridgehead Diphosphine Stators:
Syntheses, Substitution Reactions, Structures, and Dynamic Properties
Tobias Fiedler, ${ }^{\dagger \dagger}$ Nattamai Bhuvanesh, ${ }^{\dagger}$ Frank Hampel, ${ }^{\ddagger}$ Joseph H. Reibenspies, ${ }^{\dagger}$ and John A. Gladysz**
${ }^{\dagger}$ Department of Chemistry, Texas A\&M University, PO Box 30012, College Station, Texas 778423012, USA.
${ }^{\dagger}$ Institut für Organische Chemie and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany

submitted to Dalton Transactions

- Experimental Section

General Data. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on standard 300-500 MHz spectrometers at ambient probe temperatures and referenced as follows (δ, ppm): ${ }^{1} \mathrm{H}$, residual internal $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ (7.15) or CHCl_{3} (7.26); ${ }^{13} \mathrm{C}$, internal $\mathrm{C}_{6} \mathrm{D}_{6}$ (128.0) or CDCl_{3} (77.0); ${ }^{31} \mathrm{P}$, external $\mathrm{H}_{3} \mathrm{PO}_{4}$ (0.00). IR spectra were recorded using an ASI React-IR 1000, a Thermo Scientific Nicolet IR100 FTIR, or a Shimadzu IRAffinity-1 spectrophotometer with a Pike MIRacle ATR system (diamond/ZnSe crystal). Mass spectra were obtained using Micromass Zabspec (FAB), Shimadzu Biotech Axima Confidence (MALDI-TOF MS), or Applied Biosystem STR Voyager (MALDI-TOF MS) instruments. Melting points were determined on an Electrothermal IA 9100 apparatus or a Stanford Research Systems (SRS) MPA100 (Opti-Melt) automated device. DSC and TGA data were recorded with a MettlerToledo DSC821 instrument and treated by standard methods. ${ }^{\text {s1 }}$ Microanalyses were conducted on a Carlo Erba EA1110 instrument (in house) or by Atlantic Microlab.

All reactions were conducted under dry N_{2} atmospheres unless noted using standard Schlenk techniques; all chromatographies were conducted in air. Solvents were treated as follows: THF, hexanes, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried and degassed using a Glass Contour solvent purification system, or distilled from Na /benzophenone (THF/hexanes) or $\mathrm{CaH}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; MeOH was distilled from Mg ; chlorobenzene was distilled by rotary evaporation, and then aspirated with N_{2}; 2-methoxyethanol (anhydrous, 99.8%, Aldrich $), \mathrm{C}_{6} \mathrm{D}_{6}$, and $\mathrm{CDCl}_{3}(2 \times$ deutero GmbH or Cambridge Isotope Laboratories) were used as received. SiO_{2}, neutral $\mathrm{Al}_{2} \mathrm{O}_{3}(2 \times$ Macherey-Nagel or Silicycle), $\mathrm{CO}(99.97 \%$, Linde, or 99.998%, Matheson), $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}\left(98+\%\right.$, Alfa Aesar), $\mathrm{HCl}\left(1.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}$, Acros), Grubbs' catalyst $\mathrm{Cl}_{2}\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{Ru}=\mathrm{CHPh}_{2}$ (Aldrich), $\mathrm{PtO}_{2},\left(99 \%\right.$, Acros), $\mathrm{MeLi}\left(1.6 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O}, \mathrm{Acros}\right), \mathrm{PhLi}(2.0 \mathrm{M}$ in $\mathrm{Bu}_{2} \mathrm{O}, \mathrm{Acros}$), $n-\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{BF}_{4}^{-}(99+\%$, electrochemical grade, Fluka), and ferrocene (98%, Acros), used as received. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{OsCl}_{6},{ }^{\text {s2a }}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{OsBr}_{6},{ }^{\text {sbb }}$ the phosphines $\mathbf{1 a - c},{ }^{s 3} \mathrm{C}_{8} \mathrm{~K},{ }^{s 4}$ and $\left[\mathrm{H}\left(\mathrm{OEt}_{2}\right)_{2}\right]^{+} \mathrm{BAr}_{\mathrm{f}}{ }^{-}$, ${ }^{55}$ were synthesized by literature procedures.
cis,cis,trans- $\mathbf{O s}(\mathbf{C O})_{\mathbf{2}}\left(\mathbf{C l}_{\mathbf{2}} \mathbf{2}_{\mathbf{(P}}^{\left.\left(\left(\mathrm{CH}_{2}\right)_{\mathbf{6}} \mathbf{C H}=\mathbf{C H}_{2}\right)_{\mathbf{3}}\right)_{\mathbf{2}} \text { (2a). A Fischer-Porter bottle was charged }}\right.$ with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{OsCl}_{6}(0.507 \mathrm{~g}, 1.16 \mathrm{mmol})$ and 2-methoxyethanol $(40 \mathrm{~mL})$. The red suspension was stirred at $110{ }^{\circ} \mathrm{C}$ under $\mathrm{CO}(10 \mathrm{bar})$ until it turned pale yellow ($5-7 \mathrm{~d}$). Then $\mathbf{1 a}(1.55 \mathrm{~g}, 4.25 \mathrm{mmol})$ was
added with stirring and the solution kept at $80^{\circ} \mathrm{C}$ for 24 h . The solvent was removed by oil pump vacuum and the resulting red-brown oil chromatographed $\left(\mathrm{SiO}_{2}\right.$ column, $3.5 \mathrm{~cm} \times 30 \mathrm{~cm}, 2: 1 \mathrm{v} / \mathrm{v}$ hexanes/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was removed from the product containing fractions by oil pump vacuum to give 2a ($0.883 \mathrm{~g}, 0.844 \mathrm{mmol}, 73 \%$) as a pale yellow oil. Anal. calcd (\%) for $\mathrm{C}_{50} \mathrm{H}_{90} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1046.33): C 57.39, H 8.67; found C 56.97, H 8.74.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 6} 5.77\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.1 \mathrm{~Hz}\right.$, ${ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{CH}=$), $5.04\left(\mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.5 \mathrm{~Hz}, 6 \mathrm{H},=\mathrm{CH}_{E} H_{\mathrm{Z}}\right), 4.99\left(\mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.8 \mathrm{~Hz}\right.$, $6 \mathrm{H},=\mathrm{CH}_{E} \mathrm{H}_{\mathrm{Z}}$), 2.21-2.13 (br m, 12H, PCH_{2}), 1.98-1.92 (br m, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 1.69-1.58 (br m, 12 H , $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.35-1.21 (br m, 36H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{\mathbf{1}^{\mathbf{H}}\right\}(100 \mathrm{MHz})^{\mathrm{s} 6} 176.6\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.2 \mathrm{~Hz}\right.$, $C \mathrm{O}), 139.1(\mathrm{~s}, C \mathrm{H}=), 114.6\left(\mathrm{~s},=C \mathrm{H}_{2}\right), 33.9\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{CH}=\right), 31.1\left(\right.$ virtual t, ${ }^{57}{ }^{3} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2^{-}}$ $\left.C_{2}\right), 29.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.5$ (overlapping virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=15.6 \mathrm{~Hz}, \mathrm{PCH}_{2}\right),{ }^{\mathrm{s} 8} 23.3$ (overlapping s, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$); ${ }^{\mathrm{s8}}{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-16.3$ (s).

IR (cm^{-1}, oil film): 3076 (w), 2926 (m), 2856 (w), 2019 (s, v_{CO}), 1945 (s, v_{CO}), 1640 (w), 1459 (w), 1440 (w), 1417 (w), 992 (w), 907 (m), 718 (w). MS (FAB, 3-NBA): ${ }^{9} 1011$ ([2a-Cl] ${ }^{+}, 5 \%$), 365 ([1a + 1] $\left.{ }^{+}, 100 \%\right)$.
cis,cis,trans $\left.-\mathbf{O s}(\mathbf{C O})_{\mathbf{2}}(\mathbf{C l})_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{2}\right)_{\mathbf{7}} \mathbf{C H}=\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{(2 b}\right) .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{OsCl}_{6}(0.500 \mathrm{~g}, 1.14 \mathrm{mmol})$, 2-methoxyethanol $(40 \mathrm{~mL})$, and $\mathbf{1 b}(1.60 \mathrm{~g}, 3.95 \mathrm{mmol})$ were combined in a procedure analogous to that used for $\mathbf{2 a}$. An identical workup gave $\mathbf{2 b}(0.854 \mathrm{~g}, 0.755 \mathrm{mmol}, 66 \%)$ as a pale yellow oil. Anal. calcd (\%) for $\mathrm{C}_{56} \mathrm{H}_{102} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1130.49): C 59.50, H 9.09; found C 59.32, H 8.80 .

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 6} 5.78\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.2 \mathrm{~Hz}\right.$, ${ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{CH}=$), 5.04 (br d, ${ }^{3} J_{\mathrm{HH} \text { trans }}=17.0 \mathrm{~Hz}, 6 \mathrm{H},=\mathrm{CH}_{E} H_{\mathrm{Z}}$), $4.99\left(\mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.1 \mathrm{~Hz}\right.$, $6 \mathrm{H},=\mathrm{CH}_{E} \mathrm{H}_{\mathrm{Z}}$), 2.24-2.14 (br m, 12H, PCH_{2}), 2.01-1.94 (br m, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 1.72-1.59 (br m, 12 H , $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.36-1.18 (br m, 48H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz})^{\mathrm{s} 6} 176.6\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.3 \mathrm{~Hz}\right.$, $C \mathrm{O}$), $139.2(\mathrm{~s}, C \mathrm{H}=), 114.5\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 34.0\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}=\right.$), 31.2 (virtual $\mathrm{t},{ }^{\mathrm{s}}{ }^{7}{ }^{3} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2}{ }^{-}$ CH_{2}), $29.24\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.19\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.6$ (overlapping virtual t, ${ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=15.5 \mathrm{~Hz}$, PCH_{2}), ${ }^{\mathrm{s} 8} 23.4$ (overlapping s, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$); ${ }^{88}{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-15.6$ (s).

IR (cm^{-1}, oil film): 3076 (w), 2926 (m), 2856 (w), 2019 (s, v_{CO}), 1945 (s, v_{CO}), 1640 (w),

1463 (w), 1417 (w), 996 (w), 907 (m), 718 (w). MS (FAB, 3-NBA): 1075 ([2b - $2 \mathrm{CO}+1]^{+}, 2 \%$), 1067 ([2b $\left.-\mathrm{Cl}-\mathrm{CO}-1]^{+}, 5 \%\right), 407\left([\mathbf{1 b}+1]^{+}, 100 \%\right)$.
cis,cis,trans $\left.-\mathbf{O s}(\mathbf{C O})_{\mathbf{2}}(\mathbf{C l})_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{8}} \mathbf{C H}=\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{(2 c}\right) .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{OsCl}_{6}(0.500 \mathrm{~g}, 1.14 \mathrm{mmol})$, 2-methoxyethanol (40 mL), and $\mathbf{1 c}(1.55 \mathrm{~g}, 3.46 \mathrm{mmol})$ were combined in a procedure analogous to that used for 2a. An identical workup gave $2 \mathbf{c}(0.929 \mathrm{~g}, 0.207 \mathrm{mmol}, 67 \%)$ as a pale yellow oil. Anal. calcd (\%) for $\mathrm{C}_{62} \mathrm{H}_{114} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1214.65): C 61.31, H 9.46; found C 61.05, H 9.48.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 6} 5.79\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.2 \mathrm{~Hz}\right.$, ${ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{CH}=$), 5.04 (br d, $\left.{ }^{3} J_{\mathrm{HH} \text { trans }}=18.0 \mathrm{~Hz}, 6 \mathrm{H},=\mathrm{CH}_{E} H_{\mathrm{Z}}\right), 4.99\left(\mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{HH} \text { cis }}=11.1 \mathrm{~Hz}\right.$, $6 \mathrm{H},=\mathrm{CH}_{E} \mathrm{H}_{\mathrm{Z}}$), 2.24-2.16 (br m, 12H, PCH_{2}), 2.03-1.95 (br m, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 1.73-1.61 (br m, 12 H , $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 1.37-1.18\left(\mathrm{br} \mathrm{m}, 60 \mathrm{H}\right.$, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(75 \mathrm{MHz})^{\mathrm{s} 6} 176.6\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.4 \mathrm{~Hz}, \mathrm{CO}\right)$, $139.2(\mathrm{~s}, \mathrm{CH}=), 114.5\left(\mathrm{~s},=C \mathrm{H}_{2}\right), 34.2\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 31.4$ (virtual t, ${ }^{57}{ }^{3} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2^{-}}$ $\left.\mathrm{CH}_{2}\right), 29.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.7\left(\right.$ overlapping virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=$ $15.5 \mathrm{~Hz}, \mathrm{PCH}_{2}$), ${ }^{\mathrm{s} 8} 23.5$ (overlapping s, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$); ${ }^{\mathrm{s} 8 \mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-16.3$ (s).

IR (cm^{-1}, oil film): 3076 (w), 2926 (m), 2856 (w), 2019 (s, v_{CO}), 1945 (s, v_{CO}), 1640 (w), 1463 (w), 1417 (w), 992 (w), 907 (m), 718 (w). MS (FAB, 3-NBA) : ${ }^{59} 1152$ ([2c - Cl - CO + 1] ${ }^{+}, 5 \%$), $449\left([\mathbf{1 c}+1]^{+}, 100 \%\right)$.
cis,cis,trans $\left.-\mathrm{Os}(\mathbf{C O})_{\mathbf{2}}(\mathbf{B r})_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathrm{CH}_{2}\right)_{\mathbf{6}} \mathbf{C H}=\mathrm{CH}_{2}\right)_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{(3 a}\right)$. A Fischer-Porter bottle was charged with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{OsBr}_{6}(0.500 \mathrm{~g}, 0.709 \mathrm{mmol})$ and 2-methoxyethanol $(40 \mathrm{~mL})$. The deep red solution was stirred at $80^{\circ} \mathrm{C}$ under CO (10 bar) until it turned pale yellow (3-5 d). Then $1 \mathbf{1 a}(0.950 \mathrm{~g}, 2.61 \mathrm{mmol})$ was added with stirring and the solution kept at $80^{\circ} \mathrm{C}$ for 24 h . The solvent was removed by oil pump vacuum and the resulting red-brown oil chromatographed $\left(\mathrm{SiO}_{2}\right.$ column, $3.5 \mathrm{~cm} \times 30 \mathrm{~cm}, 5: 2 \mathrm{v} / \mathrm{v}$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was removed from the product containing fractions by oil pump vacuum to give 3a ($0.441 \mathrm{~g}, 0.388 \mathrm{mmol}, 55 \%$) as a pale yellow oil. Anal. calcd (\%) for $\mathrm{C}_{50} \mathrm{H}_{90} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1135.23): C 52.90, H 7.99; found C 53.22, H 8.26.

> NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 10} 5.77\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} c i s}=10.1 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{C} H=\right), 5.04\left(\mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.5 \mathrm{~Hz}, 6 \mathrm{H},=\mathrm{CH}_{E} H_{\mathrm{Z}}\right), 4.99\left(\mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{HH} c i s}=10.8 \mathrm{~Hz}\right.$, $\left.6 \mathrm{H},=\mathrm{CH}_{E} \mathrm{H}_{\mathrm{Z}}\right), 2.30-2.24\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.98-1.92\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{CH} H_{2} \mathrm{CH}=\right), 1.68-1.58(\mathrm{br} \mathrm{m}, 12 \mathrm{H}$,
$\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.35-1.22 (br m, 36H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz}){ }^{\mathrm{s} 10} 174.0\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.5 \mathrm{~Hz}\right.$, $C \mathrm{O}), 139.1(\mathrm{~s}, \mathrm{CH}=), 114.4\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 33.6\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}=\right), 30.8\left(\right.$ virtual $\mathrm{t},{ }^{\mathrm{s}}{ }^{3} J_{\mathrm{CP}}=6.3 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2^{-}}$ $C \mathrm{H}_{2}$), $28.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.3$ (virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=15.9 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 23.3\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$; ${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-25.3(\mathrm{~s})$.

IR (cm^{-1}, oil film): 3076 (w), 2926 (m), 2855 (w), 2023 (s, v_{CO}), 1949 (s, v_{CO}), 1640 (w), 1459 (w), 1440 (w), 1417 (w), 992 (w), 907 (m), 718 (w). MS (FAB, 3-NBA): ${ }^{9} 1078$ ([3a - 2CO $\left.1]^{+}, 2 \%\right), 1055\left([\mathbf{3 a}-\mathrm{Br}]^{+}, 5 \%\right), 365\left([\mathbf{1 a}+1]^{+}, 100 \%\right)$.
 2-methoxyethanol (40 mL), and $\mathbf{1 b}(1.13 \mathrm{~g}, 2.79 \mathrm{mmol})$ were combined in a procedure analogous to that used for 3a. An identical workup gave $\mathbf{3 b}(0.398 \mathrm{~g}, 0.326 \mathrm{mmol}, 46 \%)$ as a pale yellow oil. Anal. calcd (\%) for $\mathrm{C}_{56} \mathrm{H}_{102} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1219.39): C 55.16, H 8.43; found C 55.06, H 8.51.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 6} 5.79\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HHcis}}=10.2 \mathrm{~Hz}\right.$, ${ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{CH}=$), $5.04\left(\mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.1 \mathrm{~Hz}, 6 \mathrm{H},=\mathrm{CH}_{E} H_{\mathrm{Z}}\right), 5.00\left(\mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{HH} c i s}=10.7 \mathrm{~Hz}\right.$, $6 \mathrm{H},=\mathrm{CH}_{E} \mathrm{H}_{\mathrm{Z}}$), 2.32-2.27 (br m, 12H, PCH_{2}), 2.01-1.94 (br m, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 1.72-1.59 (br m, 12 H , $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 1.34-1.21\left(\mathrm{br} \mathrm{m}, 48 \mathrm{H}\right.$, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(75 \mathrm{MHz})^{\mathrm{s} 6} 175.2\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.4 \mathrm{~Hz}, \mathrm{CO}\right)$, $139.1(\mathrm{~s}, \mathrm{CH}=), 114.5\left(\mathrm{~s},=C \mathrm{H}_{2}\right), 34.1\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}=\right), 31.3\left(\right.$ virtual $\left.\mathrm{t},{ }^{57}{ }^{3} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} C H_{2}\right)$, $29.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.3\left(\right.$ virtual t, $\left.{ }^{57}{ }^{1} J_{\mathrm{CP}}=15.9 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 23.9\left(\mathrm{~s}, \mathrm{PCH}_{2^{-}}\right.$ $\left.C \mathrm{H}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-25.9$ (s).

