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Figure S1: TGA/DTA (black/red) traces of as-made PST-27 (left) and triclinic AlPO4–34 (right). The
backwards shift of the TG trace of AlPO4–34 around 550 ◦ C is due to the overheating caused by the
combustion process associated to the main weight loss.
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Figure S2: Ex-situ variable temperature XRD patterns of PST-27. The patterns were recorded at room
temperature after calcination at the temperatures noted.
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Figure S3: Powder XRD pattern (Cu Kα radiation) of as-made (bottom) and calcined (top, 550◦C)
triclinic 123TMIF–AlPO4–34.
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Figure S4: Powder XRD pattern (Cu Kα radiation) of triclinic 123TMIF–AlPO4–34 after TGA/DTA
analysis up to 1000 ◦C.
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Figure S5: FESEM image of AlPO4–34 after TGA/DTA analysis up to 1000 ◦C
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Figure S6: The orthorhombic indexing of PST–27 (green marks) fails to account for the splitting of
several reflections, which is apparent in the data obtained with synchrotron radiation (purple trace) but
not so obvious in the data obtained in the lab (red trace). A small monoclinic distortion (0.2◦) explains
the splitting (blue marks).
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Figure S7: A number of very weak reflections (marked with *) that can not be indexed in the monoclinic
Pc space group. Please note that the intensity scale is logarithmic to make those tiny reflections visible.
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Structure analysis of triclinic AlPO4–34

The structure of triclinic AlPO4–34 was solved by direct methods using the Expo 2009 suite of programs.1

Only partial solutions were found in space groups P1 and P 1̄ with the true chemical composition of the
unit cell. However, when Al and P were substituted by Si, an essentially complete solution was obtained
in space group P 1̄. In this solution, F and N were mistaken as framework O, while one O was taken
as an organic N and another O as the fluoride linking two sites at the diagonals of a 4MR. These sites
were at a rather close distance of 2.95 Å, and they were assigned to Al and the cited O as bridging F.
The alternation of Al and P allowed to assign the whole framework T-sites. The solution contained two
”organic entities” made up of C and one O that, while heavily distorted, clearly consisted of a highly
planar 5 member ring with three carbons substituents on three adjacent positions of the ring, also closely
coplanar to the ring, Figure S8. The cell was then reduced before Rietveld refinement.

The model obtained by direct methods in space group P 1̄ and initially with only Al, P, O and F, was
used as starting model in a Rietveld refinement using GSAS,2 and the EXPGUI graphical interface.3

Scale factor, unit cell and profile parameters were refined, with a shifted Chebyschev function initially
with 30 fixed parameters to simulate the background. Then, the atoms were allowed to move with soft
restrains for distances within both tetrahedra (P-O 1.53, Al-O 1.74, O-O in PO4 2.50, O-O in AlO4 2.84
Å) and octahedra (Al-O 1.90, Al-F 1.90, F-F 2.29, O-O 2.78 Å). Then, the cation, without H atoms, was
introduced as a rigid body and its position refined, and the atomic fractions were adjusted to account
for the electrons in bonded hydrogens. The weight of the restrains was then gradually lowered and
finally eliminated. Fourier techniques suggested there could be some water molecule (there are 0.3 per
cell according to the chemical composition) close to the center of the 6MR. However, when the position
of an oxygen placed in that position with an occupancy factor of 1/6 was refined it moved very close
to one of the O in the ring. Martuccci et al. located water in morpholinium-containing SAPO-34 and
CoAPSO-34 in the 8MR, instead, but they have much more water, equivalent to 1.35 H2O per unit
cell in our setting.4 Introduction of 0.333 H2O molecules at the inversion center (0.5,0.5,0.5) did not
improve the fitting, either, so water was finally not included in the model. In the final stages, atom
displacement factors (grouped by atom type; for the OSDA N1C2N3, C4C5 and C6C7C8), preferred
orientation correction (Dollase method) and background (finally with 35 terms) were included in the
refinement. Final crystallographic data are summarized in Table S1 and the final Rietveld plot is given
in Figure S9.

Table S1: Crystallographic and Experimental Parameters for the Rietveld Refinement of as-made AlPO4–
34.

wavelength (Å) 0.82548
temperature (K) 293
2θ range 2.00-62.00
no. of data points 6001
no. of reflections 3186
Space Group P 1̄
unit cell parameters (Å)

a 9.227630(8)
b 9.28611(7)
c 9.37888(6)
α 85.2122(5)
β 77.3119(6)
γ 89.3472(6)

Cell volume (Å3) 781.284(12)
Residuals

Rwp 6.01%
Rp 4.41%
RF 2 6.202%
reduced χ2 6.822
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Figure S8: Solution obtained in EXPO in space group P 1̄ for as made AlPO4–34.

