Supporting Information

Rational Design of Nd³⁺-Sensitized Multifunctional Nanoparticles with Highly Dominant Red Emission

Xia Xu,^{a,b} Pengpeng Lei,^{a,b} Lile Dong,^{a,b} Xiuling Liu,^a Yue Su,^{a,b} Shuyan Song,^a Jing Feng*^a and Hongjie Zhang*^a

 ^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
^b University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding authors. Tel.:+86 431 85262127; fax: +86 431 85698041. *E-mail addresses:* fengj@ciac.ac.cn (J. Feng), hongjie@ciac.ac.cn (H. Zhang).

Fig. S1 The magnified XRD patterns of Core, C@S1, C@S1@S2 and C@S1@S2@S3 nanoparticles.

Fig. S2 Size distribution of Core, C@S1, C@S1@S2 and C@S1@S2@S3 nanoparticles.

Fig. S3 A) High-resolution SEM image and B) HAADF-STEM image of C@S1@S2@S3 UCNPs.

Fig. S4 The absorption spectrum of C@S1@S2 UCNPs.

Fig. S5 The Yb³⁺ concentration-dependent UCL spectra of C@S1@S2 UCNPs under 980 nm excitation.

Fig. S6 A) UCL spectrum of C@S1@S2@S3 UCNPs excited with a series of 808 nm pump power, B) log–log plot of the UCL intensities of C@S1@S2@S3 UCNPs peaked at 653 nm as a function of 808 nm pump power.

Fig. S7 A) XRD pattern of NaYbF₄:18%Yb³⁺, 2%Er³⁺ without and with 30% Mn²⁺ doped. B) The expanded spectrum of Mn 2p obtained from the C@S1@S2 UCNPs. The Mn $2p_{1/2}$ and $2p_{3/2}$ signals are located at 654.3 and 638.8 eV, respectively.

Fig. **S8** TEM image of A) α -NaLuF₄:Mn²⁺/Yb³⁺(18%)/Er³⁺, B) α-NaLuF₄:Mn²⁺/Yb³⁺(18%)/Er³⁺@NaLuF₄:Mn²⁺/Yb³⁺, C) α- $NaLuF_4:Mn^{2+}/Yb^{3+}(18\%)/Er^{3+}(2m)NaLuF_4:Mn^{2+}/Yb^{3+}(2m)NaNdF_4:Yb^{3+}$ and D) XRD pattern of (C). TEM image of E) α -NaLuF₄:Mn²⁺/Yb³⁺(48%)/Er³⁺, F) α-NaLuF₄:Mn²⁺/Yb³⁺(48%)/Er³⁺@NaLuF₄:Mn²⁺/Yb³⁺, G) α- $NaLuF_4:Mn^{2+}/Yb^{3+}(48\%)/Er^{3+}(a)NaLuF_4:Mn^{2+}/Yb^{3+}(a)NaNdF_4:Yb^{3+} and H)$ the XRD pattern of (G).

Fig. S9 The UCL spectra of α -NaYbF₄:Mn²⁺/Er³⁺@NaNdF₄:Yb³⁺, C@S1@S2 and C@S1@S2@S3 under 980 nm excitation.

Fig. S10 FTIR spectra of C@S1@S2@S3@OA and C@S1@S2@S3@PEG.