IR (cm^{-1}, oil film): 3076 (w), 2926 (m), 2856 (w), 2023 (s, v_{CO}), 1949 (s, v_{CO}), 1640 (w), 1463 (w), 1440 (w), 1417 (w), 996 (w), 907 (m), 718 (w). MS (FAB, 3-NBA): ${ }^{9} 1191$ ([3b - CO + 1] ${ }^{+}$, $0.5 \%), 1163\left([\mathbf{3 b}-2 \mathrm{CO}+1]^{+}, 2 \%\right), 1140\left([\mathbf{3 b}-\mathrm{Br}+1]^{+}, 3 \%\right), 1110\left([\mathbf{3 b}-\mathrm{Br}-\mathrm{CO}-1]^{+}, 5 \%\right), 407$ $\left([\mathbf{1 b}+1]^{+}, 100 \%\right)$.
cis,cis,trans $-\mathbf{O s}(\mathbf{C O})_{\mathbf{2}}(\mathbf{B r})_{\mathbf{2}} \mathbf{(P ((\mathbf { C H } _ { \mathbf { 2 } }) _ { \mathbf { 8 } } \mathbf { C H } = \mathbf { C H } _ { \mathbf { 2 } }) _ { \mathbf { 3 } }) _ { \mathbf { 2 } } \mathbf { (3 c }) . (\mathrm { NH } _ { 4 }) _ { 2 } \mathrm { OsBr } _ { 6 } (0 . 6 0 0 \mathrm { g } , 0 . 7 0 9 \mathrm { mmol }) , ~}$ 2-methoxyethanol (40 mL), and $\mathbf{1 c}(1.49 \mathrm{~g}, 3.33 \mathrm{mmol})$ were combined in a procedure analogous to that used for $6 \mathbf{a}$. An identical workup gave $3 \mathbf{c}(0.541 \mathrm{~g}, 0.415 \mathrm{mmol}, 49 \%)$ as a pale yellow oil. Anal. calcd (\%) for $\mathrm{C}_{62} \mathrm{H}_{114} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1303.55): C 57.13, H 8.81; found C 56.80, H 8.90.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s6}} 5.79\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.2 \mathrm{~Hz}\right.$,
${ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{CH}=$), 5.04 (br d, $\left.{ }^{3} J_{\mathrm{HH} \text { trans }}=18.1 \mathrm{~Hz}, 6 \mathrm{H},=\mathrm{CH}_{E} H_{\mathrm{Z}}\right), 5.00\left(\mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{HH} \text { cis }}=11.2 \mathrm{~Hz}\right.$, $6 \mathrm{H},=\mathrm{CH}_{E} \mathrm{H}_{\mathrm{Z}}$), 2.34-2.26 (br m, 12H, PCH_{2}), 2.03-1.96 (br m, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 1.74-1.60 (br m, 12 H , $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$, 1.39-1.18 (br m, 60 H , remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(75 \mathrm{MHz})^{\mathrm{s} 6} 175.2\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.3 \mathrm{~Hz}, \mathrm{CO}\right)$, $139.2(\mathrm{~s}, C \mathrm{H}=), 114.5\left(\mathrm{~s},=C \mathrm{H}_{2}\right), 34.2\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 31.3\left(\right.$ virtual $\mathrm{t},{ }^{\mathrm{s} ~}{ }^{3} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2^{-}}$ $\left.C_{2}\right), 29.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 25.0\left(\right.$ virtual $\mathrm{t},{ }^{\mathrm{s}}{ }^{1} J_{\mathrm{CP}}=15.9 \mathrm{~Hz}$, $\left.\mathrm{PCH}_{2}\right), 23.9\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-25.3(\mathrm{~s})$.

IR (cm^{-1}, oil film): 3076 (w), 2926 (m), 2856 (w), 2023 (s, v_{CO}), 1949 (s, v_{CO}), 1640 (w), 1463 (w), 1440 (w), 1417 (w), 992 (w), 907 (m), 718 (w). MS (FAB, 3-NBA): ${ }^{\text {s9 }} 449$ ([1c + 1] ${ }^{+}$, 100%).

Alkene metathesis of 2a. A Schlenk flask was charged with $\mathbf{2 a}(0.714 \mathrm{~g}, 0.683 \mathrm{mmol})$ and chlorobenzene $(700 \mathrm{~mL}$; the resulting solution was 0.0010 M$)$. Then solid Grubbs' catalyst $(0.039 \mathrm{~g}$, $0.048 \mathrm{mmol}, 7.0 \mathrm{~mol} \%$) was added with stirring. The solution was aspirated with N_{2}, and periodically monitored by ${ }^{1} \mathrm{H}$ NMR. After the reaction was complete (ca. 24 h), the solution was aspirated with air $(30 \mathrm{~min})$ to decompose the remaining catalyst. The solution was filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}(3 \mathrm{~cm} \times 5 \mathrm{~cm})$, which was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvents were removed from the filtrate to give crude $4 * \mathbf{a}$ (0.571 $\mathrm{g}, 0.594 \mathrm{mmol}, 87 \%)$ as a light brown sticky oil.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz})$ 5.57-5.39 (br m, $5 \mathrm{H}, \mathrm{CH}=$), 5.27-5.20 (br m, $1 \mathrm{H}, \mathrm{CH}=$), 2.26-0.99 (br m, 78H, CH2); ${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-10.4$ (s, 53\% of integral), $-11.5(\mathrm{~s}, 21 \%),-12.7$ (s, $11 \%),-12.8(\mathrm{~s}, 8 \%),-12.9(\mathrm{~s}, 9 \%),-13.0(\mathrm{~s}, 9 \%)$.

$\underset{\mathbf{C H}}{\mathbf{2}})\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 4}}\right)\left(\mathbf{P}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 3}} \mathbf{C H}_{\mathbf{2}}\right) \mathbf{(6 ' a)}$. A Schlenk flask was charged with $\mathbf{4}^{*} \mathbf{a}(0.571 \mathrm{~g}, 0.594 \mathrm{mmol}$; the entire quantity prepared above $)$, THF $(30 \mathrm{~mL})$, and $\mathrm{PtO}_{2}(0.023 \mathrm{~g}, 0.102 \mathrm{mmol})$, connected to a gas balloon, and partially evacuated. Then $\mathrm{H}_{2}(1 \mathrm{bar})$ was introduced, and the suspension was stirred. After 3 d , the solvent was removed by oil pump vacuum. The black residue was filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed from the filtrate and the residue was chromatographed (SiO_{2} column, $3.5 \mathrm{~cm} \times 30 \mathrm{~cm}, 3: 2 \mathrm{v} / \mathrm{v}$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvents were removed from the product containing fractions by oil pump vacuum to give $\mathbf{6 a}(0.186 \mathrm{~g}, 0.192 \mathrm{mmol}, 28 \%$ from $\mathbf{2 a})$ as a white solid and

6'a ($0.084 \mathrm{~g}, 0.087 \mathrm{mmol}, 13 \%$ from $\mathbf{2 a}$) as a colorless sticky oil that solidified after one week.
6a: Dec. pt. (capillary) $260{ }^{\circ} \mathrm{C}^{\mathrm{s} 11}$. DSC $\left(\mathrm{T}_{i} / \mathrm{T}_{e} / \mathrm{T}_{p} / \mathrm{T}_{c} / \mathrm{T}_{f}\right)$: ${ }^{s 1} 32.3 / 39.6 / 41.1 / 42.7 / 56.1^{\circ} \mathrm{C}$ (endotherm); 74.0/84.5/85.8/87.6/109.2 ${ }^{\circ} \mathrm{C}$ (endotherm); 165.6/181.5/183.1/184.8/199.0 ${ }^{\circ} \mathrm{C}$ (endotherm), $244.5 / 248.0 / 253.4 / 258.2 / 273.3^{\circ} \mathrm{C}$ (endotherm). TGA: onset of mass loss, $295.0^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (968.22): C 54.58, H 8.74; found C 55.01, H 8.90.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 12} 2.09-1.97(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{PCH} 2), 1.74-1.60(\mathrm{br}, 12 \mathrm{H}, \mathrm{P}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.53-1.35 (br m, 60H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz})^{\mathrm{s} 12} 176.6\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.5 \mathrm{~Hz}\right.$, $C \mathrm{O}), 30.0\left(\right.$ virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{3} J_{\mathrm{CP}}=6.7 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 28.61\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.57\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.8\left(\mathrm{~s}, C \mathrm{H}_{2}\right)$, $27.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.8\left(\right.$ virtual $\left.\mathrm{t},{ }^{\mathrm{s} ~}{ }^{1} J_{\mathrm{CP}}=15.7 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 22.5\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-14.2$ (s).

IR (cm^{-1}, powder film): $2922(\mathrm{~m}), 2853(\mathrm{w}), 2019\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1945\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1459(\mathrm{w}), 1417(\mathrm{w})$, $772(\mathrm{w}), 718(\mathrm{~m}) . \mathbf{M S}(\mathrm{FAB}, 3-\mathrm{NBA}):{ }^{9} 969\left([\mathbf{6 a}+1]^{+}, 5 \%\right), 932\left([\mathbf{6 a}-\mathrm{CO}]^{+}, 100 \%\right)$.

6'a: mp (capillary) $67{ }^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (968.22): C 54.58, H 8.74; found C 54.58, H 8.70.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 13, \mathrm{~s} 14} 2.40-2.26\left(\mathrm{br} \mathrm{m}, 4 \mathrm{H}, \mathrm{PC}^{\prime} \mathrm{H}_{2}\right), 2.15-2.00(\mathrm{br} \mathrm{m}, 4 \mathrm{H}$, $\mathrm{PC}^{\prime} \mathrm{H}_{2}$), 1.99-1.88 (br m, 4H, PCH_{2}), 1.85-1.63 (br m, $8 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$), 1.58-1.42 (br $\mathrm{m}, 20 \mathrm{H}$, remaining CH_{2}), 1.40-1.11 (br m, $44 \mathrm{H}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$ and remaining $\mathrm{C}^{\prime} \mathrm{H}_{2}$); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100$ $\mathrm{MHz})^{\mathrm{s} 13, \mathrm{~s} 14} 176.5\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.4 \mathrm{~Hz}, \mathrm{CO}\right), 30.5$ (virtual $\left.\mathrm{t},{ }^{\text {s }}{ }^{3} J_{\mathrm{CP}}=6.8 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.0$ (virtual t, $\left.{ }^{\text {s }}{ }^{3} J_{\mathrm{CP}}=6.0 \mathrm{~Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2} C^{\prime} \mathrm{H}_{2}\right), 28.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.4\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.1\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 27.8\left(\mathrm{~s}, C \mathrm{H}_{2}\right)$, $27.1\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 27.0\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 26.8\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 26.1\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 25.5\left(\right.$ virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=15.9 \mathrm{~Hz}, \mathrm{PCH}_{2}\right)$, $23.4\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 22.6\left(\right.$ virtual $\left.\mathrm{t},{ }^{\mathrm{s} ~}{ }^{1} J_{\mathrm{CP}}=15.3 \mathrm{~Hz}, \mathrm{PC} \mathrm{H}_{2}\right), 21.8\left(\mathrm{~s}, \mathrm{PC}^{\prime} \mathrm{H}_{2} C^{\prime} \mathrm{H}_{2}\right) ;{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121$ $\mathrm{MHz})-14.4(\mathrm{~s})$.

IR (cm^{-1}, powder film): $2921(\mathrm{~m}), 2851(\mathrm{w}), 2017\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1944\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1454(\mathrm{w}), 1411(\mathrm{w})$, 713 (m). MS (MALDI+, SIN): ${ }^{\text {s9 }} 1008\left([\mathbf{6} \mathbf{a}+\mathrm{K}+1]^{+}, 10 \%\right), 992\left([\mathbf{6} \mathbf{a}+\mathrm{Na}+1]^{+}, 30 \%\right), 934\left(\left[\mathbf{6}^{\mathbf{\prime}} \mathbf{a}-\right.\right.$ $\left.\mathrm{Cl}+1]^{+}, 20 \%\right), 904\left([6 \mathbf{a}-\mathrm{Cl}-\mathrm{CO}-1]^{+}, 40 \%\right)$.

Alkene metathesis of $\mathbf{2 b}$. Complex $\mathbf{2 b}(0.649 \mathrm{~g}, 0.574 \mathrm{mmol})$, chlorobenzene (600 mL ; the resulting solution was 0.0010 M), and Grubbs' catalyst ($0.018 \mathrm{~g}, 0.022 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$) were combined
in a procedure analogous to that used for the metathesis of $\mathbf{2 a}$. An identical workup gave crude $\mathbf{4 *} \mathbf{b}$ $(0.571 \mathrm{~g}, 0.545 \mathrm{mmol}, 95 \%)$ as a light brown sticky oil.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(300 \mathrm{MHz})$ 5.66-5.58 (br m, $1 \mathrm{H}, \mathrm{CH}=$), 5.58-5.46 (br m, 2H, $\mathrm{CH}=$), 5.40-5.34 (br m, 1H, $\mathrm{CH}=$), 5.33-5.25 (br m, $2 \mathrm{H}, \mathrm{CH}=$), 2.54-2.34 (br m, $4 \mathrm{H}, \mathrm{CH}_{2}$), 2.27-1.86 (br m,
 25% of integral), $-14.09(\mathrm{~s}, 5 \%),-14.11(\mathrm{~s}, 6 \%),-14.17$ ($\mathrm{s}, 10 \%),-14.19(\mathrm{~s}, 9 \%),-14.27(\mathrm{~s}, 22 \%)$, $-14.32(\mathrm{~s}, 5 \%),-14.40(\mathrm{~s}, 8 \%),-14.41(\mathrm{~s}, 7 \%),-14.5(\mathrm{~s}, 3 \%)$.
 $\underset{\mathbf{C H}}{\mathbf{2}})\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 6}}\right)\left(\mathbf{P}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 5}} \mathbf{C H}_{\mathbf{2}}\right)\left(\mathbf{6}^{\prime} \mathbf{b}\right)$. Complex $\mathbf{4}^{*} \mathbf{b}(0.571 \mathrm{~g}, 0.545 \mathrm{mmol}$; the entire quantity prepared above $), \mathrm{PtO}_{2}(0.018 \mathrm{~g}, 0.080 \mathrm{mmol}), \mathrm{H}_{2}$, and THF $(30 \mathrm{~mL})$ were combined in a procedure analogous to that used for the hydrogenation of $\mathbf{4 * a}^{*}$. A similar workup including an identical SiO_{2} column gave $\mathbf{6 b}(0.052 \mathrm{~g}, 0.049 \mathrm{mmol}, 5 \%$ from $\mathbf{2 b})$ as a white solid and $\mathbf{6}^{\prime} \mathbf{b}(0.308 \mathrm{~g}, 0.293 \mathrm{mmol}, 51 \%$ from 2b) as a colorless sticky oil.

6b: mp (capillary) $150{ }^{\circ} \mathrm{C}$; $\mathbf{D S C}\left(\mathrm{T}_{i} / \mathrm{T}_{e} / \mathrm{T}_{p} / \mathrm{T}_{c} / \mathrm{T}_{f}\right) \cdot$: $^{1} 56.9 / 67.4 / 77.3 / 87.6 / 89.7^{\circ} \mathrm{C}$ (endotherm); 90.2/95.3/100.4/104.8/108.2 ${ }^{\circ} \mathrm{C}$ (endotherm, minor), 110.5/135.8/147.6/152.9/157.3 ${ }^{\circ} \mathrm{C}$ (endotherm). TGA: onset of mass loss, $268.7^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{50} \mathrm{H}_{96} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1052.38): C 57.06, H 9.19; found C 56.97, H 8.96.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 12}$ 2.12-1.99 (br m, 12H, PCH_{2}), 1.71-1.55 (br m, 12 H , $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.51-1.31 (br m, 72 H , remaining CH_{2}) ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz}){ }^{\mathrm{s} 12} 176.5\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.5 \mathrm{~Hz}\right.$, CO), 30.1 (virtual t, $\left.{ }^{57}{ }^{3} J_{\mathrm{CP}}=6.5 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} C \mathrm{H}_{2}\right), 29.1\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.7\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.3\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.1$ $\left(\mathrm{s}, \mathrm{CH}_{2}\right), 27.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.4$ (virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=15.6 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 22.4\left(\mathrm{~s}, \mathrm{PCH}_{2} C \mathrm{H}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121$ $\mathrm{MHz})-13.8(\mathrm{~s})$.

IR (cm^{-1}, powder film): $2921(\mathrm{~m}), 2850(\mathrm{w}), 2016\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1941\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1457(\mathrm{w}), 1417(\mathrm{w})$, 788 (w), $715(\mathrm{~m}) . \mathbf{M S}(\mathrm{FAB}, 3-\mathrm{NBA}) \cdot{ }^{9} 1053\left([\mathbf{6 b}+1]^{+}, 10 \%\right), 1016\left([\mathbf{6 b}-\mathrm{Cl}-1]^{+}, 100 \%\right)$.

6'b: Anal. calcd (\%) for $\mathrm{C}_{50} \mathrm{H}_{96} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1052.38): C 57.07, H 9.19; found C 56.92, H 8.85.
NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 13, \mathrm{~s} 14} 2.45-2.30\left(\mathrm{br} \mathrm{m}, 4 \mathrm{H}, \mathrm{PC}^{\prime} \mathrm{H}_{2}\right), 2.20-2.03(\mathrm{br} \mathrm{m}, 4 \mathrm{H}$, $\mathrm{PC}^{\prime} \mathrm{H}_{2}$), 2.01-1.89 (br m, 4H, PCH_{2}), 1.84-1.64 (br m, $8 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$), 1.54-1.37 (br
$\mathrm{m}, 24 \mathrm{H}$, remaining CH_{2}), 1.36-1.06 (br m, 56H, $\mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$ and remaining $\mathrm{C}^{\prime} \mathrm{H}_{2}$); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ (75 $\mathrm{MHz})^{\mathrm{s} 13, \mathrm{~s} 14} 176.5\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.4 \mathrm{~Hz}, \mathrm{CO}\right), 30.7\left(\right.$ virtual $\left.\mathrm{t},{ }^{57}{ }^{3} J_{\mathrm{CP}}=6.7 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} C H_{2}\right), 30.1$ (virtual $\left.\mathrm{t},{ }^{3} J_{\mathrm{CP}}=6.0 \mathrm{~Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2} C^{\prime} \mathrm{H}_{2}\right), 28.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.8\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.5\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.3\left(\mathrm{~s}, C \mathrm{H}_{2}\right)$, $28.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.1\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 27.3\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 27.3\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 25.4\left(\right.$ virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=15.7 \mathrm{~Hz}, \mathrm{PCH}_{2}\right)$, $23.5\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 22.50$ (overlapping virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=15.4 \mathrm{~Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2}$), ${ }^{\mathrm{s} 15} 22.48$ (overlapping s,

IR (cm^{-1}, oil film): 2922 (m), 2853 (w), 2019 (s, v_{CO}), 1945 ($\mathrm{s}, \mathrm{v}_{\mathrm{CO}}$), 1459 (w), 1417 (w), 791 (w), 718 (m). MS (MALDI + , DHB): ${ }^{9} 91092$ ([6'b + K + 1] ${ }^{+}, 10 \%$), 1075 ([6'b + Na] ${ }^{+}, 20 \%$), 1018 $\left(\left[\mathbf{6}^{\prime} \mathbf{b}-\mathrm{Cl}+1\right]^{+}, 20 \%\right), 990\left(\left[\mathbf{6}^{\prime} \mathbf{b}-\mathrm{Cl}-\mathrm{CO}+1\right]^{+}, 30 \%\right)$.

Alkene metathesis of $2 \mathbf{c}$. Complex $\mathbf{2 c}(0.896 \mathrm{~g}, 0.738 \mathrm{mmol})$, chlorobenzene (750 mL ; the re_ sulting solution was 0.0010 M), and Grubbs' catalyst ($0.045 \mathrm{~g}, 0.055 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$) were combined in a procedure analogous to that used for the metathesis of $\mathbf{2 a}$. An identical workup gave crude $\mathbf{4 *}^{*} \mathbf{c}$ $(0.710 \mathrm{~g}, 0.679 \mathrm{mmol}, 92 \%)$ as a light brown sticky oil. NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(300 \mathrm{MHz}) 5.56-$ 5.45 (br m, $5 \mathrm{H}, \mathrm{CH}=$), $5.40-5.35$ (br m, $1 \mathrm{H}, \mathrm{CH}=$), $2.42-1.12$ (br m, $\left.96 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz}) ~}$ -13.2 (s, 39\% of integral), -13.48 (s, 17\%), -13.52 (s, 14\%), -13.66 (s, 10\%), -13.69 (s, 12\%), -13.8 (s, 8%).
 $\underset{\mathbf{C H}}{\mathbf{C}})\left(\left(\mathbf{C H}_{2}\right)_{\mathbf{1 8}}\right)\left(\mathbf{P}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 7}} \mathbf{C H}_{\mathbf{2}}\right)\left(\mathbf{6}^{\prime} \mathbf{c}\right)$. Complex $\mathbf{4} \mathbf{c} \mathbf{c}(0.710 \mathrm{~g}, 0.679 \mathrm{mmol}$; the entire quantity prepared above $), \mathrm{PtO}_{2}(0.025 \mathrm{~g}, 0.111 \mathrm{mmol}), \mathrm{H}_{2}$, and THF $(30 \mathrm{~mL})$ were combined in a procedure analogous to that used for the hydrogenation of $\mathbf{4}^{*} \mathbf{a}$. A similar workup including an identical SiO_{2} column gave $\mathbf{6 c}$ $(0.192 \mathrm{~g}, 0.169 \mathrm{mmol}, 23 \%$ from $2 \mathbf{c})$ as a white solid and $\mathbf{6} \mathbf{c}(0.100 \mathrm{~g}, 0.088 \mathrm{mmol}, 12 \%$ from $\mathbf{2 c})$ as a colorless sticky oil.