Table S2: Fractional atomic coordinates, isotropic displacement parameters and fraccional occupancies
for as-made 123TMI–AlPO4–34 in space group P 1̄

atom x y z Occupancy Uiso
Al1 0.8664(4) 0.0653(4) 0.0841(4) 1.0 0.0067(10)
P2 0.1700(4) 0.13943(32) 0.13700(32) 1.0 0.0064(4)
P3 0.3755(4) 0.12060(33) 0.67611(34) 1.0 0.0064(4)
P4 0.6209(4) 0.31593(32) 0.09528(30) 1.0 0.0064(4)
Al5 0.6232(4) 0.65829(34) 0.0856(4) 1.0 0.0076(7)
Al6 0.3956(4) 0.1193(4) 0.3395(4) 1.0 0.0076(7)
O1 0.7728(8) 0.2336(7) 0.0668(7) 1.0 0.0068(5)
F1 0.0154(6) 0.1050(5) 0.9194(5) 1.0 0.0081(15)
O2 0.5271(8) 0.0510(7) 0.6690(6) 1.0 0.0068(5)
O3 0.2540(8) 0.0126(7) 0.7460(6) 1.0 0.0068(5)
O4 -0.0001(8) 0.1447(6) 0.1855(6) 1.0 0.0068(5)
O5 0.4598(8) 0.6877(6) 0.0381(6) 1.0 0.0068(5)
O6 0.2329(8) 0.0236(6) 0.0367(6) 1.0 0.0068(5)
O7 0.3611(7) 0.1678(6) 0.5172(7) 1.0 0.0068(5)
O8 0.6493(7) 0.4751(7) 0.1242(7) 1.0 0.0068(5)
O9 0.2278(7) 0.1194(6) 0.2803(6) 1.0 0.0068(5)
O10 0.2315(8) 0.2863(6) 0.0597(6) 1.0 0.0068(5)
O11 0.3682(8) 0.2552(6) 0.7566(6) 1.0 0.0068(5)
O12 0.5117(8) 0.2546(6) 0.2333(6) 1.0 0.0068(5)
N1 0.0950(6) 0.5820(5) 0.3051(4) 1.0 0.0761(26)
C2 0.0995(5) 0.6838(4) 0.3960(4) 1.0 0.0761(26)
N3 0.2073(5) 0.6496(5) 0.4663(5) 1.0 0.0761(26)
C4 0.2737(6) 0.5213(6) 0.4183(7) 1.16667 0.174(5)
C5 0.2039(7) 0.4793(5) 0.3180(6) 1.16667 0.174(5)
C6 -0.0066(8) 0.5737(8) 0.2041(5) 1.5 0.1387(27)
C7 -0.0006(7) 0.8118(6) 0.4126(8) 1.5 0.1387(27)
C8 0.2563(7) 0.7283(8) 0.5786(6) 1.5 0.1387(27)

10



 0

 2

 4

 5  15  25  35  45  55

In
te

n
s
it
y
/ 

1
0

4
 c

o
u

n
ts

2θ /degrees

x5

1Figure S9: Observed (+) and calculated (solid line) powder X-ray diffractograms for as-made triclinic
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11



Figure S10: three views of the 123TMI+ dimer
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Figure S11: UVvis spectra (full range) for several 123TMI-containing solids
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Figure S12: XRD patterns of the three SAPO–34 phases synthesized with 123TMI and F: (a) triclinic
SAPO-34, (b) rhombohedral SAPO-34(1), and (c) rhombohedral SAPO-34(2)

Figure S13: TGA/DTA analysis of (a) triclinic SAPO-34, (b) rhombohedral SAPO-34(1), and (c) rhom-
bohedral SAPO-34(2).
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Table S3: Chemical composition of thre SAPO–34 phases synthesized in this work
Wt % Unit Cell

Phasea Al P Si C H N F TG res.b Formulac

t–SAPO–34 14.75 16.32 2.47 13.52 2.389 5.288 2.99 72.2 (72.8) (C6N2H11)1.95F1.62OH0.12Al5.65P5.44Si0.91O24(H2O)1.46
r–SAPO–34(1) 13.84 11.99 5.47 14.49 2.62 5.56 –d 74.4 (73.2) (C6N2H11)2.17F1.38Al5.62P4.24Si2.14O24(H2O)2.72
r–SAPO–34(2) 14.25 13.78 4.52 14.99 2.45 5.89 –d 70.4 (72.0) (C6N2H11)2.22F1.34Al5.59P4.71Si1.70O24(H2O)0.6

a t: triclinic, r: rhombohedral. b residue after thermal analysis, with the expected value for the formula given between parenthesis. c cation content
determined from N content, F by analysis (t–SAPO–34, H introduced to make formula neutral) or by charge balanced (r–SAPO–34 samples 1 and 2) and

H2O from H excess. d not analyzed.
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Figure S14: Emission spectra of 123TMI in water at different excitation wavelengths and/or concentra-
tions (1 cm pathway cells, excitation and emission slits 10 and 3 nm, respectively).
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Figure S15: Excitation spectra (at the emission maximum, in the 430-460 nm range) of several solids
containing 123TMI (excitation and emission slits 3 and 5 nm, respectively).
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Figure S16: Emission spectra of 123TMI-AlPO4-34 as a function of the excitation wavelength (high
sensibility, excitation and emission slits 3 and 1.5 nm, respectively). Sharp peaks at the beginning of
every spectrum are assigned to Raman signals since they uniformly shift with the excitation wavelength.
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Figure S17: Emission spectra of 123TMI-SAPO-34(2) as a function of the excitation wavelength (high
sensibility, excitation and emission slits 3 and 1.5 nm, respectively). Sharp peaks at the beginning of
every spectrum are assigned to Raman signals since they uniformly shift with the excitation wavelength.
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