6c: mp (capillary) $86{ }^{\circ} \mathrm{C}$; DSC $\left(\mathrm{T}_{i} / \mathrm{T}_{e} / \mathrm{T}_{p} / \mathrm{T}_{c} / \mathrm{T}_{f}\right)$: $:^{11} 46.7 / 84.4 / 86.5 / 88.4 / 155.0^{\circ} \mathrm{C}$ (endotherm). TGA: onset of mass loss, $294.6^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{56} \mathrm{H}_{108} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{OsP}_{2}$ (1136.52): C 59.18, H 9.58; found C 59.11, H 9.48.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 12} 2.16-2.00\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.73-1.54(\mathrm{br} \mathrm{m}, 12 \mathrm{H}$, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.51-1.25 (br m, 84H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(75 \mathrm{MHz})^{\mathrm{s} 12} 176.4\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.5 \mathrm{~Hz}\right.$,

CO), 30.5 (virtual t, $\left.{ }^{\mathrm{s} 7}{ }^{3} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.9\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.8\left(\mathrm{~s}, C \mathrm{H}_{2}\right)$, $28.62\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.59\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.4$ (virtual t, $\left.{ }^{57}{ }^{1} J_{\mathrm{CP}}=15.7 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 22.8(\mathrm{~s}$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-16.3$ (s).

IR (cm^{-1}, powder film): $2927(\mathrm{~s}), 2858(\mathrm{~s}), 2016\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1946\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1460(\mathrm{~m}), 1352(\mathrm{w})$, 1305 (w), 1220 (w), 1097 (w), 1027 (w), 788 (m), 718 (m). MS (FAB, 3-NBA): ${ }^{59} 1101$ ([6c - Cl] ${ }^{+}$, $70 \%)$.

6'c: Anal. calcd (\%) for $\mathrm{C}_{56} \mathrm{H}_{108} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1136.52): C 59.18, H 9.58; found C 58.75, H 9.45.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 13, \mathrm{~s} 14} 2.48-2.33\left(\mathrm{br} \mathrm{m}, 4 \mathrm{H}, \mathrm{PC}^{\prime} \mathrm{H}_{2}\right), 2.21-2.04(\mathrm{br} \mathrm{m}, 4 \mathrm{H}$, $\mathrm{PC}^{\prime} \mathrm{H}_{2}$), 2.03-1.91 (br m, 4H, PCH_{2}), 1.86-1.64 (br m, $8 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$), 1.49-1.41 (br $\mathrm{m}, 28 \mathrm{H}$, remaining CH_{2}), 1.40-1.15 (br m, $60 \mathrm{H}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$ and remaining $\mathrm{C}^{\prime} \mathrm{H}_{2}$); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ (75 $\mathrm{MHz})^{\mathrm{s} 13, \mathrm{~s} 14} 176.5\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.4 \mathrm{~Hz}, \mathrm{CO}\right.$), 31.0 (overlapping virtual $\mathrm{t},{ }^{s 7}{ }^{3} J_{\mathrm{CP}}=6.7 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2^{-}}$ $C \mathrm{H}_{2}$), ${ }^{\mathrm{s} 16} 30.8$ (overlapping virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{3} J_{\mathrm{CP}}=6.1 \mathrm{~Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2} C^{\prime} \mathrm{H}_{2}$), ${ }^{\mathrm{s} 16} 28.9,28.75,28.67,28.64$, 28.4, 28.3, 28.0, $27.4\left(8 \times \mathrm{s}, C \mathrm{H}_{2}\right.$ or $C^{\prime} \mathrm{H}_{2}$, insufficient intensity difference), 25.5 (virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=$ $15.9 \mathrm{~Hz}, \mathrm{PCH}_{2}$), $23.6\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 22.8$ (overlapping s, $\mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$), ${ }^{\mathrm{s}} 822.6$ (overlapping virtual $\mathrm{t},{ }^{\mathrm{s}}{ }^{7}$ $\left.{ }^{1} J_{\mathrm{CP}}=15.6 \mathrm{~Hz}, \mathrm{PC} C^{\prime} \mathrm{H}_{2}\right) ;{ }^{88}{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-16.6(\mathrm{~s})$.

IR (cm^{-1}, oil film): 2927 (m), 2858 (w), 2024 ($\mathrm{s}, \mathrm{v}_{\mathrm{CO}}$), 1946 ($\mathrm{s}, \mathrm{v}_{\mathrm{CO}}$), 1460 (w), 1415 (w), 796 (w), $718(\mathrm{~m}) . \mathbf{M S}(\mathrm{FAB}, 3-\mathrm{NBA}) \cdot{ }^{9} 91137\left([\mathbf{6} \mathbf{c}]^{+}, 5 \%\right), 1102\left(\left[\mathbf{6}^{\mathbf{\prime}} \mathbf{c}-\mathrm{Cl}\right]^{+}, 15 \%\right), 1072([\mathbf{6} \mathbf{c}-\mathrm{Cl}-\mathrm{CO}-$ $\left.1]^{+}, 5 \%\right)$.

Alkene metathesis of 3a. Complex 3a ($0.800 \mathrm{~g}, 0.705 \mathrm{mmol}$), chlorobenzene (700 mL ; the resulting solution was 0.0010 M), and Grubbs' catalyst ($0.041 \mathrm{~g}, 0.049 \mathrm{mmol}, 7.0 \mathrm{~mol} \%$) were combined in a procedure analogous to that used for the metathesis of $\mathbf{2 a}$. An identical workup gave crude $\mathbf{5}^{*} \mathbf{a}$ ($0.682 \mathrm{~g}, 0.649 \mathrm{mmol}, 92 \%$) as a light brown sticky oil.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(300 \mathrm{MHz})$ 5.62-5.40 ($\mathrm{br} \mathrm{m}, 5 \mathrm{H}, \mathrm{CH}=$), 5.27-5.20 (br m, $1 \mathrm{H}, \mathrm{CH}=$), 2.55-1.11 (br m, 72H, CH_{2}); ${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ (121 MHz) -19.1 ($\mathrm{s}, 48 \%$ of integral), -20.7 ($\mathrm{s}, 12 \%$), -22.2 (s , $10 \%),-22.26(\mathrm{~s}, 12 \%),-22.31(\mathrm{~s}, 8 \%),-22.4(\mathrm{~s}, 10 \%)$.

$\left.\left.\underset{\mathbf{C H}_{\mathbf{2}}}{ }\right)\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 4}}\right)\left(\mathbf{P}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 3}} \mathbf{C H}_{\mathbf{2}}\right) \mathbf{(7} \mathbf{} \mathbf{a}\right)$. Complex $\mathbf{5}^{*} \mathbf{a}(0.682 \mathrm{~g}, 0.649 \mathrm{mmol}$; the entire quantity prepared above $), \mathrm{PtO}_{2}(0.015 \mathrm{~g}, 0.066 \mathrm{mmol}), \mathrm{H}_{2}$, and THF $(30 \mathrm{~mL})$ were combined in a procedure analogous to that used for the hydrogenation of $4 * \mathbf{a}$. A similar workup $\left(\mathrm{SiO}_{2}\right.$ column, $3.5 \mathrm{~cm} \times 30 \mathrm{~cm}, 3: 1 \mathrm{v} / \mathrm{v}$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave $7 \mathbf{7 a}(0.231 \mathrm{~g}, 0.219 \mathrm{mmol}, 31 \%$ from 3a) as a white solid and $7 \mathbf{7}(0.131 \mathrm{~g}, 0.124$ mmol, 18% from 3a) as a colorless sticky oil that solidified after one week.

7a: Dec. pt. (capillary) $230{ }^{\circ} \mathrm{C} .{ }^{s 11}$ DSC $\left(\mathrm{T}_{i} / \mathrm{T}_{e} / \mathrm{T}_{p} / \mathrm{T}_{c} / \mathrm{T}_{f}\right)$. $:^{11} 107.9 / 125.8 / 134.3 / 138.1 / 144.5^{\circ} \mathrm{C}$ (endotherm); 170.8/187.6/236.9/266.7/272.7 ${ }^{\circ} \mathrm{C}$ (endotherm). TGA: onset of mass loss, $286.2^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}(1057.12) \mathrm{C} 49.99$, H 8.01 ; found C 49.80, H 7.99.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 10}$ 2.16-2.05 (br m, 12H, PCH_{2}), 1.72-1.58 (br m, 12 H , $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.55-1.35 (br m, 60 H , remaining CH_{2}); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz})^{\mathrm{s} 10} 175.2\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.2 \mathrm{~Hz}\right.$, CO), 29.8 (virtual t, $\left.{ }^{\text {s }}{ }^{3} J_{\mathrm{CP}}=6.6 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 28.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.6$

IR (cm^{-1}, powder film): $2922(\mathrm{~m}), 2853(\mathrm{w}), 2019\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1949\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1459(\mathrm{w}), 1413(\mathrm{w})$, 768 (w), 718 (m). MS (FAB, 3-NBA): ${ }^{9} 1056$ ([7a $]^{+}, 10 \%$), 1028 ([7a-CO] ${ }^{+}, 10 \%$), 977 ([7a - Br] ${ }^{+}$, $100 \%), 949\left([7 \mathbf{a}-\mathrm{Br}-\mathrm{CO}]^{+}, 30 \%\right)$.

7'a: mp (capillary) $74{ }^{\circ} \mathrm{C} . \operatorname{DSC}\left(\mathrm{T}_{i} / \mathrm{T}_{e} / \mathrm{T}_{p} / \mathrm{T}_{c} / \mathrm{T}_{f}\right) \cdot{ }^{\text {: } 1} 39.5 / 52.5 / 56.5 / 59.0 / 71.8^{\circ} \mathrm{C}$ (endotherm). TGA: onset of mass loss, $255.0^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1057.12): C 49.99, H 8.01; found C 50.10, H 7.99 .

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 13, \mathrm{~s} 14} 2.50-2.36\left(\mathrm{br} \mathrm{m}, 4 \mathrm{H}, \mathrm{PC}^{\prime} \mathrm{H}_{2}\right), 2.23-2.08(\mathrm{br} \mathrm{m}, 4 \mathrm{H}$, $\mathrm{PC}^{\prime} \mathrm{H}_{2}$), 2.06-1.95 (br m, 4H, PCH_{2}), 1.83-1.61 (br m, $8 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$), 1.56-1.40 (br $\mathrm{m}, 20 \mathrm{H}$, remaining CH_{2}), 1.39-1.12 (br m, $44 \mathrm{H}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$ and remaining $\mathrm{C}^{\prime} \mathrm{H}_{2}$); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126$ $\mathrm{MHz})^{\mathrm{s} 13, \mathrm{~s} 14} 175.1\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.3 \mathrm{~Hz}, \mathrm{CO}\right), 30.4\left(\right.$ virtual $\left.\mathrm{t},{ }^{\text {s }}{ }^{3} J_{\mathrm{CP}}=6.8 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 28.9$ (virtual t, $\left.{ }^{\text {s7 }}{ }^{3} J_{\mathrm{CP}}=6.0 \mathrm{~Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}\right), 28.52\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.48\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.9(\mathrm{~s}$, $\left.C_{2}\right), 27.1\left(\mathrm{~s}, \mathrm{C}^{\prime} \mathrm{H}_{2}\right), 26.9\left(\mathrm{~s}, \mathrm{C}^{\prime} \mathrm{H}_{2}\right), 26.8$ (overlapping s, $\left.C^{\prime} \mathrm{H}_{2}\right),{ }^{\mathrm{s} 8} 26.6$ (overlapping virtual $\mathrm{t},{ }^{\text {s }}{ }^{1}{ }^{1} J_{\mathrm{CP}}=$ $\left.16.3 \mathrm{~Hz}, \mathrm{PCH}_{2}\right),{ }^{\mathrm{s} 8} 26.1\left(\mathrm{~s}, \mathrm{C}^{\prime} \mathrm{H}_{2}\right), 24.0\left(\right.$ virtual $\left.\mathrm{t},{ }^{\mathrm{s}}{ }^{7}{ }^{1} J_{\mathrm{CP}}=15.7 \mathrm{~Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2}\right), 23.6\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 22.1(\mathrm{~s}$, $\left.\mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-24.0(\mathrm{~s})$.

IR $\left(\mathrm{cm}^{-1}\right.$, powder film): $2920(\mathrm{~m}), 2851(\mathrm{w}), 2019\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1946\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1455(\mathrm{w}), 1411(\mathrm{w})$,
$766(\mathrm{w}), 719(\mathrm{~m})$. MS (MALDI + , THAP) $\mathrm{s}^{9} 1097\left([7 \mathbf{\prime} \mathbf{a}+\mathrm{K}]^{+}, 25 \%\right), 1039\left([7 \mathbf{a}-2 \mathrm{CO}+\mathrm{K}]^{+}, 50 \%\right)$, $951^{\text {s17 }}\left(\left[7^{\prime} \mathbf{a}-\mathrm{Br}-\mathrm{CO}+2\right]^{+}, 100 \%\right)$.

Alkene metathesis of 3b. Complex $\mathbf{3 b}(0.565 \mathrm{~g}, 0.463 \mathrm{mmol})$, chlorobenzene (470 mL ; the resulting solution was 0.0010 M), and Grubbs' catalyst ($0.035 \mathrm{~g}, 0.042 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$) were combined in a procedure analogous to that used for the metathesis of $\mathbf{2 a}$. An identical workup gave crude $\mathbf{5 *} \mathbf{b}$ ($0.473 \mathrm{~g}, 0.417 \mathrm{mmol}, 90 \%$) as a light brown sticky oil.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}$ (300 MHz) 5.68-5.57 (br m, 1H, $\mathrm{CH}=$), 5.57-5.46 (br m, 2H, $\mathrm{CH}=$), 5.41-5.34 (br m, $1 \mathrm{H}, \mathrm{CH}=$), $5.33-5.25$ (br m, $2 \mathrm{H}, \mathrm{CH}=$), 2.65-2.45 (br m, 4H, CH_{2}), 2.34-1.91 (br m, $20 \mathrm{H}, \mathrm{CH}_{2}$), 1.89-1.64 (br m, 8H, CH2), 1.59-1.01 (br m, 52H, CH CH_{2}; ${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-23.5(\mathrm{~s}$, 28% of integral), $-23.70(\mathrm{~s}, 9 \%),-23.73$ (s, 11\%), -23.75 (s, 16\%), -23.87 (s, 5\%), -23.90 (s, 11\%), -23.94 (s, 13\%), -23.98 (s, 7\%).
 $\underset{\mathbf{C H}}{\mathbf{2}})\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 6}}\right)\left(\mathbf{P}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 5}} \mathbf{C H}_{\mathbf{2}}\right)\left(\mathbf{7}^{\prime} \mathbf{b}\right)$. Complex $\mathbf{5}^{*} \mathbf{b}(0.473 \mathrm{~g}, 0.417 \mathrm{mmol}$; the entire quantity prepared above $), \mathrm{PtO}_{2}(0.016 \mathrm{~g}, 0.070 \mathrm{mmol}), \mathrm{H}_{2}$, and THF (30 mL) were combined in a procedure analogous to that used for the hydrogenation of $\mathbf{4}^{*} \mathbf{a}$. A similar workup $\left(\mathrm{SiO}_{2}\right.$ column, $3.5 \mathrm{~cm} \times 30 \mathrm{~cm}, 3: 1$ v / v hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 7b $(0.025 \mathrm{~g}, 0.022 \mathrm{mmol}, 5 \%$ from $\mathbf{3 b})$ as a white solid and $\mathbf{7}^{\prime} \mathbf{b}(0.213 \mathrm{~g}$, $0.187 \mathrm{mmol}, 40 \%$ from $\mathbf{3 b}$) as a colorless sticky oil that solidified after one week.

7b: mp (capillary) $199^{\circ} \mathrm{C} ; \mathbf{D S C}\left(\mathrm{T}_{i} / \mathrm{T}_{e} / \mathrm{T}_{p} / \mathrm{T}_{c} / \mathrm{T}_{f}\right):{ }^{\mathrm{s} 1}$ 86.9/89.9/100.8/107.0/111.2 ${ }^{\circ} \mathrm{C}$ (endotherm, minor); 158.9/199.1/204.7/206.9/240.1 ${ }^{\circ} \mathrm{C}$ (endotherm). TGA: onset of mass loss, $307.9^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{50} \mathrm{H}_{96} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1141.28): C 52.62, H 8.48; found C 52.19, H 8.48.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 12} 2.22-2.12\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.69-1.56(\mathrm{br} \mathrm{m}, 12 \mathrm{H}$, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.49-1.36 (br m, 72 H , remaining CH_{2}); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz})^{\mathrm{s} 12} 175.1\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.4 \mathrm{~Hz}\right.$, CO), 30.1 (virtual t, ${ }^{\text {s }}{ }^{3} J_{\mathrm{CP}}=6.3 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $29.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.5\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.2$ $\left(\mathrm{s}, \mathrm{CH}_{2}\right), 27.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.9\left(\right.$ virtual $\left.\mathrm{t},{ }^{\mathrm{s} ~}{ }^{1} \mathrm{~J}_{\mathrm{CP}}=15.9 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 22.9\left(\mathrm{~s}, \mathrm{PCH}_{2} C \mathrm{H}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121$ MHz) -24.9 (s).

IR (cm^{-1}, powder film): $2920(\mathrm{~m}), 2851(\mathrm{w}), 2019\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1947\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1455(\mathrm{w}), 1415(\mathrm{w})$, $785(\mathrm{w}), 718(\mathrm{~m})$. MS (MALDI + , THAP) $\mathrm{s}^{9} 1179\left([7 \mathbf{b}+\mathrm{K}]^{+}, 5 \%\right), 1164\left([7 \mathbf{b}+\mathrm{Na}+1]^{+}, 8 \%\right), 1062$
$\left([7 \mathbf{b}-\mathrm{Br}]^{+}, 8 \%\right), 1034\left([7 \mathbf{b}-\mathrm{Br}-\mathrm{CO}]^{+}, 8 \%\right), 790\left(\left[\left(\mathrm{OP}\left(\left(\mathrm{CH}_{2}\right)_{16}\right)_{3} \mathrm{PO}\right)+\mathrm{Na}\right]^{+}, 100 \%\right), 768^{\mathrm{s} 17}$ $\left(\left[\left(\mathrm{OP}\left(\left(\mathrm{CH}_{2}\right)_{16}\right)_{3} \mathrm{PO}\right)+2\right]^{+}, 75 \%\right)$.
$\mathbf{7 ' b}^{\prime} \mathbf{b}$: mp (capillary) $54{ }^{\circ} \mathrm{C}$. TGA: ${ }^{\text {s1 }}$ onset of mass loss, $293.1^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{50} \mathrm{H}_{96}{ }^{-}$ $\mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1141.28): C 52.62, H 8.48; found C 52.66, H 8.20.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 10, \mathrm{~s} 14} 2.58-2.42\left(\mathrm{br} \mathrm{m}, 4 \mathrm{H}, \mathrm{PC}^{\prime} \mathrm{H}_{2}\right), 2.31-2.15(\mathrm{br} \mathrm{m}, 4 \mathrm{H}$, $\mathrm{PC}^{\prime} \mathrm{H}_{2}$), 2.09-1.97 (br m, 4H, PCH_{2}), 1.86-1.64 (br m, $8 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$), 1.53-1.41 (br $\mathrm{m}, 24 \mathrm{H}$, remaining CH_{2}), 1.36-1.16 (br m, $56 \mathrm{H}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$ and remaining $\mathrm{C}^{\prime} H_{2}$); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126$ $\mathrm{MHz})^{\mathrm{s} 10, \mathrm{~s} 14} 175.1\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.5 \mathrm{~Hz}, \mathrm{CO}\right), 30.6\left(\right.$ virtual $\mathrm{t},{ }^{\text {s }}{ }^{3} J_{\mathrm{CP}}=6.5 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 30.1 (virtual $\left.\mathrm{t},{ }^{\text {s }}{ }^{3} J_{\mathrm{CP}}=6.0 \mathrm{~Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2} C^{\prime} \mathrm{H}_{2}\right), 28.9\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.8\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.5\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.33\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.31$ $\left(\mathrm{s}, \mathrm{CH}_{2}\right), 28.2\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 27.83\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 26.80\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 27.3\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 26.4\left(\right.$ virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=16.2$ $\left.\mathrm{Hz}, \mathrm{PCH}_{2}\right), 24.1$ (virtual t, $\left.{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=15.8 \mathrm{~Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2}\right), 23.8\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 23.0\left(\mathrm{~s}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}\right)$; ${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-25.4$ (s).

IR (cm^{-1}, powder film): $2921(\mathrm{~m}), 2851(\mathrm{w}), 2018\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1946\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1454(\mathrm{w}), 1411(\mathrm{w})$, $802(\mathrm{w}), 713(\mathrm{~m})$. MS (MALDI+, THAP): ${ }^{\text {s9 }} 1032$ ([7'b - Br - CO - 1] $\left.{ }^{+}, 50 \%\right), 790\left(\left[\left(\mathrm{OP}\left(\mathrm{CH}_{2}\right)_{15^{-}}\right.\right.\right.$ $\left.\left.\left.\left.\stackrel{\neg}{\mathrm{C}} \mathrm{H}_{2}\right)\left(\left(\mathrm{CH}_{2}\right)_{16}\right)\left(\mathrm{OP(CH}_{2}\right)_{15} \mathrm{CH}_{2}\right)+\mathrm{Na}\right]^{+}, 80 \%\right), 768^{\mathrm{s} 17}\left(\left[\left(\mathrm{OP}\left(\mathrm{CH}_{2}\right)_{15} \mathrm{CH}_{2}\right)\left(\left(\mathrm{CH}_{2}\right)_{16}\right)\left(\mathrm{OP}_{\left(\mathrm{CH}_{2}\right)_{15} \mathrm{CH}_{2}}\right)\right.\right.$ $\left.+2]^{+}, 100 \%\right)$.

Alkene metathesis of 3c. Complex $\mathbf{3 c}(0.692 \mathrm{~g}, 0.531 \mathrm{mmol})$, chlorobenzene (550 mL ; the resulting solution was 0.0010 M), and Grubbs' catalyst $(0.033 \mathrm{~g}, 0.040 \mathrm{mmol}, 7.5 \mathrm{~mol} \%)$ were combined in a procedure analogous to that used for the alkene metathesis of 2a. An identical workup gave crude 5* ($0.565 \mathrm{~g}, 0.462 \mathrm{mmol}, 87 \%)$ as a light brown sticky oil.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}$ (300 MHz) 5.58-5.45 (br m, 5H, $\mathrm{CH}=$), 5.41-5.35 (br m, $1 \mathrm{H}, \mathrm{CH}=$), 2.59-2.37 (br m, 4H, CH2), 2.33-1.92 (br m, 20H, CH2), 1.87-1.14 (br m, $72 \mathrm{H}, \mathrm{CH}_{2}$); ${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121$ MHz) -22.6 ($\mathrm{s}, 50 \%$ of integral), $-23.0(\mathrm{~s}, 11 \%),-23.2(\mathrm{~s}, 12 \%),-22.28(\mathrm{~s}, 9 \%),-22.20(\mathrm{~s}, 9 \%),-22.4$ (s, 9%).

$\overline{\left.\mathbf{C H}_{\mathbf{2}}\right)\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 8}}\right)\left(\mathbf{P}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 7}} \mathbf{C H}_{\mathbf{2}}\right)\left(\mathbf{7}^{\prime} \mathbf{c}\right) \text { Complex } \mathbf{5}^{*} \mathbf{c}(0.565 \mathrm{~g}, 0.462 \mathrm{mmol} \text {; the entire quantity prepared }}$ above $), \mathrm{PtO}_{2}(0.018 \mathrm{~g}, 0.080 \mathrm{mmol}), \mathrm{H}_{2}$, and THF $(30 \mathrm{~mL})$ were combined in a procedure analogous to
that used for the hydrogenation of $\mathbf{4}^{*} \mathbf{a}$. A similar workup $\left(\mathrm{SiO}_{2}\right.$ column, $3.5 \mathrm{~cm} \times 30 \mathrm{~cm}, 3: 1 \mathrm{v} / \mathrm{v}$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave $7 \mathrm{c}(0.237 \mathrm{~g}, 0.193 \mathrm{mmol}, 27 \%$ from 3c) as a white solid and $7 \mathbf{c}(0.210 \mathrm{~g}, 0.171$ $\mathrm{mmol}, 24 \%$ from 3c) as a colorless sticky oil.

7c: mp (capillary) $92{ }^{\circ} \mathrm{C}$; DSC $\left(\mathrm{T}_{i} / \mathrm{T}_{e} / \mathrm{T}_{p} / \mathrm{T}_{c} / \mathrm{T}_{f}\right) \cdot:^{11} 61.2 / 91.5 / 93.6 / 96.0 / 162.9^{\circ} \mathrm{C}$ (endotherm). TGA: onset of mass loss, $259.3^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{56} \mathrm{H}_{108} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{OsP}_{2}$ (1225.44): C 54.89, H 8.88; found C 54.66, H 8.92 .

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 12} 2.24-2.13\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.69-1.55(\mathrm{br} \mathrm{m}, 12 \mathrm{H}$, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.48-1.32 (br m, 84H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(75 \mathrm{MHz})^{\mathrm{s} 12} 175.1\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.6 \mathrm{~Hz}\right.$, CO), 30.4 (virtual t, $\left.{ }^{\text {s }}{ }^{3} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.2\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.9\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.8\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.6$ $\left(\mathrm{s}, \mathrm{CH}_{2}\right), 28.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.6\left(\right.$ virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} \mathrm{~J}_{\mathrm{CP}}=16.0 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 23.1\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$; ${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-25.8$ (s).

IR (cm^{-1}, powder film): $2920(\mathrm{~m}), 2850(\mathrm{w}), 2020\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1946\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1456(\mathrm{w}), 1415(\mathrm{w})$, 785 (w), 715 (m). MS (FAB, 3-NBA): ${ }^{99} 1224$ ([7c $\left.]^{+}, 3 \%\right), 1146\left([7 \mathbf{c}-\mathrm{Br}+1]^{+}, 10 \%\right), 1116$ ([7c - Br $\left.-\mathrm{CO}-1]^{+}, 5 \%\right)$.

7'c: Anal. calcd for (\%) for $\mathrm{C}_{56} \mathrm{H}_{108} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1225.44): C 54.89, H 8.88; found C 54.40, H 8.59.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 13, \mathrm{~s} 14} 2.56-2.41\left(\mathrm{br} \mathrm{m}, 4 \mathrm{H}, \mathrm{PC}^{\prime} \mathrm{H}_{2}\right), 2.28-2.13(\mathrm{br} \mathrm{m}, 4 \mathrm{H}$, $\mathrm{PC}^{\prime} \mathrm{H}_{2}$), 2.11-2.00 (br m, 4H, PCH_{2}), 1.83-1.64 (br m, $8 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$), 1.48-1.39 (br $\mathrm{m}, 28 \mathrm{H}$, remaining CH_{2}), 1.38-1.20 (br m, $60 \mathrm{H}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$ and remaining $\mathrm{C}^{\prime} \mathrm{H}_{2}$); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100$ $\mathrm{MHz})^{\mathrm{s} 13, s 14} 175.2\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.3 \mathrm{~Hz}, \mathrm{CO}\right.$), 30.7 (overlapping virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{3} J_{\mathrm{CP}}=6.7 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2^{-}}$ $C \mathrm{H}_{2}$), ${ }^{\mathrm{s} 18} 30.6$ (overlapping virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{3} J_{\mathrm{CP}}=6.1 \mathrm{~Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2} C^{\prime} \mathrm{H}_{2}$), ${ }^{\mathrm{s} 18} 28.83\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.78(\mathrm{~s}$, $\left.C \mathrm{H}_{2}\right), 28.7\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.62\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$ or $\left.C^{\prime} \mathrm{H}_{2}\right), 28.60\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$ or $\left.C^{\prime} \mathrm{H}_{2}\right), 28.59\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$ or $\left.C^{\prime} \mathrm{H}_{2}\right), 28.5(\mathrm{~s}$, $C \mathrm{H}_{2}$ or $\left.C^{\prime} \mathrm{H}_{2}\right), 28.23\left(\mathrm{~s}, \mathrm{C}^{\prime} \mathrm{H}_{2}\right), 28.13\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 27.8\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 27.3\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 26.3\left(\right.$ virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=$ $\left.16.1 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 24.0\left(\right.$ virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=15.9 \mathrm{~Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2}\right), 23.7\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 23.1\left(\mathrm{~s}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}\right)$; ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}(121 \mathrm{MHz})-26.1$ (s).

IR (cm^{-1}, oil film): $2920(\mathrm{~m}), 2850(\mathrm{w}), 2018\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1947$ ($\mathrm{s}, \mathrm{v}_{\mathrm{CO}}$), 1456 (w), 1415 (w), 791 (w), 714 (m). MS (MALDI+, SIN): ${ }^{\text {s9 }} 1197\left([7 \mathbf{c}-\mathrm{CO}+1]^{+}, 3 \%\right), 1146\left([7 \mathbf{c}-\mathrm{Br}+1]^{+}, 4 \%\right)$.
cis,cis,trans-Os(CO) $\mathbf{2}_{\mathbf{2}}(\mathbf{B r})_{\mathbf{2}}\left(\mathbf{P}\left(\boldsymbol{n}-\mathbf{C}_{\mathbf{8}} \mathbf{H}_{\mathbf{1 7}}\right)_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{(8 a)}$. A Schlenk flask was charged with 3a (0.500 $\mathrm{g}, 0.440 \mathrm{mmol}), \mathrm{PtO}_{2}(0.015 \mathrm{~g}, 0.066 \mathrm{mmol})$, and THF $(20 \mathrm{~mL})$, connected to a gas balloon, and partially evacuated. Then H_{2} (1 bar) was introduced, and the suspension stirred. After 24 h , the solvent was removed by oil pump vacuum. The residue was filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}$ using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed from the filtrate by oil pump vacuum to give $\mathbf{8 a}(0.427 \mathrm{~g}, 0.372 \mathrm{mmol}, 85 \%)$ as a colorless oil. Anal. calcd (\%) for $\mathrm{C}_{50} \mathrm{H}_{102} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1147.33): C 52.34, H 8.96; found C 52.50, H 8.75.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathrm{H}(500 \mathrm{MHz})^{\mathrm{s} 6} 2.22-2.15\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.58-1.49(\mathrm{br} \mathrm{m}, 12 \mathrm{H}$, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.44-1.36 (br m, 12H, $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.36-1.22 (br m, 48 H , remaining CH_{2}), 0.88 (t, $\left.{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz})^{\mathrm{s} 6} 173.9\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.5 \mathrm{~Hz}, \mathrm{CO}\right), 31.8\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 31.0$ (virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{3} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.3\left(\right.$ virtual $\mathrm{t},{ }^{\mathrm{s} 7{ }^{1} J_{\mathrm{CP}}=16.0}$ $\left.\mathrm{Hz}, \mathrm{PCH}_{2}\right), 23.4\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 22.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 14.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz})-24.8(\mathrm{~s})$.

IR (cm^{-1}, oil film): 2953 (w), 2922 (s), 2853 (m), 2019 ($\mathrm{s}, \mathrm{v}_{\mathrm{CO}}$), 1950 ($\mathrm{s}, \mathrm{v}_{\mathrm{CO}}$), 1456 (w), 1441 (m), 1377 (w), 1015 (w), 791 (m), 718 (m). MS (MALDI+, THAP) ${ }^{\text {: } 9} 1170$ ([8a + Na + 1] ${ }^{+}, 40 \%$), $1068\left([8 \mathbf{a}-\mathrm{Br}+1]^{+}, 60 \%\right), 1041^{\mathrm{s} 17}\left([8 \mathbf{a}-\mathrm{Br}-\mathrm{CO}+2]^{+}, 100 \%\right)$.
trans- $\mathbf{O s (C O})_{\mathbf{3}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 4}}\right)_{\mathbf{3}} \mathbf{P}\right) \mathbf{(9 a)}$. A Schlenk flask was charged with $\mathbf{6 a}(0.100 \mathrm{~g}, 0.107$ $\mathrm{mmol})$ or $7 \mathbf{a}(0.100 \mathrm{~g}, 0.098 \mathrm{mmol})$ and THF $(10 \mathrm{~mL})$. The solution was aspirated with CO $(15 \mathrm{~min})$. Then a suspension of $\mathrm{C}_{8} \mathrm{~K}(0.331 \mathrm{~g}, 2.45 \mathrm{mmol}$ or $0.361 \mathrm{~g}, 2.68 \mathrm{mmol})$ in THF (10 mL) was slowly added. The reaction was monitored by ${ }^{31} \mathrm{P}$ NMR. After the educt has been consumed, graphite powder and unreacted $\mathrm{C}_{8} \mathrm{~K}$ were removed by cannula filtration. The filtrate was concentrated to 5 mL by oil pump vacuum, and $\mathrm{MeOH}(20 \mathrm{~mL})$ was added. The colorless precipitate was isolated by filtration and washed with MeOH . The filter was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to dissolve the product and remove insoluble solids. The solvent was removed from the filtrate and the residue dried by oil pump vacuum to give $\mathbf{9 a}$ $(0.086 \mathrm{~g}, 0.093 \mathrm{mmol}, 87 \%$, or $0.074 \mathrm{~g}, 0.080 \mathrm{mmol}, 82 \%)$ as a white solid, $\mathrm{mp} 248{ }^{\circ} \mathrm{C}$, dec (gradual darkening, $>180{ }^{\circ} \mathrm{C}$; capillary). DSC $\left(\mathrm{T}_{i} / \mathrm{T}_{e} / \mathrm{T}_{p} / \mathrm{T}_{c} / \mathrm{T}_{f}\right):{ }^{s 1} 94.7 / 95.3 / 118.1 / 127.8 / 127.8^{\circ} \mathrm{C}$ (endotherm, minor); 127.9/144.9/148.3/150.5/155.8 ${ }^{\circ} \mathrm{C}$ (endotherm). TGA: onset of mass loss, $230.6^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{45} \mathrm{H}_{84} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Os}$ (925.32): C 58.41, H 9.15; found C 58.38, H 8.80.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz})^{\mathrm{s} 10} 1.53-1.35\left(\mathrm{br} \mathrm{m}, 24 \mathrm{H}, \mathrm{PCH}_{2}\right.$ and $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 1.52-$
1.35 (br m, 60 H , remaining CH_{2}); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz}){ }^{\mathrm{s} 10} 197.5\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=12.2 \mathrm{~Hz}, \mathrm{CO}\right.$), 31.2 (virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=17.1 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 30.4$ (virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{3} J_{\mathrm{CP}}=7.0 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 28.1\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 27.1(\mathrm{~s}$, $\left.C \mathrm{H}_{2}\right), 26.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.4\left(\mathrm{~s}, \mathrm{PCH}_{2} C \mathrm{H}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-2.6(\mathrm{~s})$.

IR (cm^{-1}, powder film): $2926(\mathrm{~m}), 2853(\mathrm{~m}), 1864\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1459(\mathrm{w}), 1409(\mathrm{w}), 826(\mathrm{w}), 787$ (w), 760 (w), 737 (m), 718 (m). MS (FAB, 3-NBA): ${ }^{9} 925\left([9 \mathbf{a}-1]^{+}, 40 \%\right), 897\left([9 \mathbf{a}-\mathrm{CO}-1]^{+}\right.$, $45 \%)$.
trans- $\left.\mathbf{O s}(\mathbf{C O})_{\mathbf{3}}\left(\mathbf{P}_{2}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 5}} \mathbf{C H}_{\mathbf{2}}\right)\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 6}}\right)\left(\mathbf{P}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 5}} \mathbf{C H}_{\mathbf{2}}\right) \mathbf{(9 ' b}\right)$. Complex $\mathbf{6}^{\prime} \mathbf{b}$ (0.103 g, 0.098 $\mathrm{mmol})$ or $\mathbf{7}^{\prime} \mathbf{b}(0.110 \mathrm{~g}, 0.096 \mathrm{mmol}), \mathrm{C}_{8} \mathrm{~K}(0.391 \mathrm{~g}, 2.89 \mathrm{mmol}$ or $0.377 \mathrm{~g}, 2.79 \mathrm{mmol})$, and THF (20 ml or 20 mL) were combined in a procedure analogous to that used for 9 a. Identical workups gave $\mathbf{9}^{\prime} \mathbf{b}$ $(0.052 \mathrm{~g}, 0.052 \mathrm{mmol}, 53 \%$, or $0.082 \mathrm{~g}, 0.081 \mathrm{mmol}, 84 \%)$ as a colorless waxy solid, $\mathrm{mp} 104{ }^{\circ} \mathrm{C}$ (capillary). DSC $\left(\mathrm{T}_{i} / \mathrm{T}_{e} / \mathrm{T}_{p} / \mathrm{T}_{c} / \mathrm{T}_{f}\right)$: ${ }^{\text {s1 }} 70.2 / 94.7 / 99.9 / 103.5 / 122.0^{\circ} \mathrm{C}$ (endotherm). TGA: onset of mass loss, $262.4^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{51} \mathrm{H}_{96} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Os}$ (1009.48): C 60.68, H 9.59; found C 60.61, H 9.66.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz})^{\mathrm{s} 10, \mathrm{~s} 14} 1.97-1.84\left(\mathrm{br} \mathrm{m}, 8 \mathrm{H}, \mathrm{PC}^{\prime} \mathrm{H}_{2}\right), 1.83-1.72(\mathrm{br} \mathrm{m}, 4 \mathrm{H}$, PCH_{2} and $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.68-1.58 (br m, 4H, $\mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$), 1.56-1.40 (br m, 28H, $\mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$ and remaining CH_{2}), 1.36-1.20 (br m, 48H, remaining $\left.\mathrm{C}^{\prime} \mathrm{H}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz})^{\mathrm{s} 10, \mathrm{~s} 14} 198.8\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=11.9\right.$ Hz, CO), 31.0 (virtual t, ${ }^{s 7}{ }^{3} J_{\mathrm{CP}}=6.0 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 30.55 (overlapping virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=16.6$ $\mathrm{Hz}, \mathrm{PCH}_{2}$), ${ }^{\text {s18 }} 30.53$ (overlapping virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=17.4 \mathrm{~Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2}$), ${ }^{\text {s } 18} 29.8$ (virtual t, ${ }^{s 7}{ }^{3} J_{\mathrm{CP}}=6.2$ $\left.\mathrm{Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}\right), 28.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.05\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.97\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right)$, $27.91\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 27.89\left(\mathrm{~s}, \mathrm{C}^{\prime} \mathrm{H}_{2}\right), 27.87\left(\mathrm{~s}, \mathrm{C}^{\prime} \mathrm{H}_{2}\right), 27.7\left(\mathrm{~s}, \mathrm{C}^{\prime} \mathrm{H}_{2}\right), 27.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.9\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 23.8$ (s, $\left.\mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz})-8.9$ (s).

IR (cm^{-1}, oil film): 2922 (m), 2853 (w), 1856 (s, v_{CO}), 1458 (w), 1408 (w), 797 (w), 750 (m), 718 (m). MS (MALDI + , THAP): ${ }^{9} 1011\left(\left[9^{\prime} \mathbf{b}+1\right]^{+}, 100 \%\right), 983\left(\left[\mathbf{9}^{\prime} \mathbf{b}-\mathrm{CO}+1\right]^{+}, 10 \%\right)$.
trans-Os(CO) $\mathbf{3}_{\mathbf{3}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 8}}\right)_{\mathbf{3}} \mathbf{P}\right)(\mathbf{9 c})$. Complex $\mathbf{7 c}(0.100 \mathrm{~g}, 0.082 \mathrm{mmol}), \mathrm{C}_{8} \mathrm{~K}(0.327 \mathrm{~g}, 2.42$ mmol), and THF (20 mL) were combined in a procedure analogous to that used for $\mathbf{9 a}$. An identical workup gave $9 \mathbf{c}(0.071 \mathrm{~g}, 0.065 \mathrm{mmol}, 79 \%)$ as a white solid, $\mathrm{mp} 61^{\circ} \mathrm{C}$ (capillary). $\mathbf{D S C}\left(\mathrm{T}_{i} / \mathrm{T}_{e} / \mathrm{T}_{p} / \mathrm{T}_{c} /\right.$ T_{f}): ${ }^{\text {s1 }} 46.6 / 60.0 / 62.8 / 65.3 / 73.5^{\circ} \mathrm{C}$ (endotherm). TGA: onset of mass loss, $145.7^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{57} \mathrm{H}_{108} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Os}$ (1093.64): C 62.60, H 9.95; found C 63.00, H 9.94.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(500 \mathrm{MHz})^{\mathrm{s} 19} 1.83-1.77\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.72-1.62(\mathrm{br} \mathrm{m}, 12 \mathrm{H}$, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.46-1.36 (br m, 84H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz}){ }^{\mathrm{s} 19} 198.0\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=11.8 \mathrm{~Hz}\right.$, CO), 30.8 (overlapping virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{3} J_{\mathrm{CP}}=7.0 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), ${ }^{\mathrm{s} 16} 30.7$ (overlapping virtual $\mathrm{t},{ }^{\mathrm{s} 7}$ $\left.{ }^{1} J_{\mathrm{CP}}=16.8 \mathrm{~Hz}, \mathrm{PCH}_{2}\right),{ }^{\mathrm{s} 16} 29.0\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.90\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.86\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.6\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.3\left(\mathrm{~s}, C \mathrm{H}_{2}\right)$, $27.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.5\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz})-6.8(\mathrm{~s})$.

IR (cm^{-1}, powder film): $2922(\mathrm{~m}), 2851(\mathrm{w}), 1863\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1458(\mathrm{w}), 1410(\mathrm{w}), 742(\mathrm{~m}), 719$ (m). MS (MALDI+, THAP) $:^{9}{ }^{9} 1096^{\text {s17 }}\left([9 \mathrm{c}+2]^{+}, 100 \%\right), 1067\left([9 \mathrm{c}-\mathrm{CO}+1]^{+}, 30 \%\right)$.
mer, trans $-\left[\mathbf{O s}(\mathbf{H})(\mathbf{C O})_{\mathbf{3}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{2}\right)_{\mathbf{1 4}}\right)_{\mathbf{3}} \mathbf{P}\right)\right]^{+} \mathbf{C F}_{\mathbf{3}} \mathbf{S O}_{\mathbf{3}}{ }^{-}\left(\mathbf{9 a}-\mathrm{H}^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right)$. A 5 mm NMR tube was charged with $9 \mathbf{a}(0.010 \mathrm{~g}, 0.011 \mathrm{mmol}), \mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$, and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(0.002 \mathrm{~mL}, 0.02 \mathrm{mmol})$. NMR spectra showed the quantitative generation of $\mathbf{9 a}-\mathrm{H}^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(400 \mathrm{MHz}){ }^{\mathrm{s} 19}$ 2.06-1.97 (br m, 12H, PCH_{2}), 1.58-1.45 (br m, 24 H , $\mathrm{PCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.44-1.24 (br m, 48H, remaining $\left.\mathrm{CH}_{2}\right),-8.50\left(\mathrm{t},{ }^{2} J_{\mathrm{PH}}=15.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, OsH); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz})^{\mathrm{s} 19} 176.8\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=9.5 \mathrm{~Hz}, C \mathrm{O}\right.$ cis to H$), 174.9\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=5.9 \mathrm{~Hz}, C \mathrm{O}\right.$ trans to H), $118.3\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=317.7 \mathrm{~Hz}, C \mathrm{~F}_{3} \mathrm{SO}_{3}{ }^{-}\right.$), 30.0 (virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=17.3 \mathrm{~Hz}, \mathrm{PCH}_{2}$), 29.3 (virtual t, ${ }^{\mathrm{s} 7}$ $\left.{ }^{3} J_{\mathrm{CP}}=7.3 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 27.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.3\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 27.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.0\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 23.8(\mathrm{~s}$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(161 \mathrm{MHz})-10.2(\mathrm{~s})$.
 with 9a ($0.047 \mathrm{~g}, 0.051 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and $\left[\mathrm{H}\left(\mathrm{OEt}_{2}\right)_{2}\right]^{+} \mathrm{BAr}_{\mathrm{f}}^{-}(0.052 \mathrm{~g}, 0.051 \mathrm{mmol})$ with stirring. After 24 h , the solvent was removed by oil pump vacuum. The residue was washed with hexanes and dried by oil pump vacuum to give $\mathbf{9 a}-\mathrm{H}^{+} \mathrm{BAr}_{\mathrm{f}}{ }^{-}(0.073 \mathrm{~g}, 0.041 \mathrm{mmol}, 80 \%)$ as a colorless powder, mp $181{ }^{\circ} \mathrm{C}$ (capillary). TGA: ${ }^{s 1}$ onset of mass loss, $190.9^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{77} \mathrm{H}_{97} \mathrm{BF}_{24}{ }^{-}$ $\mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Os}(1789.54): \mathrm{C} 51.68, \mathrm{H} 5.46$; found C 51.96, H 5.63.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(500 \mathrm{MHz})^{\mathrm{s} 20} 7.73-7.69\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3} o\right.$ to B$), 7.54-7.52(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{3} p$ to B), 2.01-1.94 (br m, 12H, PCH_{2}), 1.53-1.44 (br m, $24 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.39-1.23 (br m, 48H, remaining CH_{2}), $-8.53\left(\mathrm{t},{ }^{2} J_{\mathrm{PH}}=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Os} H\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz})^{\mathrm{s} 20}$ $176.5\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=9.5 \mathrm{~Hz}, C \mathrm{O}\right.$ cis to H$), 174.7\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=5.4 \mathrm{~Hz}, C \mathrm{O}\right.$ trans to H$), 161.7\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=49.9\right.$ $\mathrm{Hz}, C_{6} \mathrm{H}_{3} i$ to B), $134.8\left(\mathrm{~s}, C_{6} \mathrm{H}_{3} o\right.$ to B), $128.8\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=30.5 \mathrm{~Hz}, C_{6} \mathrm{H}_{3} m\right.$ to B), $124.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=\right.$
$272.5 \mathrm{~Hz}, C \mathrm{~F}_{3}$), $117.4\left(\mathrm{~s}, C_{6} \mathrm{H}_{3} p\right.$ to B), 30.0 (virtual t, ${ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=16.9 \mathrm{~Hz}, \mathrm{PCH}_{2}$), 29.3 (virtual t, ${ }^{\mathrm{s} 7}{ }^{3} J_{\mathrm{CP}}$ $\left.=6.5 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 27.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.8(\mathrm{~s}$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz})-10.8(\mathrm{~s})$.

IR $\left(\mathrm{cm}^{-1}\right.$, powder film): $2932(\mathrm{~m}), 2860(\mathrm{~m}), 2114\left(\mathrm{w}, \mathrm{v}_{\mathrm{CO}}\right), 2054\left(\mathrm{~m}, \mathrm{v}_{\mathrm{CO}}\right), 2031\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right)$, 1964 (br w), 1462 (w), 1416 (w), 1352 (s), 1277 (s), 1163 (s), 1121 (vs), 887 (m), 839 (m), 762 (w), 745 (w), 716 (s), 685 (s), 669 (s). MS (MALDI+, THAP): ${ }^{\text {s } 9} 927$ ([9a-H] ${ }^{+}, 100 \%$); (MALDI-, THAP): ${ }^{9} 963$ ($\mathrm{BAr}_{\mathrm{f}}{ }^{-}, 100 \%$).
 Complex 9'b $(0.052 \mathrm{~g}, 0.052 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and $\left[\mathrm{H}\left(\mathrm{OEt}_{2}\right)_{2}\right]^{+} \mathrm{BAr}_{\mathrm{f}}{ }^{-}(0.052 \mathrm{~g}, 0.052 \mathrm{mmol})$ were combined in a procedure analogous to that used for $\mathbf{9 a}-\mathrm{H}^{+} \mathrm{BAr}_{\mathrm{f}}{ }^{-}$. An identical workup gave $\mathbf{9}^{\prime} \mathbf{b} \mathbf{b}$ $\mathrm{H}^{+} \mathrm{BAr}_{\mathrm{f}}^{-}(0.066 \mathrm{~g}, 0.035 \mathrm{mmol}, 68 \%)$ as a yellow gum. Anal. calcd (\%) for $\mathrm{C}_{83} \mathrm{H}_{109} \mathrm{BF}_{24} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Os}$ (1873.70): C 53.20, H 5.86; found C 53.38, H 5.94.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(500 \mathrm{MHz})^{\mathrm{s} 14, \mathrm{~s} 21} 7.72-7.69\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3} o\right.$ to B$), 7.54-7.52(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3} p$ to B), 2.14-2.05 (br m, 4H, $\mathrm{PC}^{\prime} \mathrm{H}_{2}$), 2.04-1.97 (br m, 4H, PCH_{2}), 1.95-1.86 (br m, 4H, $\mathrm{PC}^{\prime} \mathrm{H}_{2}$), 1.51-1.41 (br m, 24H, $\mathrm{PCH}_{2} \mathrm{CH}_{2}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$), 1.39-1.24 (br $\mathrm{m}, 60 \mathrm{H}$, remaining CH_{2} and remaining $\left.\mathrm{C}^{\prime} \mathrm{H}_{2}\right),-8.48\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Os} H\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126$ $\mathrm{MHz})^{\mathrm{s} 14, \mathrm{~s} 21} 176.2\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=9.4 \mathrm{~Hz}\right.$, CO cis to H$), 174.5\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=5.4 \mathrm{~Hz}, \mathrm{CO}\right.$ trans to H$), 161.7(\mathrm{q}$, ${ }^{1} J_{\mathrm{BC}}=49.9 \mathrm{~Hz}, C_{6} \mathrm{H}_{3} i$ to B), $134.8\left(\mathrm{~s}, C_{6} \mathrm{H}_{3} o\right.$ to B), $128.8\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=31.5 \mathrm{~Hz}, C_{6} \mathrm{H}_{3} m\right.$ to B), 124.6 (q, ${ }^{1} J_{\mathrm{CF}}=272.5 \mathrm{~Hz}, C \mathrm{~F}_{3}$), 117.5 ($\mathrm{s}, C_{6} \mathrm{H}_{3} p$ to B), 29.9 (virtual t, ${ }^{s 7}{ }^{3} J_{\mathrm{CP}}=7.1 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} C H_{2}$), 29.3 (virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{3} J_{\mathrm{CP}}=5.9 \mathrm{~Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2} C^{\prime} \mathrm{H}_{2}$), 29.0 (virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=17.8 \mathrm{~Hz}, \mathrm{PCH}_{2}$), 28.5 (virtual $\left.\mathrm{t},{ }^{\mathrm{s} ~}{ }^{1} J_{\mathrm{CP}}=17.3 \mathrm{~Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2}\right), 28.1\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 27.88\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.85\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 27.6\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$ or $\left.C^{\prime} \mathrm{H}_{2}\right)$, $27.4\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$ or $\left.C^{\prime} \mathrm{H}_{2}\right), 27.33\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$ or $\left.C^{\prime} \mathrm{H}_{2}\right), 27.27\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$ or $\left.C^{\prime} \mathrm{H}_{2}\right), 27.2\left(\mathrm{~s}, C \mathrm{H}_{2}\right.$ or $\left.C^{\prime} \mathrm{H}_{2}\right), 27.0(\mathrm{~s}$, $C \mathrm{H}_{2}$ or $\left.\left.C^{\prime} \mathrm{H}_{2}\right), 24.0\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 23.0\left(\mathrm{~s}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P} \mathbf{P}{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz})-16.5(\mathrm{~s})$.

IR (cm^{-1}, solid film): $2928(\mathrm{~m}), 2859(\mathrm{~m}), 2114\left(\mathrm{w}, \mathrm{v}_{\mathrm{CO}}\right), 2052\left(\mathrm{~m}, v_{\mathrm{CO}}\right), 2027\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1967$ (br w), 1462 (w), 1418 (w), 1352 (s), 1273 (s), 1161 (s), 1119 (vs), 887 (m), 839 (m), 745 (w), 712 (s), 681 (s), 669 (s). MS (MALDI+, THAP): ${ }^{\text {s }} 1012$ ([9'b-H + 1] ${ }^{+}, 100 \%$), 983 ([9'b-H - CO] ${ }^{+}, 20 \%$); (MALDI-, THAP): ${ }^{s 9} 863$ ($\mathrm{BAr}_{\mathrm{f}}{ }^{-}$, 100\%).
mer,trans- $\left[\mathbf{O s (\mathbf { H }) (\mathbf { C O }) _ { \mathbf { 3 } } (\mathbf { P } ((\mathbf { C H } _ { \mathbf { 2 } }) _ { \mathbf { 1 8 } }) _ { \mathbf { 3 } } \mathbf { P })}\right]^{+} \mathbf{B A r}_{\mathbf{f}}{ }^{-}\left(\mathbf{9 c}-\mathrm{H}^{+} \mathrm{BAr}_{\mathrm{f}}^{-}\right)$. Complex $\mathbf{9 c}(0.051 \mathrm{~g}, 0.047$ $\mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and $\left[\mathrm{H}\left(\mathrm{OEt}_{2}\right)_{2}\right]^{+} \mathrm{BAr}_{\mathrm{f}}^{-}(0.047 \mathrm{~g}, 0.047 \mathrm{mmol})$ were combined in a procedure analogous to that used for $\mathbf{8 a}-\mathrm{H}^{+} \mathrm{BAr}_{\mathrm{f}}^{-}$. An identical workup gave $\mathbf{9 c}-\mathrm{H}^{+} \mathrm{BAr}_{\mathrm{f}}^{-}(0.073 \mathrm{~g}, 0.041 \mathrm{mmol}$, 80%) as a yellow gum. Anal. calcd (\%) for $\mathrm{C}_{89} \mathrm{H}_{121} \mathrm{BF}_{24} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Os}$ (1957.86): C 54.60, H6.23; found C 54.74, H 6.05.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz})^{\mathrm{s} 20} 7.74-7.68\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3} o\right.$ to B$), 7.55-7.52(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{3} p$ to B), 2.04-1.96 (br m, 12H, PCH_{2}), 1.53-1.41 (br m, $24 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.38-1.21 (br m, 72 H , remaining CH_{2}), $-8.45\left(\mathrm{t},{ }^{2} J_{\mathrm{PH}}=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Os} H\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz})^{\text {s20 }}$ $176.5\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=9.4 \mathrm{~Hz}, C \mathrm{O}\right.$ cis to H$), 174.6\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=5.5 \mathrm{~Hz}, C \mathrm{O}\right.$ trans to H$), 161.7\left(\mathrm{q},{ }^{1} J_{\mathrm{BC}}=49.8\right.$ $\mathrm{Hz}, C_{6} \mathrm{H}_{3} i$ to B), $134.8\left(\mathrm{~s}, C_{6} \mathrm{H}_{3} o\right.$ to B), $128.8\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=30.9 \mathrm{~Hz}, C_{6} \mathrm{H}_{3} m\right.$ to B), $124.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=\right.$ $272.5 \mathrm{~Hz}, C \mathrm{~F}_{3}$), 117.4 ($\mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{3} p$ to B), 29.8 (virtual t, ${ }^{\text {s7 }}{ }^{3} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 28.9 (virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=17.3 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 28.3\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.22\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.18\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 27.9\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 23.7(\mathrm{~s}$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz})-15.0(\mathrm{~s})$.

IR (cm^{-1}, solid film): $2928(\mathrm{~m}), 2857(\mathrm{~m}), 2112\left(\mathrm{w}, \mathrm{v}_{\mathrm{CO}}\right), 2050\left(\mathrm{~m}, \mathrm{v}_{\mathrm{CO}}\right), 2025\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1965$ (br w), 1462 (w), 1418 (w), 1352 (s), 1273 (s), 1161 (s), 1119 (vs), 887 (m), 839 (m), 745 (w), 712 (s), 681 (s), 669 (s). MS (MALDI+, THAP) ${ }^{\text {s }}{ }^{9} 1096\left([9 \mathrm{c}-\mathrm{H}+1]^{+}, 100 \%\right), 1068\left(\left[9 \mathrm{c}-\mathrm{H}^{+}-\mathrm{CO}+1\right]^{+}, 10 \%\right)$; (MALDI-, THAP): ${ }^{59} 863$ ($\left.\mathrm{BAr}_{\mathrm{f}}{ }^{-}, 100 \%\right)$.
cis,cis,trans-Os(CO) $\left.\mathbf{3}_{\mathbf{3}}\left(\mathbf{P}\left(\boldsymbol{n}-\mathbf{C}_{\mathbf{8}} \mathbf{H}_{\mathbf{1 7}}\right)_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{(1 0 a}\right)$. A Schlenk flask was charged with $\mathbf{8 a}(0.299 \mathrm{~g}$, 0.261 mmol) and THF (10 mL). The solution was aspirated with CO (15 min). Then a suspension of $\mathrm{C}_{8} \mathrm{~K}(0.993 \mathrm{~g}, 7.35 \mathrm{mmol})$ in THF (10 mL) was slowly added. The reaction was monitored by ${ }^{31} \mathrm{P}$ NMR. After the educt had been consumed, graphite powder and unreacted $\mathrm{C}_{8} \mathrm{~K}$ were removed by cannula filtration. The solvent was removed from the filtrate by oil pump vacuum and the residue filtered through celite using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed from the filtrate by oil pump vacuum to give 13a ($0.225 \mathrm{~g}, 0.222 \mathrm{mmol}, 85 \%$) as a colorless oil. Anal. calcd (\%) for $\mathrm{C}_{51} \mathrm{H}_{102} \mathrm{O}_{3} \mathrm{OsP}_{2}$ (1015.53): C 60.32, H 10.12; found C 60.98, H 10.13 .

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz})^{\mathrm{s} 12} 1.92-1.86\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.70-1.61(\mathrm{br} \mathrm{m}, 12 \mathrm{H}$, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.38-1.18 (br m, 60H, remaining $\left.\mathrm{CH}_{2}\right), 0.9\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126$
$\mathrm{MHz})^{\mathrm{s} 12} 198.7\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=11.8 \mathrm{~Hz}, \mathrm{CO}\right), 32.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 31.3\left(\right.$ virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{3} J_{\mathrm{CP}}=6.7 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$,
 $\left.C \mathrm{H}_{3}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-9.1(\mathrm{~s})$.

IR (cm^{-1}, oil film): 2955 (w), 2922 (s), 2853 (m), 1863 (s, v_{CO}), 1456 (w), 1412 (w), 1377 (w), 1030 (w), 797 (w), 758 (w), 721 (m). MS (MALDI + , THAP): ${ }^{\text {s } 9} 1018^{\text {s17 }}$ ([10a + 2] ${ }^{+}, 100 \%$), 989 ([10a $\left.-\mathrm{CO}+1]^{+}, 20 \%\right)$.
cis,cis,trans- $\mathbf{O s (C O})_{\mathbf{2}}(\mathbf{M e})_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 4}}\right)_{\mathbf{3}} \mathbf{P}\right)(\mathbf{1 1 a})$. A Schlenk flask was charged with $\mathbf{6 a}$ (0.100 $\mathrm{g}, 0.104 \mathrm{mmol})$ and THF (10 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. Then $\mathrm{MeLi}\left(1.6 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O}, 1.35 \mathrm{~mL}, 2.16\right.$ mmol) was added with stirring. After 24 h , a few drops of water were added. The solvent was removed by oil pump vacuum and the residue filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}$ using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed from the filtrate by oil pump vacuum to give $11 \mathbf{a}(0.095 \mathrm{~g}, 0.102 \mathrm{mmol}, 98 \%)$ as a colorless powder, $\operatorname{mp} 247{ }^{\circ} \mathrm{C}$ (capillary). DSC $\left(\mathrm{T}_{i} / \mathrm{T}_{e} / \mathrm{T}_{p} / \mathrm{T}_{c} / \mathrm{T}_{f}\right) \cdot:^{11} 36.6 / 39.0 / 47.0 / 49.8 / 53.5^{\circ} \mathrm{C}$ (endotherm); 53.5/54.3/ 56.6/58.8/60.7 ${ }^{\circ} \mathrm{C}$ (endotherm, minor); 61.0/61.8/68.5/74.7/77.3 ${ }^{\circ} \mathrm{C}$ (endotherm, minor); 79.8/85.0/91.1 /95.7/97.5 ${ }^{\circ} \mathrm{C}$ (endotherm, minor); 201.9/210.5/213.8/215.6/220.9 ${ }^{\circ} \mathrm{C}$ (endotherm, minor). TGA: onset of mass loss, $230.3^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{46} \mathrm{H}_{90} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (927.38): C 59.58, H 9.78; found C 59.87, H 9.52.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(500 \mathrm{MHz})^{\mathrm{sl2}} 1.80-1.74\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.61-1.53(\mathrm{br} \mathrm{m}, 12 \mathrm{H}$, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.51-1.39 (br m, 60 H , remaining CH_{2}), $0.05\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=7.5 \mathrm{~Hz}, \mathrm{OsCH}_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126$ $\mathrm{MHz})^{\mathrm{s} 12} 184.5\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.9 \mathrm{~Hz}, \mathrm{CO}\right), 30.1\left(\right.$ virtual $\left.\mathrm{t},{ }^{\mathrm{s}}{ }^{3} J_{\mathrm{CP}}=6.3 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 28.73\left(\mathrm{~s}, C \mathrm{H}_{2}\right)$, $28.70\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 27.90\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 27.88\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 26.5\left(\right.$ virtual t, $\left.{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=14.9 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 23.1(\mathrm{~s}$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right),-22.2\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=9.1 \mathrm{~Hz}, \mathrm{OsCH}_{3}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz})-21.0(\mathrm{~s})$.

IR (cm^{-1}, powder film): $2922(\mathrm{~m}), 2853(\mathrm{w}), 1967\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1886\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1458(\mathrm{w}), 1414(\mathrm{w})$, 1384 (w), 1086 (w), 1007 (w), 781 (w), 764 (w), 714 (m). MS (MALDI+, THAP): ${ }^{59} 929$ ([11a + 1] ${ }^{+}$, $10 \%), 914\left([11 \mathbf{a}-\mathrm{Me}+1]^{+}, 20 \%\right), 899\left([11 \mathbf{a}-2 \mathrm{Me}+1]^{+}, 100 \%\right)$.
cis,cis,trans- $\mathbf{O s (C O})_{\mathbf{2}}(\mathbf{M e})_{\mathbf{2}}\left(\mathbf{P}_{\left.\left(\mathbf{C H}_{2}\right)_{15} \mathbf{C H}_{2}\right)\left(\left(\mathbf{C H}_{2}\right)_{16}\right)\left(\mathbf{P}\left(\mathbf{C H}_{2}\right)_{15} \mathbf{C H}_{2}\right) \quad \text { (11'a). Complex } \mathbf{6}^{\prime} \mathrm{b}}\right.$ $(0.63 \mathrm{~g}, 0.060 \mathrm{mmol})$, THF $(10 \mathrm{~mL})$, and $\mathrm{MeLi}\left(1.6 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.75 \mathrm{~mL}, 1.2 \mathrm{mmol}\right)$ were combined in a procedure analogous to that used for 11a. An identical workup gave $\mathbf{1 1}^{\prime} \mathbf{b}(0.056 \mathrm{~g}, 0.055 \mathrm{mmol}, 98 \%)$
as a colorless gum. Anal. calcd (\%) for $\mathrm{C}_{52} \mathrm{H}_{102} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}$ (1011.54): C 61.74, H 10.16; found C 61.95, H 10.21.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz})^{\mathrm{s} 13, \mathrm{~s} 14} 2.05-1.96\left(\mathrm{br} \mathrm{m}, 4 \mathrm{H}, \mathrm{PC}^{\prime} \mathrm{H}_{2}\right), 1.95-1.87(\mathrm{br} \mathrm{m}, 4 \mathrm{H}$, $\mathrm{PC}^{\prime} \mathrm{H}_{2}$), 1.86-1.80 (br m, 4H, PCH_{2}), 1.75-1.66 (br m, 4H, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.65-1.55 (br m, 4H, $\mathrm{PC}^{\prime} \mathrm{H}_{2^{-}}$ $\mathrm{C}^{\prime} \mathrm{H}_{2}$), 1.52-1.42 (br m, 24H, remaining CH_{2}), 1.41-1.19 (br m, 56H, $\mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}$ and remaining $\mathrm{C}^{\prime} \mathrm{H}_{2}$), $0.20\left(\mathrm{t}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HP}}=7.7 \mathrm{~Hz}, \mathrm{OsCH}_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz})^{\mathrm{s} 13, \mathrm{~s} 14} 184.1\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.6 \mathrm{~Hz}, \mathrm{CO}\right), 30.9(\mathrm{vir}-$ tual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{3} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 30.3\left(\right.$ virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{3} J_{\mathrm{CP}}=5.6 \mathrm{~Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}\right), 28.83(\mathrm{~s}$, $\left.C \mathrm{H}_{2}\right), 28.80\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.51\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.47\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.27\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.26\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 27.88\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right)$, $27.86\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 27.4\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 26.5\left(\right.$ virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=15.2 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 24.0\left(\right.$ virtual $\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=14.5$ $\left.\mathrm{Hz}, \mathrm{PC}^{\prime} \mathrm{H}_{2}\right), 23.6\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 22.8\left(\mathrm{~s}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}\right),-22.5\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=9.4 \mathrm{~Hz}, \mathrm{OsCH}_{3}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202$ $\mathrm{MHz})$-25.3 (s).

IR (cm^{-1}, solid film): 2922 (m), 2853 (w), 1971 (s, v_{CO}), 1896 ($\mathrm{s}, \mathrm{v}_{\mathrm{CO}}$), 1458 (w), 1418 (w), 781 (w), 718 (m). MS (MALDI+, THAP): ${ }^{\text {s9 }} 999^{s 17}$ ([11'b $\left.-\mathbf{M e}+2\right]^{+}, 40 \%$), 983 ([11'b $\left.-2 \mathrm{Me}+1\right]^{+}$, 100%).
cis,cis,trans- $\left.\mathbf{O s}(\mathbf{C O})_{\mathbf{2}}(\mathbf{P h})_{\mathbf{2}} \mathbf{(P ((\mathbf { C H } _ { \mathbf { 2 } }) _ { \mathbf { 1 4 } }) _ { \mathbf { 3 } } \mathbf { P }}\right) \mathbf{(1 2 a)}$. A Schlenk flask was charged with 7a (0.205 $\mathrm{g}, 0.194 \mathrm{mmol})$ and THF (20 mL) and cooled to $0^{\circ} \mathrm{C}$. Then $\mathrm{PhLi}\left(2.0 \mathrm{M}\right.$ in $\mathrm{Bu}_{2} \mathrm{O}, 1.00 \mathrm{~mL}, 2.16$ mmol) was added with stirring. The cold bath was removed. After 2 h , the solution was refluxed. After 1 h , a few drops of water were added. The solvents were removed by oil pump vacuum and the residue chromatographed $\left(\mathrm{SiO}_{2}\right.$ column, $2.5 \mathrm{~cm} \times 30 \mathrm{~cm}, 3: 1 \mathrm{v} / \mathrm{v}$ hexanes $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The solvents were removed from the product-containing fractions by oil pump vacuum to give $\mathbf{1 2 a}(0.118 \mathrm{~g}, 0.112 \mathrm{mmol}, 58 \%)$ as a colorless oil that solidified after one week, $\mathrm{mp} 162-164^{\circ} \mathrm{C}$ (capillary). Anal. calcd (\%) for $\mathrm{C}_{56} \mathrm{H}_{94}{ }^{-}$ $\mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Os}(1051.52): \mathrm{C} 63.96, \mathrm{H} 9.01$; found C 63.70, H 8.96 .

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(500 \mathrm{MHz})^{\mathrm{s} 22} 7.99\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 4 \mathrm{H}, o-\mathrm{Ph}\right), 7.02$ (apparent t , $\left.{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 4 \mathrm{H}, m-\mathrm{Ph}\right), 6.96\left(\right.$ apparent $\left.\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, p-\mathrm{Ph}\right), 1.92-1.82(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH} 2), 1.79-$ 1.69 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{PCH}_{2}$), 1.53-1.15 (br m, $68 \mathrm{H}, \mathrm{CH}_{2}$), 1.12-0.98 (br m, $8 \mathrm{H}, \mathrm{CH}_{2}$); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ (126 $\mathrm{MHz})^{\mathrm{s} 22, \mathrm{~s} 23} 184.0\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=7.0 \mathrm{~Hz}, C \mathrm{O}\right), 145.7\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=12.5 \mathrm{~Hz}, i-\mathrm{Ph}\right), 145.2(\mathrm{~s}, o-\mathrm{Ph}), 126.9(\mathrm{~s}, m-$ Ph), 121.9 ($\mathrm{s}, p-\mathrm{Ph}$), 29.8-29.4 (three overlapping virtual $\mathrm{t},{ }^{\mathrm{s} 7} \mathrm{PC}^{\prime} \mathrm{H}_{2}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$),
$29.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.8\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 28.5\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 28.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.8\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right), 27.7\left(\mathrm{~s}, C^{\prime} \mathrm{H}_{2}\right)$, $27.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 25.3\left(\right.$ virtual $\left.\mathrm{t},{ }^{\mathrm{s} 7}{ }^{1} J_{\mathrm{CP}}=16.0 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 21.8\left(\mathrm{~s}, \mathrm{PC}^{\prime} \mathrm{H}_{2} \mathrm{C}^{\prime} \mathrm{H}_{2}\right), 21.3\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$; ${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz})-27.8$ (s).

IR (cm^{-1}, powder film): $3042(\mathrm{w}), 2922(\mathrm{~m}), 2851(\mathrm{~m}), 1983\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1911\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1572(\mathrm{w})$, 1460 (w), 1418 (w), 1069 (w), 1015 (w), 735 (s), 708 (m). MS (MALDI+, THAP): ${ }^{\text {s } 9} 1053$ ([12a] ${ }^{+}$, $2 \%), 976$ ([12a - Ph] $\left.{ }^{+}, 15 \%\right)$.

Cyclic Voltammetry. A BASi Epsilon Electrochemical Workstation (Cell Stand C3) with the program Epsilon EC (version 2.13.77) was employed. Cells were fitted with Pt working and counter electrodes, and a silver wire pseudoreference electrode. Per a previous study, ${ }^{524} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions that were 0.0010 M in substrate, 0.20 M in $n-\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{PF}_{6}{ }^{-}$, and prepared under N_{2} were employed; scan rates were $200 \mathrm{mV} / \mathrm{sec}$. Ferrocene $(0.46 \mathrm{~V})$ was added after each measurement and calibration voltammograms were recorded. The ambient laboratory temperature was $22 \pm 1^{\circ} \mathrm{C}$.

Crystallography. Refer to Table s2 for selected aspects of data collection. ${ }^{25}$
A. A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{6 a}$ was layered with MeOH . After 7 d , data were collected on the resulting colorless prisms. Cell parameters were obtained from 10 frames using a 10° scan and refined with 9288 reflections. Lorentz, polarization, and absorption corrections ${ }^{s 26}$ were applied. The space group was determined from systematic absences and subsequent least squares refinement. The structure was solved by direct methods. The parameters were refined with all data by full matrix least squares on F^{2} using SHELXL-97. ${ }^{\text {s27 }}$ Non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were fixed in idealized positions using a riding model. One chloride and one CO ligand showed disorder over two positions and were refined to a 51:49 occupancy ratio. Scattering factors were taken from literature. ${ }^{\text {s }}{ }^{28}$
B. A $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of $\mathbf{6 b}$ was layered with MeOH . After 7 d , data were collected on the resulting colorless thin plates. Cell parameters were obtained from 180 data frames using a 0.5° scan and refined with 83787 reflections using the program Cell Now. ${ }^{\text {s29 }}$ Integrated intensity information for each reflection was obtained by reduction of the data frames with SAINTplus. ${ }^{530}$ Data were scaled, and absorption corrections were applied using the program $\operatorname{SADABS}{ }^{s 31}$. The structure was solved by direct
methods using SHELXTL (SHELXS) ${ }^{\text {s27 }}$ and refined (weighted least squares refinement on F^{2}) using SHELXTL (X-Seed). ${ }^{\text {s27,s32 }}$ Two independent molecules were found in the asymmetric unit. The first molecule (Os1_Mol) could be easily located. While the heavier atoms of the second (Os2_Mol) could be located, strong Q peaks around Os2 suggested possible whole molecule disorder. Also, the thermal ellipsoids of Os2, P51, and P52 were elongated. Four partially occupied chlorine atoms ($\mathrm{C} 151, \mathrm{Cl} 52$, C153, Cl54) were located. While some of the carbon atoms bonded close to P51 could be established, the remaining carbon atoms linking P51 to P52 could not be accurately determined.

The whole molecule disorder of Os2_Mol was modeled with strong restraints, making it similar to Os1_Mol. This decreased reliability factors significantly, and the disorder refined to a 53:47 occupancy ratio. Finally, the thermal ellipsoids of the carbon atoms in the methylene chains were also strongly restrained to avoid rendering them non-positive definite. At the end of the refinement, many of the carbon atoms were large, indicating only partial modeling of the disorder. Non-hydrogen atoms were refined with anisotropic thermal parameters.
C. A $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of $\mathbf{6 c}$ was layered with MeOH . After 7 d , data were collected on the resulting colorless multi-faceted crystals. Cell parameters were obtained from 60 data frames using a 0.5° scan and refined with 67059 reflections. Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX $2 .{ }^{333}$ Lorentz and polarization reduction and corrections were applied. Data were scaled, and absorption corrections were applied using the program SADABS. ${ }^{\text {s31 }}$ The structure was solved by direct methods using SHELXTL (SHELXS) ${ }^{\text {s27 }}$ and refined (weighted least squares refinement on F^{2}) using SHELXTL (X-Seed). ${ }^{\text {s27,s32 }}$ Non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were placed in idealized positions, and refined using a riding model. Upon refinement, the Os1-C2 distance was too long, and the C2-O2 distance too short ($R 1$ and $w R 2$ were 0.0314 and 0.0711 respectively). Also, the principal mean square atomic displacements for Cl 1 were large relative to the corresponding values for Cl 2 , suggesting a possible lower occupancy for Cl . This raised the possibility of a rotational disorder (2-fold along C12-Os1-(C1-O1) axis) between Cl 1 and $\mathrm{C} 2-\mathrm{O} 2$. Upon modeling this disorder, the reliability factors decreased $(R 1=0.0288 ; w R 2=0.0637)$ and the thermal parameters and bond lengths of Os1-C2
and $\mathrm{C} 2-\mathrm{O} 2$ were well behaved. A twofold rotation along the $\mathrm{C} 12-\mathrm{Os} 1-(\mathrm{C} 1-\mathrm{O} 1)$ axis should also lead to disorder in the methylene chains. No effort was made to model this, considering the large increase in the number of refinement parameters, and given the low degree of disorder.
D. A THF solution of 7'a was layered with MeOH. After several weeks, data were collected on the resulting colorless multi-faceted crystals. The structure was solved and refined in a manner identical to that of $\mathbf{6 c}$ (cell parameters from 60 frames using a 0.5° scan and refined with 31737 reflections). There were two independent molecules in the asymmetric unit. Most of the atoms were symmetrically related, pointing to $C 2 / c$ as a possible space group (additional symmetry was sought with the program PLATON). ${ }^{\mathrm{s} 34}$ However, in monoclinic $C 2 / c$ some of the disorder of the methylene chains was difficult to model and gave non-positive definite thermal parameters for some of the carbon atoms (even when strong restraints were set). The structure was ultimately refined in the triclinic $P-1$.

No observable reflections were seen above a 2Θ value of 45°. Several Q peaks were found in the Fourier difference map along the methylene chains. Efforts to model this disorder resulted in a large increase in the number of parameters as well as the number of restraints with no significant improvement in the reliability factors. Restraints were used to keep the bond lengths and the thermal ellipsoids meaningful. Thus, some of the C-C-C angles in the methylene chains deviated from idealized values, resulting in short $\mathrm{H}-\mathrm{H}$ and meaningless $\mathrm{C}-\mathrm{H}$ contacts.

Several rationales, e.g., twinning, insufficient modeling, presence of undetected disordered solvents, incorrect space group, etc., were evaluated. All the possible triclinic and monoclinic space groups were also evaluated. The best results were obtained for $P-1$, followed by $C 2 / c$. Alternative methods for absorption corrections including face indexing did not improve the results. Relatively high reliability factors again indicated insufficient agreement between the model and the data. A second data set was collected with a Cu -source as opposed to a Mo-source; the results were comparable.
E. A $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of $\mathbf{7 b}$ was layered with MeOH . After 7 d, data were collected on the resulting colorless multi-faceted crystals. The structure was solved and refined in a manner identical to that of $\mathbf{6 c}$ (cell parameters from 60 frames using a 0.3° scan and refined with 103619 reflections). After refinement, residual electron densities (Q peaks, 1.0-1.6 e^{-3}) were found around $0.70-0.85 \AA$ from the
osmium and bromine atoms. The distances between these Q peaks agreed well with the osmium-bromine distance ($2.58 \AA$), suggesting a small degree of whole molecule disorder. No attempts were made to model this disorder. Also, the carbon atoms C37 to C47 showed larger thermal ellipsoids, indicating disorder of this methylene chain. The thermal parameters were restrained for these carbon atoms.
F. A $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of $7 \mathbf{c}$ was layered with MeOH . After 7 d , data were collected on the resulting colorless multi-faceted crystals. The structure was solved and refined in a manner identical to that of $\mathbf{6 c}$ (cell parameters from 60 frames using a 0.3° scan and refined with 31866 reflections).
G. A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{9 a}$ was layered with MeOH . After several weeks, data were collected on the resulting colorless prisms. The structure was solved and refined in a manner identical to that of 6a (cell parameter from 10 frames using a 10° scan and refined with 5313 reflections).
H. A CHCl_{3} solution of $\mathbf{9 a -} \mathrm{H}^{+} \mathrm{BAr}_{\mathrm{f}}^{-}$was layered with MeOH . After 7 d , data were collected on the resulting colorless thin plates. Cell parameters were obtained from 180 data frames using a 0.5° scan and refined with 63051 reflections using the program Cell Now. ${ }^{\text {s29 }}$ Integrated intensity information for each reflection was obtained by reduction of the data frames with APEX 2. ${ }^{333}$ Data were scaled, and absorption corrections were applied using the program SADABS. ${ }^{\text {s31 }}$ The structure was solved by direct methods using SHELXTL (SHELXS) ${ }^{\text {s27 }}$ and refined (weighted least squares refinement on F^{2}) using SHELXTL (X-Seed). ${ }^{\text {s27,s32 }}$ Non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were placed in idealized positions, and refined using a riding model. Some fluorine atoms of the $\mathrm{BAr}_{\mathrm{f}}^{-}$anion and some carbon atoms of the methylene chains showed elongation, suggesting disorder. Efforts to model the disorder increased the number of parameters as well as the number of very strong restraints, and yielded much increased reliability factors. Relaxing the restraints resulted in divergence of the refinement. SIMU and DELU commands were used to slightly reduce the elongation.

A small electron density peak was located near the osmium atom that geometrically fit the anticipated hydride ligand. This was designated H1OS. However, the exact location of the hydrogen atom could not be determined, and was only modeled to account for the formulation supported by the NMR data. The bond distance reported in the CIF file ($1.3800 \AA$) has no physical meaning, as the hydrogen
atom position could not be refined.
I. A $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of $\mathbf{1 1 a}$ was layered with MeOH . After 7 d , data were collected on the resulting colorless multi-faceted crystals. Cell parameters were obtained from 60 data frames using a 0.3° scan and refined with 44786 reflections. Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX $2 .{ }^{333}$ Lorentz and polarization reduction and corrections were applied. Data were scaled and absorption corrections were applied using the program SADABS. ${ }^{\text {s31 }}$ The structure was solved by direct methods using SHELXTL (SHELXS) ${ }^{\text {s27 }}$ and refined (weighted least squares refinement on F^{2}) using SHELXTL (X-Seed). ${ }^{\text {s27,s32 }}$ Non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were placed in idealized positions, and refined using a riding model. Two cis positions exhibited disorder, with each refining to a 50:50 CO/methyl occupancy.
J. A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{1 2 a}$ was layered with MeOH . After 7 d, data were collected on the resulting colorless multi-faceted crystals. The structure was solved and refined in a manner identical to that of $\mathbf{6 c}$ (cell parameters from 60 frames using a 0.5° scan and refined with 33979 reflections). No observable reflections were seen above a 2Θ value of 42°. Even longer collection times per frame (exposure time 40 s instead of 20 s) did not increase the intensity at higher angles. Significant disorder of the methylene chains, the carbon atoms of which were seen as elongated thermal ellipsoids, could account for the absence of higher angle reflections. Trials to model this disorder, while increasing the number of restraints, did not improve the refinement results. Hence, SIMU and DELU commands were used to make the thermal ellipsoids reasonable.

Figure s1. ${ }^{1} \mathrm{H}$ NMR spectra (300 MHz) of 1a (top) and 3a (bottom).

Figure s2. Representative partial ${ }^{1} \mathrm{H}$ NMR spectra (300 MHz) showing the alkene region before (top) and after (bottom) metathesis reactions of $\mathbf{3 a}$ (left) and $\mathbf{3 b}$ (right).

Figure s3. Representative partial ${ }^{1} \mathrm{H}$ NMR spectra $(300 \mathrm{MHz})$ of $\mathbf{7 b}$ (left) and $\mathbf{7 ' b}^{\prime} \mathbf{b}$ (right).

Figure s4. Representative partial ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $7 \mathbf{7 a}($ top, 100 MHz) and $7 \mathbf{\prime} \mathbf{a}$ (bottom, 126 MHz). Methylene carbon signals that are doubled in intensity are assigned to the two phosphacycles $\widetilde{\mathrm{P}\left(\mathrm{CH}_{2}\right)_{n-1} \mathrm{CH}_{2} \text { and denoted by primes. }}$

Figure s5. Partial ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ gHMQC NMR spectrum $(500 \mathrm{MHz})$ of $\mathbf{7 a}$.

Figure s6. Partial ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ gHSQC NMR spectrum $(500 \mathrm{MHz})$ of $\mathbf{7}^{\prime} \mathbf{b}$.

Figure s7. Variable temperature ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $(126 \mathrm{MHz})$ of $7 \mathbf{a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure s8. Monitoring the reduction of $\mathbf{6 a}$ to $\mathbf{9 a}$ with $\mathrm{C}_{8} \mathrm{~K}$ by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (left, 121 MHz) and IR spectroscopy (right).

Figure s9. Partial ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (left, 100 MHz) of $9 \mathrm{a}-\mathrm{H}^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}-$ showing the carbonyl region and partial ${ }^{1} \mathrm{H}$ NMR spectrum (right, 400 MHz) showing the hydride region.

Figure s10. Observed (left) and calculated isotope patterns for the ion $\mathbf{9 a}-\mathrm{H}^{+}$, and a partial IR spectrum of $\mathbf{9 a}-\mathrm{H}^{+} \mathrm{BAr}_{\mathrm{f}}{ }^{-}$.

Figure s11. Representative cyclic voltammograms of trans-Os(CO) $)_{3}(\mathrm{PCy})_{3}, \mathbf{9 a}, \mathbf{7 a}$, and $\mathbf{1 0 a}\left(0.001 \mathrm{M}, 0.2 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{~N}^{+}\right.$ $\mathrm{PF}_{6}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 22 \pm 1^{\circ} \mathrm{C}$; Pt working and counter electrodes, potential vs. Ag wire pseudoreference; scan rate $200 \mathrm{mVs}{ }^{-1}$; ferrocene $=0.46 \mathrm{~V})$.

Table s1. Thermal stability data $\left({ }^{\circ} \mathrm{C}\right)$ for selected complexes.

Complex	TGA mass loss (onset)	$\begin{gathered} \mathrm{DSC} \\ \left(\mathrm{~T}_{i} / \mathrm{T}_{e} / \mathrm{T}_{p} / \mathrm{T}_{c} / \mathrm{T}_{f}\right)^{a} \end{gathered}$	$\begin{gathered} \mathrm{mp}^{b} \\ \text { capillary } \end{gathered}$
6a	295	$32.3 / 39.6 / 41.1 / 42.7 / 56.1^{c}$ $74.0 / 84.5 / 85.8 / 87.6 / 109.2^{c}$ $165.6 / 181.5 / 183.1 / 184.8 / 199.0^{c}$ $244.5 / 248.0 / 253.4 / 258.2 / 273.3^{c}$ $56.9 / 67.4 / 77.3 / 87.6 / 89.7^{c}$	$260{ }^{\text {d }}$
6b	269	$\begin{gathered} 90.2 / 95.3 / 100.4 / 104.8 / 108.2 \text { (minor) }^{c} \\ 110.5 / 135.8 / 147.6 / 152.9 / 157.3^{c} \end{gathered}$	150
6 c	295	46.7/84.4/86.5/88.4/155.0 ${ }^{c}$	86
7 a	286	$\begin{aligned} & 107.9 / 125.8 / 134.3 / 138.1 / 144.5^{c} \\ & 170.8 / 187.6 / 236.9 / 266.7 / 272.7^{c} \end{aligned}$	$230{ }^{\text {d }}$
7b	308	$\begin{gathered} \text { 86.9/89.9/100.8/107.0/111.2(minor) }{ }^{c} \\ 158.9 / 199.1 / 204.7 / 206.9 / 240.1^{c} \end{gathered}$	199
7c	259	61.2/91.5/93.6/96.0/162.9 ${ }^{c}$	92
6'a	-	-	67
6'b	-	-	-(oil)
$6 ' \mathrm{c}$	-	-	- (oil)
7'a	255	39.5/52.5/56.5/59.0/71.8 ${ }^{\text {c }}$	74
7'b	293	-	54
$71 \mathbf{c}$	-	-	- (oil)
9a	231	$\begin{gathered} 94.7 / 95.3 / 118.1 / 127.8 / 127.8(\text { minor })^{c} \\ 127.9 / 144.9 / 148.3 / 150.5 / 155.8^{c} \end{gathered}$	$248(>180){ }^{\text {d }}$
9'b	262	70.2/94.7/99.9/103.5/122.0 ${ }^{\text {c }}$	104
9c	146	46.6/60.0/62.8/65.3/73.5 ${ }^{\text {c }}$	61
9a- $\mathrm{H}^{+} \mathrm{BAr}_{\mathrm{f}}{ }^{-}$	191	-	181

${ }^{a}$ See reference s1. The T_{e} values best represent the temperature of the phase transition or exotherm. ${ }^{b}$ Conventional melting point apparatus. ${ }^{c}$ Endotherm. ${ }^{d}$ Gradual darkening without melting above this temperature.

Table s2. Summary of crystallographic data.

	6 a	6b	6 c
empirical formula	$\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{OsP}_{2}$	$\mathrm{C}_{50} \mathrm{H}_{96} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{OsP}_{2}$	$\mathrm{C}_{56} \mathrm{H}_{108} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{OsP}_{2}$
formula weight	968.15	1052.31	1136.46
Diffractometer	Nonius Kappa CCD	Bruker GADDS	Bruker APEX 2
Temperature [K]	173(2)	110(2)	110(2)
Wavelength [\AA]	0.71073	1.54178	0.71073
crystal system	monoclinic	monoclinic	monoclinic
space group	$P 21 / \mathrm{n}$	$P 21_{1} / \mathrm{c}$	$P 2_{1} / \mathrm{c}$
unit cell dimensions:			
$a[\AA]$	13.5196(2)	17.4907(12)	14.6538(15)
$b[\AA]$	17.5887(4)	16.8895(10)	15.7020(16)
$c[\AA]$	19.9465(4)	36.622(2)	26.920(3)
$\alpha\left[{ }^{\circ}\right]$	90	90	90
$\beta\left[{ }^{\circ}\right]$	96.774(1)	91.261(3)	105.2720(10)
$\gamma\left[{ }^{\circ}\right]$	90	90	90
$V\left[\AA^{3}\right]$	4710.01(16)	10815.9(12)	5975.4(11)
Z	4	8	4
$\rho_{\text {calc }}\left[\mathrm{Mg} / \mathrm{m}^{-3}\right]$	1.365	1.292	1.263
$\mu\left[\mathrm{mm}^{-1}\right]$	2.921	6.169	2.313
$\mathrm{F}(000)$	2016	4416	2400
crystal size [mm^{3}]	$0.25 \times 0.20 \times 0.20$	$0.25 \times 0.16 \times 0.02$	$0.40 \times 0.09 \times 0.05$
Θ limit [${ }^{\circ}$]	1.73 to 27.51	2.41 to 60.00	2.39 to 27.50
index range (h, k, l)	-17,17; -20, 22; -25, 25	-19, 19; -18, 18; -40, 36	-19, 18; -20, 20; -34, 34
reflections collected	17404	83787	67050
independent reflections	10779	15622	13559
R (int)	0.0167	0.0838	0.0459
completeness to Θ	99.6 (27.51)	97.4 (60.00)	98.8 (27.50)
max. and min. transmission	0.5927 and 0.5287	0.8866 and 0.3077	0.8931 and 0.4581
data/restraints/parameters	10779/6/488	15622/1904/1373	13559/5/578
goodness-of-fit on F^{2}	1.013	1.024	1.029
R indices (final) $[I>2 \sigma(I)]$			
R_{1}	0.0248	0.0624	0.0288
$w R_{2}$	0.0613	0.1488	0.0854
R indices (all data)			
R_{1}	0.0391	0.0893	0.0423
$w R_{2}$	0.0680	0.1642	0.0680
Largest diff. peak and hole [$\AA^{\AA^{-3} \text {] }}$	0.544 and -1.125	2.007 and -1.736	1.090 and -0.399

Table s2 continued.

	7'a	7b	7c
empirical formula	$\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{OsP}_{2}$	$\mathrm{C}_{50} \mathrm{H}_{96} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{OsP}_{2}$	$\mathrm{C}_{56} \mathrm{H}_{108} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{OsP}_{2}$
formula weight	1057.07	1141.23	1225.38
Diffractometer	Bruker APEX 2	Bruker APEX 2	Bruker APEX 2
Temperature [K]	110(2)	110(2)	150(2)
Wavelength [\AA]	0.71073	0.71073	0.71073
crystal system	triclinic	tetragonal	triclinic
space group	$P-1$	$P 4{ }_{1}$	$P-1$
unit cell dimensions:			
$a[\AA]$	12.1297(14)	16.9141(7)	14.087(5)
$b[\AA]$	20.476(2)	16.9141(7)	14.893(6)
$c[\AA]$	20.998(2)	19.2307(11)	16.063(6)
$\alpha\left[{ }^{\circ}\right]$	90	90	87.847(7)
$\beta\left[{ }^{\circ}\right]$	97.266(1)	90	68.832(6)
$\gamma\left[{ }^{\circ}\right]$	90	90	73.272(6)
$V\left[\AA^{3}\right]$	4751.8(10)	5501.6(5)	3001.1(19)
Z	4	4	2
$\rho_{\text {calc }}\left[\mathrm{Mg} / \mathrm{m}^{-3}\right]$	1.478	1.378	1.356
$\mu\left[\mathrm{mm}^{-1}\right]$	4.465	3.862	3.545
$\mathrm{F}(000)$	2160	2352	1272
crystal size $\left[\mathrm{mm}^{3}\right]$	$0.43 \times 0.04 \times 0.03$	$0.24 \times 0.20 \times 0.17$	$0.60 \times 0.12 \times 0.02$
Θ limit [${ }^{\circ}$]	1.39 to 22.40	1.70 to 27.50	2.45 to 27.51
index range (h, k, l)	-12, 12; -21, 21; -22, 22	-21, 21; -21, 21; -24, 24	-18, 18; -19, 19; -20, 20
reflections collected	31737	103619	31866
independent reflections	12121	12592	13513
R (int)	0.0341	0.0925	0.0539
completeness to Θ	99.0 (22.40)	99.8 (27.50)	98.0 (27.50)
max. and min. transmission	0.8777 and 0.2498	0.5597 and 0.4575	0.9325 and 0.2249
data/restraints/parameters	12121/696/913	12592/49/514	13513/0/568
goodness-of-fit on F^{2}	1.034	1.036	1.094
R ind. (final) $[I>2 \sigma(I)]$			
R_{1}	0.0845	0.0407	0.0374
w_{1}	0.2209	0.0989	0.0854
R indices (all data)			
R_{2}	0.0985	0.0529	0.0543
$w R_{2}$	0.2291	0.1076	0.0923
Largest diff. peak and hole [$\mathrm{e} \AA^{-3}$]	2.337 and -4.271	3.745 and -1.489	1.546 and -1.896

Table s2 continued.

	9a	9a- $\mathrm{H}^{+} \mathrm{BAr}_{\mathrm{f}}{ }^{-}$	11a	12a
empirical formula	$\mathrm{C}_{45} \mathrm{H}_{84} \mathrm{O}_{3} \mathrm{OsP}_{2}$	$\mathrm{C}_{77} \mathrm{H}_{97} \mathrm{BF}_{24} \mathrm{O}_{3} \mathrm{OsP}_{2}$	$\mathrm{C}_{46} \mathrm{H}_{90} \mathrm{O}_{2} \mathrm{OsP}_{2}$	$\mathrm{C}_{56} \mathrm{H}_{94} \mathrm{O}_{2} \mathrm{OsP}_{2}$
formula weight	925.26	1789.49	927.32	1051.52
diffractometer	Nonius Kappa CCD	Bruker GADDS	Bruker SMART 1000	Bruker APEX 2
Temperature [K]	173(2)	110.0	110(2)	110(2)
Wavelength [\AA]	0.71073	1.54178	0.71073	0.71073
crystal system	monoclinic	monoclinic	monoclinic	monoclinic
space group	C2/c	$P 21 / n$	$P 2_{1} / \mathrm{n}$	$P 2_{1} / \mathrm{n}$
unit cell dimensions:				
$a[\AA]$	21.6848(5)	15.1764(10)	13.496(8)	15.622(3)
$b[\AA]$	14.0336(2)	23.3573(14)	17.609(10)	18.229(3)
$c[\AA]$	18.2091(4)	22.9450(13)	19.880(11)	18.907(3)
$\alpha\left[{ }^{\circ}\right]$	90	90	90	90
$\beta\left[{ }^{\circ}\right]$	122.109(1)	95.723(3)	96.549(7)	97.607(2)
$\gamma\left[{ }^{\circ}\right]$	90	90	90	90
$V\left[\AA^{3}\right]$	4693.71(16)	8093.0(9)	4694(5)	5336.7(15)
Z	4	4	4	4
$\rho_{\text {calc }}\left[\mathrm{Mg} / \mathrm{m}^{-3}\right]$	1.309	1.469	1.312	1.309
$\mu\left[\mathrm{mm}^{-1}\right]$	2.820	4.233	2.818	2.488
$\mathrm{F}(000)$	1936	3640	1952	2208
crystal size $\left[\mathrm{mm}^{3}\right]$	$0.25 \times 0.20 \times 0.20$	$0.25 \times 0.15 \times 0.15$	$0.30 \times 0.30 \times 0.10$	$0.40 \times 0.20 \times 0.12$
Θ limit [${ }^{\circ}$]	2.22 to 27.47	2.71 to 60.00	1.55 to 25.00	1.56 to 21.00
index range (h, k, l)	$\begin{gathered} -27,28 ;-16,18 ; \\ -23,23 \end{gathered}$	$\begin{gathered} -17,17 ;-26,26 ; \\ -25,25 \end{gathered}$	$\begin{gathered} -16,16 ;-20,20 ; \\ -23,23 \end{gathered}$	$\begin{gathered} -15,15 ;-18,18 \\ -19,19 \end{gathered}$
reflections collected	10253	63051	44786	33979
independent reflections	5368	12017	8233	5728
R (int)	0.0150	0.0792	0.0340	0.0411
completeness to Θ	99.9 (27.47)	99.9 (60.00)	99.7 (25.00)	100.0 (21.00)
max. and min. transmission	0.6024 and 0.5391	0.7522 and 0.5923	0.7658 and 0.4852	0.7545 and 0.4361
data/restraints/parameters	5368/0/232	12017/175/973	8233/28/489	5728/397/550
goodness-of-fit on F^{2}	1.104	1.088	1.014	1.147
R indices (final) [$I>2 \sigma(I)]$				
R_{1}	0.0197	0.0628	0.0177	0.0700
$w R_{1}$	0.0474	0.1705	0.0468	0.1778
R indices (all data)				
R_{2}	0.0213	0.0839	0.0267	0.0959
$w R_{2}$	0.0481	0.1812	0.0591	0.2262
Largest diff. peak and hole [$\mathrm{e} \AA^{-3}$]	0.585 and -1.221	1.615 and -2.163	0.424 and -0.597	1.493 and -1.138

Table s3. Key crystallographic angles $\left({ }^{\circ}\right)$.

	$6 \mathrm{a}^{\text {a }}$	$\mathbf{6 b}(1)^{b}$	$\mathbf{6 b}(2)^{b}$	$6 \mathrm{c}^{a}$
P-Os-P	172.325(19)	176.96(8)	174.05(16)	174.66(2)
OC-Os-CO	90.8(8)	92.131(18)	91.8(4)	92.03(15)
X-Os-X ${ }^{\text {c }}$	92.4(13)	90.22(8)	89.86(14)	90.65(3)
Os-C-O	176(2)/179.6(2)	176.721(11)/178.047(11)	170.9(11)/174.6(11)	177.2(3)/178.9(2)
$\text { OC-Os-X } \mathrm{X}_{\text {trans }}{ }^{c}$	177.6(8)/179.63(8)	177.29(6)/177.83(5)	177.1(3)/179.5(3)	177.69(13)/178.04(8)
$\mathrm{OC}-\mathrm{Os}-\mathrm{X}_{c i s}{ }^{c}$	88.15(15)/89.0(8)	87.99(5)/89.74(6)	87.7(3)/90.6(3)	87.65(13)/89.73(8)
P-Os-CO	92.6(8)/94.13(7)	89.45(6)/92.41(5)	90.1(3)/93.8(3)	92.10(8)/93.63(12)
	87.9(8)/93.51(7)	89.06(6)/93.16(6)	91.7(3)/91.9(3)	87.85(12)/92.98(8)
P-Os- $\mathrm{X}^{\text {c }}$	86.186(19)/89.55(13)	88.38(7)/89.57(8)	87.69(15)/90.01(16)	86.00(2)/87.81(3)
	86.170(19)/90.03(13)	88.87(8)/89.01(7)	86.66(14)/88.08(15)	88.94(2)/90.56(3)
	$7^{\prime} \mathbf{a}(1)^{b}$	$7{ }^{\prime} \mathbf{a}(2)^{b}$	7b	7c
P-Os-P	175.62(17)	175.52(17)	178.83(6)	175.07(3)
OC-Os-CO	91.9(10)	92.3(9)	94.0(3)	92.97(16)
$\mathrm{X}-\mathrm{Os}-\mathrm{X}^{c}$	91.83(7)	91.89(7)	88.88(2)	91.09(2)
Os-C-O	175(2)/176(2)	175(19)/175.2(2)	177.3(7)/177.3(6)	178.2(4)/178.6(4)
$\text { OC-Os-X } \text { trans }^{c}$	176.1(7)/177.4(7)	175.8(6)/177.0(6)	177.0(2)/177.6(2)	177.58(11)/178.05(11)
$\mathrm{OC}-\mathrm{Os}-\mathrm{X}_{c i s}{ }^{c}$	85.7(7)/90.6(7)	85.4(6)/90.4(7)	88.3(2)/88.7(2)	86.84(11)/89.14(12)
P-Os-CO	91.0(6)/91.5(6)	89.8(6)/93.1(6)	88.3(2)/90.2(2)	91.15(12)/93.73(11)
	90.3(6)/92.6(6)	91.1(6)/91.6(6)	91.0(2)/91.3(2)/	88.55(11)/93.10(12)
P-Os-X ${ }^{\text {c }}$	87.62(12)/92.11(12)	86.83(13)/88.10(13)	88.91(4)/91.34(4)	86.93(4)/87.41(3)
	86.75(13)/88.19(13)	87.62(12)/92.02(12)	89.01(4)/89.98(4)	88.84(4)/90.15(3)
	9a	$9 \mathrm{a}-\mathrm{H}^{+} \mathrm{BAr}_{f}^{-}$	$11 \mathrm{a}^{d}$	12a
P-Os-P	178.75(2)	168.76(7)	172.50(2)	175.05(17)
OC-Os-CO	118.44(6)/118.44(6)/123.11(12)	94.6(3)/96.8(3)/168.5(3)	93.2(3)/93.3(3)/173.5(4)	88.3(7)
$\mathrm{X}-\mathrm{Os}-\mathrm{X}^{c}$	-	-	91.9(3)/92.0(3)/176.2(4)	96.3(6)
Os-C-O	178.92/178.92/180.000(1)	175.4(7)/178.5(8)/179.7(8)	177.0(8)/179.2(8)/179.6(2)	173.2(15)/176.3(16)
$\text { OC-Os-X } \mathrm{Xtrans}^{c}$	-	173.6	178.6(4)/178.6(4)/179.57(9)	174.5(6)/176.6(7)
$\mathrm{OC}-\mathrm{Os}-\mathrm{X}_{\text {cis }}{ }^{c}$	-	78.0/90.5	86.7(3)/86.8(3)/88.0(3)/88.2(3)	87.0(7)/88.4(6)
P-Os-CO	89.00(6)/90.40(6)/90.627(10)	89.3(2)/90.4(2)/95.5(2)	89.0(3)/90.8(3)/93.56(9)	88.4(5)/94.1(5)
	89.00(6)/90.40(6)/90.627(10)	87.8(3)/90.2(2)/95.5(2)	88.1(3)/91.2(3)/93.91(9)	90.6(5)/93.4(5)
P-Os-X ${ }^{\text {c }}$	-	88.4	86.03(8)/89.5(3)/90.6(2)	86.0(4)/89.2(4)
	-	80.8	86.50(8)/89.0(2)/91.3(3)	89.4(4)/89.4(4)

Table s3 continued.

	$6 \mathrm{a}^{\text {a }}$	$\mathbf{6 b}(1)^{b}$	$\mathbf{6 b}(2)^{b}$	6c ${ }^{\text {a }}$
C^{e}-P-P-C ${ }^{e}$	-25.25	50.23	-26.32	-28.97
C^{f}-P-P-C ${ }^{f}$	-22.67	46.77	-20.16	-31.00
C^{g}-P-P-C ${ }^{\text {g }}$	-23.09	48.04	-8.26	-26.88
C^{h}-P-Os- $\mathrm{CO}(1)$	-13.18/-11.26	10.45/37.30	12.92/-33.60	-12.92/-13.35
C^{h}-P-Os- $\mathrm{CO}(2)$	14.71/38.89	37.59/9.20	-16.27/8.23	12.69/-40.47
C^{h}-P-Os-X $(1)^{c}$	-43.35/19.86	-19.08/69.90	39.90/-66.97	-46.31/16.66
$\mathrm{C}^{h}-\mathrm{P}-\mathrm{Os}-\mathrm{X}(2)^{c}$	48.73/-72.19	71.76/-20.33	-52.13/43.89	44.49/-73.97
$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3^{i}$	-159.31/174.45/-154.95	-172.70/169.86/173.97	-169.17/-78.25/-168.34	164.71/171.72/171.52
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4^{i}$	-71.29/174.87/173.66	176.97/-177.16/57.77	56.01/175.81/166.95	-173.92/174.35/61.00
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5{ }^{i}$	174.62/-69.59/-173.04	-174.34/63.20/61.14	169.89/-165.35/-177.73	70.33/-63.38/176.78
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6^{i}$	-64.11/179.56/63.99	-179.67/61.26/-176.84	-157.57/176.71/71.20	73.69/-54.90/62.05
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7^{i}$	-58.90/170.87/64.94	-52.07/-176.73/126.71	-37.92/-57.17/69.04	-175.89/-58.65/64.85
C5-C6-C7-C8 ${ }^{i}$	-171.62/65.59/-167.53	-62.67/173.03/-143.91	-58.57/-72.99/-166.89	-173.44/-177.77/173.49
C6-C7-C8-C9 ${ }^{i}$	179.40/-179.67/-175.02	173.27/-171.27/133.37	174.83/-175.54/87.98	-171.97/-60.05/69.49
C7-C8-C9-C10 ${ }^{i}$	66.16/-172.76/-168.87	-179.30/179.64/-127.31	-175.95/174.66/-154.34	-172.73/-57.63/66.82
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11^{i}$	172.60/-58.26/66.62	177.10/-69.00/-156.46	174.78/176.96/-127.14	-56.21/-176.15/-179.63
C9-C10-C11-C12 ${ }^{i}$	-178.43/-66.56/63.70	-58.01/-69.21/-57.49	-161.05/-51.51/-73.55	-54.48/-173.27/-178.99
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13^{i}$	-68.58/177.40/-169.45	-55.65/178.28/-151.86	45.88/-60.13/120.16	-64.22/179.41/-165.93
C11-C12-C13-C14 ${ }^{i}$	173.89/-72.82/173.83	178.39/179.15/84.60	116.51/177.35/167.15	175.37/-179.19/-176.87
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{P} 2^{i}$	-163.58/170.90/-154.67	-	-	-
C12-C13-C14-C15 ${ }^{i}$	-	-176.83/57.14/69.22	-81.03/-175.87/78.95	-68.18/179.43/-173.22
C13-C14-C15-C16 ${ }^{i}$	-	179.80/51.51/-163.39	-162.01/70.92/83.47	-176.63/-59.46/66.71
C14-C15-C16-P2 ${ }^{i}$	-	-168.08/174.70/172.88	174.15/-159.86/172.63	-
C14-C15-C16-C17 ${ }^{i}$	-	-	-	170.15/-58.99/63.86
C15-C16-C17-C18 ${ }^{i}$	-	-	-	60.07/-179.57/-177.32
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18-\mathrm{P} 2^{i}$	-	-	-	-173.94/-176.59/169.50
anti segments	8/8/9	11/9/6	9/9/7	10/10/10
gauche segments	5/5/4	4/6/5	5/6/6	7/7/7

Table s3 continued.

	7'a(1)	7'a(2)	7b	7c
C^{e}-P-P-C ${ }^{e}$	-19.77	-19.84	28.64	-29.86
$\mathrm{C}^{f}-\mathrm{P}-\mathrm{P}-\mathrm{C}^{f}$	-17.75^{j}	-17.42^{j}	26.98	-27.34
C^{g}-P-P-C ${ }^{\text {g }}$	-24.35^{j}	-24.73^{j}	22.60	-26.83
$\mathrm{C}^{h} \text {-P-Os-CO(1) }$	89.51/-109.27	88.98/-108.81	37.54/-10.43	-15.58/-11.21
C^{h}-P-Os- $\mathrm{CO}(2)$	-178.52/158.78	-178.67/159.88	13.86/8.66	-40.43/13.42
$\mathrm{C}^{h}-\mathrm{P}-\mathrm{Os}-\mathrm{X}(1)^{c}$	3.37/-23.70	3.52/-23.70	73.29/-44.57	15.34/-45.91
$\mathrm{C}^{h}-\mathrm{P}-\mathrm{Os}-\mathrm{X}(2)^{c}$	-88.01/68.23	-88.28/68.42	-15.57/44.31	46.44/-73.21
$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3^{i}$	$169.59 /-158.38 / 165.05^{k}$	$-171.95 /-172.87 /-155.16^{k}$	-178.42/170.22/-177.74	169.99/169.97/175.50
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4^{i}$	163.84/174.50/171.92	-62.56/-65.49/-174.98	176.64/-72.19/72.21	171.52/-176.36/64.11
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5^{i}$	59.39/-156.45/60.25	-59.28/-63.10/-59.98	60.68/173.36/-168.79	-64.12/66.16/-175.74
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6^{i}$	71.63/30.96/53.54	-161.37/-162.30/-58.11	58.07/-70.37/-171.38	-49.79/69.63/62.86
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7^{i}$	176.17/118.04/-179.32	178.01/-176.46/-171.46	175.91/-70.02/-75.81	-57.54/-176.12/61.04
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8^{i}$	58.49/-153.93/162.08	74.51/78.72/-172.04	68.27/176.52/-179.57	-176.01/175.87/173.05
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9^{i}$	54.73/163.41/-49.07	-94.98/-172.17/59.06	174.95/-62.91/-81.88	-60.78/-172.64/67.08
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10^{i}$	-172.38/-70.51/-57.05	161.54/80.66/56.02	173.82/-170.16/-74.74	-60.56/-167.81/67.34
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11^{i}$	-169.65/-146.81/-157.63	-179.56/149.28/176.38	162.03/60.33/170.63	-177.24/-50.50/-177.43
C9-C10-C11-C12 ${ }^{i}$	-57.77/-174.74/-52.88	54.54/-91.37/73.73	173.62/51.42/170.42	-177.89/-57.20/-177.49
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13^{i}$	-58.90/-61.02/-53.97	61.56/-98.21/56.14	50.61/168.54/-175.09	-177.14/-64.13/-169.43
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14^{i}$	-173.16/-70.02/-56.34	171.47/177.50/166.31	60.08/163.50/-59.65	-176.27/-179.42/-172.88
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{P} 2^{i}$	$155.55^{l} /-172.88 /-170.69$	$165.75^{l} /-158.43 / 169.87$	-	-
C12-C13-C14-C15 ${ }^{i}$	-	-	-167.63/59.43/-66.04	178.42/-67.53/-165.88
C13-C14-C15-C16 ${ }^{i}$	-	-	74.19/-178.84/174.91	-58.06/-177.95/69.18
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{P} 2^{i}$	-	-	178.38/167.05/178.11	-
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17^{i}$				-57.56/164.40/65.38
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18^{i}$				178.34/62.98/-178.17
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18-\mathrm{P} 2^{i}$				-175.58/-174.04/165.67
anti segments	8/8/6	7/6/7	9/8/9	10/10/10
gauche segments	5/4/7	5/4/6	6/7/6	7/7/7

Table s3 continued.

	9a	9a- $\mathrm{H}^{+} \mathrm{BAr}_{\text {f }}{ }^{-}$	119 ${ }^{\text {d }}$	12a
C^{e}-P-P-C ${ }^{e}$	-38.42	-0.11	-25.44	36.80
C^{f}-P-P-C ${ }^{f}$	-37.98	-2.87	-21.55	37.54
C^{g}-P-P-C ${ }^{\text {g }}$	-37.98	-3.71	-21.50	38.52
C^{h}-P-Os- $\mathrm{CO}(1)$	-77.51/39.62	35.43/-39.06	-34.79/12.28//15.38/37.90	63.31/-25.18
C^{h}-P-Os-CO(2)	-78.82/40.94	14.78/-14.94	-11.03/-13.59	32.33/5.52
C^{h}-P-Os- $\mathrm{CO}(3)$	-77.51/39.62	-10.39/7.44	-	-
C^{h}-P-Os-X $(1)^{c}$	-	-54.89/50.94	20.57/-43.01//-39.94/17.46	-25.19/63.17
C^{h}-P-Os-X $(2)^{c}$	-	-	-71.29/48.94	-1.76/18.32
P1-C1-C2-C3 ${ }^{i}$	175.14/-172.73/-163.26	178.09/-175.83/-175.43	-163.78/-153.51/169.64	-178.94/177.25/167.53
C1-C2-C3-C4 ${ }^{i}$	168.27/58.21/174.02	168.27/-97.51/176.63	175.03/173.97/-73.30	-159.19/-150.17/160.86
C2-C3-C4-C5 ${ }^{i}$	62.01/158.90/-178.86	57.90/-51.53/44.72	-67.23/-169.36/177.19	-52.05/-50.65/48.60
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C}^{i}$	173.03/-72.72/-177.71	59.02/151.04/176.63	-179.24/64.00/-67.29	63.82/-179.46/74.25
C4-C5-C6-C7 ${ }^{i}$	58.27/-62.81/-58.77	171.56/169.06/177.69	173.83/66.47/-58.45	-76.47/-64.83/163.37
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8^{i}$	62.18/-174.03/-61.71	-177.60/64.96/88.22	65.68/-169.16/-171.12	-60.82/-56.52/90.59
C6-C7-C8-C9 ${ }^{i}$	178.18/178.18/-174.98	-69.36/76.61/-166.75	179.51/-175.34/-179.54	175.08/160.69/87.60
C7-C8-C9-C10 ${ }^{i}$	-174.03/62.18/-61.71	-61.69/-177.14/72.38	-170.45/-167.11/64.76	-174.45/173.82/-168.15
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11^{i}$	-62.81/58.27/-58.77	-166.70/-170.42/62.77	-58.89/64.45/171.93	168.06/130.16/167.61
C9-C10-C11-C12 ${ }^{i}$	-72.72/173.03/-177.71	-176.95/-64.53/173.65	-64.25/63.66/178.84	-73.73/-167.14/-171.99
C10-C11-C12-C13 ${ }^{i}$	158.90/62.01/-178.86	74.35/-69.81/69.59	174.51/-172.76/-68.10	-71.63/110.34/74.40
C11-C12-C13-C14 ${ }^{i}$	58.21/168.27/174.02	89.02/177.60/154.93	-71.07/174.32/175.27	168.43/55.92/77.62
C12-C13-C14-P2 ${ }^{i}$	-172.73/175.14/163.26	-171.15/-170.34/175.38	174.57/-154.24/-159.71	-165.73/-175.04/178.71
anti segments	7/7/8	7/7/8	8/9/8	7/7/7
gauche segments	6/5/5	6/5/5	5/4/5	6/4/5

${ }^{a}$ Values for the dominant $\mathrm{Os}(\mathrm{CO})_{2}(\mathrm{Cl})_{2}$ rotamer $(\mathbf{6 a , c}) .{ }^{b}$ Values for the two independent molecules of $\mathbf{6 b}$ and 7 'a in the unit cell. ${ }^{c} \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{H}, \mathrm{CH}_{3}$, or $\mathrm{C}_{\text {ipso }}{ }^{\prime}$ $\mathrm{C}_{\text {para }} / \mathrm{H}_{\text {para. }}{ }^{d}$ One CO and one methyl ligand are disordered (50:50 occupancy ratio). Hence, values are given for each conformation. ${ }^{e}$ First macrocyclic methylene chain that is located between two X ligands (for $\mathbf{6 a - c}, \mathbf{7 b}, \mathbf{c}, \mathbf{7} \mathbf{a}$, and $\mathbf{1 2 a}$), or along the C_{2} axis $(\mathbf{9 a})$, or opposite to the hydride ligand $\left(\mathbf{9 a}-\mathrm{H}^{+} \mathrm{BAr}_{\mathrm{f}}{ }^{-}\right.$), or opposite to the non-disordered methyl ligand ($\mathbf{C} 4, \mathbf{1 1 a}$). See also Figure $13 .{ }^{f}$ Second macrocyclic methylene chain. ${ }^{g}$ Third macrocyclic methylene chain. ${ }^{h}$ Torsion angles between the ligand and the nearest macrocyclic chain (first carbon atom of macrocycle). See also Figure 13. ${ }^{i}$ The numbering of the carbon atoms does not represent the numbering in the CIF file. For ease of comparison, the carbon atoms of each chain are numbered from C 1 to C 14 or C 16 or C 18 . See also Figure 13. ${ }^{j}$ These values represent the smallest torsion angles between the two trans disposed phosphacycles. ${ }^{k}$ This value represents the torsion angle P2-C1-C2-C3 rather than P1-C1-C2-C3 (the angles in this column are within one phosphacycle). ${ }^{l}$ This value represents the torsion angle C11-C12-C13-P1 rather than C11-C12-C13-P2 (the angles in this column are within one phosphacycle).

- REFERENCES

(s1) DSC and TGA data were treated as recommended by Cammenga, H. K.; Epple, M. Angew. Chem., Int. Ed. 1995, 34, 1171-1187; Angew. Chem. 1995, 107, 1284-1301. The T_{e} values best represent the temperature of the phase transition or exotherm.
(s2) (a) Dwyer, F. P.; Hogarth, J. W. Inorg Synth. 1957, 5, 204-206. (b) Dwyer, F. P.; Hogarth, J. W. Inorg Synth. 1957, 5, 206-207.
(s3) Nawara-Hultzsch, A. J.; Skopek, K.; Shima, T.; Barbasiewicz, M.; Hess, G. D.; Skaper, D.; Gladysz, J. A. Z. Naturforsch. 2010, 65b, 414-424.
(s4) Bergbreiter, D. E.; Killough, J. M. J. Am. Chem. Soc. 1978, 100, 2126-2134.
(s5) (a) Taube, R.; Wache, S. J. Organomet. Chem. 1992, 428, 431-442. (b) Brookhart, M.; Grant, B.; Volpe, A. F. Organometallics 1992, 11, 3920-3922.
(s6) The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR assignments were made by analogy to those of $\mathbf{3 a}$.
(s7) The J values given for the virtual triplets represent the apparent couplings between adjacent peaks, and not the mathematically rigorous coupling constants. The indices ${ }^{n} J$ represent the number of bonds between the atom of interest and the nearest phosphorus atom. Hersh, W. H. J. Chem. Edис. 1997, 74, 1485-1488.
(s8) These two signals overlap, such that one of the outer peaks of the virtual triplet is obscured. The coupling constant is derived from the two peaks of the virtual triplet that are visible.
(s9) The most intense peak of the isotope envelope is given; m / z (relative intensity, \%). Matrices used: DHB (2,5-dihydroxybenzoic acid), 3-NBA (3-nitrobenzyl alcohol), SIN (sinapinic acid), THAP (2,4,6-trihydroxyacetophenone).
(s10) The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR assignments were made by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ COSY (gHMQC) experiments.
(s11) The sample gradually darkened without melting above this temperature
(s12) The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR assignments were made by analogy to those of $\mathbf{7 a}$.
(s13) The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR assignments were made by analogy to those of $\mathbf{7}^{\prime} \mathbf{b}$.
(s14) Methylene carbon signals that are doubled in intensity are assigned to the phosphacycles $\mathrm{P}\left(\mathrm{CH}_{2}\right)_{n-1} \mathrm{CH}_{2}$ and denoted by primes.
(s15) These two signals overlap, such that the outer peaks of the virtual triplet are visible on each side of a broadened central peak.
(s16) These two virtual triplets overlap, but at least two peaks of each are distinguishable, allowing the coupling constants to be derived.
(s17) This signal deviates by +2 mass units from that expected for the given ion. However, the isotope envelope is otherwise in good agreement with that calculated.
(s18) These two virtual triplets overlap, but all six peaks are distinguishable, allowing the coupling constants to be derived.
(s19) The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR assignments were made by analogy to $9 \mathbf{a}$.
(s20) The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR assignments were made by analogy to those of 9 a and $[\mathrm{H}(\mathrm{O}-$ $\left.\left.\mathrm{Et}_{2}\right)_{2}\right]^{+} \mathrm{BAr}_{\mathrm{f}}^{-}$.
(s21) The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR assignments were made by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ COSY (gHMQC) experiments and by analogy to those of $\left[\mathrm{H}\left(\mathrm{OEt}_{2}\right)_{2}\right]^{+} \mathrm{BAr}_{\mathrm{f}}{ }^{-}$.
(s22) The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR assignments were made by analogy to those of mer,trans-Re$(\mathrm{CO})_{3}(\mathrm{Ph})\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{P}\right)$ as described in $\mathrm{He} \beta$, G. D. Doctoral Dissertation, Universität Erlangen-Nürnberg, 2010.
(s23) Unprimed carbon atoms are assigned to the unique methylene chain (located between the two phenyl ligands in the solid state; see Figure 12), and primed carbon atoms (doubled in intensity) to the other two symmetry equivalent chains.
(s24) Song, L.; Trogler, W. C. J. Am. Chem. Soc. 1992, 114, 3355-3361.
(s25) CCDC 1446694 (6a), 1446695 (6b), 1446696 (6c), 1446697 (7'a), 1446698 (7b), 1446699 ($7 \mathbf{c}$), $1446700(\mathbf{9 a}), 1446701\left(\mathbf{9 a}-\mathrm{H}^{+} \mathrm{BAr}_{\mathrm{f}}^{-}\right), 1446702$ (11a), and 1446703 (12a) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
(s26) (a) Collect. Data collection software, Nonius B.V., 1998. (b) Scalepack. Data processing software: Otwinowski, Z.; Minor, W. in Methods in Enzymology 1997, 276 (Macromolecular Crystallography, Part A), 307-326.
(s27) SHELXTL, Sheldrick, G.M. Acta Cryst. 2008, A64, 112-122.
(s28) Cromer, D. T.; Waber, J. T. in International Tables for X-ray Crystallography; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch: Birmingham, England, 1974.
(s29) Sheldrick, G. M.; Cell Now, version 2008/1. Program for Obtaining Unit Cell Constants from Single Crystal Data, University of Göttingen, Germany, 2008.
(s30) Bruker SAINT, version 7, 2007. Program for Data Integration from Area Detector Frames, Bruker-Nonius Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373, USA.
(s31) Sheldrick, G. M.; SADABS, version 2008/1. Program for Absorption Correction for Data from Area Detector Frames, University of Göttingen, Germany, 2008.
(s32) Barbour, L. J. J. Supramol. Chem. 2001, 1, 189-191.
(s33) APEX 2, Program for Data Collection on Area Detectors, BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373, USA.
(s34) Spek, A. L.; Platon. A Multipurpose Crystallographic Tool, J. Appl. Cryst. 2003, 36, 7-13.

