## **Electronic supplementary information**

# N,N-diethylamine appended binuclear Zn(II) complexes; Highly

### selective and sensitive fluorescent chemosensors for picric acid

#### Amit Kumar, Ashish Kumar and Daya Shankar Pandey\*

Department of Chemistry, Faculty of Science, Banaras Hindu University Varanasi 221 005 India

#### **Contents:**

| 1.  | Fig. S1-S4 <sup>1</sup> H and <sup>13</sup> C NMR spectra of $H_2L^1 H_2L^2$ , 1 and 2                  | S2         |
|-----|---------------------------------------------------------------------------------------------------------|------------|
| 2.  | Fig. S5-S7 ESI-Mass spectra of $H_2L^1 H_2L^2$ , 1 and 2                                                | S6         |
| 3.  | <b>Fig. S8</b> Intramolecular hydrogen bonding interactions in $H_2L^1$                                 | <b>S</b> 8 |
| 4.  | Fig. S9 Fluorescence spectra of 1 and 2 in presence of various NECs (14 equiv)                          | S9         |
| 5.  | Fig. S10 Nonlinear SV plot for 1 and 2                                                                  | S9         |
| 6.  | Fig. S11 Jobs plot analysis showed 1:4 binding ratio between 1 and PA                                   | S9         |
| 7.  | Fig. S12 Fluorescence titration spectra of 1 in presence of various NECs                                | S10        |
| 8.  | Fig. S13 SV plot and percentage quenching for 1 in presence of various NECs                             | S11        |
| 9.  | Fig. S14 Percentage quenching for 2 in presence of various NECs                                         | S11        |
| 10. | Fig. S15 Fluorescence spectra of 1 with increasing amounts of phenolic derivative                       | S12        |
| 11. | Fig. S16 Fluorescence spectra of 2 with increasing amounts of phenolic derivative                       | S12        |
| 12. | Fig. S17 Fluorescence spectra of 1 and 2 in presence of TFA                                             | S13        |
| 13. | <b>Fig. S18</b> <sup>1</sup> H NMR titration spectra of <b>1</b> in presence of PA in CDCl <sub>3</sub> | S14        |
| 14. | <b>Fig. S19</b> <sup>1</sup> H NMR spectra of $1(PA)_4$ in CDCl <sub>3</sub>                            | S15        |
| 15. | <b>Fig. S20</b> <sup>1</sup> H NMR spectra of $2(PA)_4$ in CDCl <sub>3</sub>                            | S16        |
| 16. | <b>Fig. S21</b> ESI-MS of 1(PA) <sub>4</sub>                                                            | S16        |
| 17. | Fig. S22 Fluorescence titration and percentage quenching spectra for M with PA                          | S17        |
| 18. | <b>Fig. S23</b> <sup>1</sup> H NMR spectra of $M(PA)_4$ in CDCl <sub>3</sub>                            | S17        |
| 19. | Fig. S24 Fluorescence spectra of 1 with PA in different organic solvents                                | S18        |
| 20. | Fig. S25 Fluorescence spectra of 1 with PA in different aqueous solution                                | S18        |
| 21. | Fig. S26-S27 Fluorescence spectra of 1 in presence of various NECs with PA                              | S19        |
| 22. | Fig. S28 Percentage fluorescence quenching in 2 with various NECs with PA                               | S20        |
| 23. | Fig. S29 Fluorescence titration and % quenching spectra for 2 with PA vapour                            | S21        |
| 24. | Fig. S30 Energy level diagram for HOMO and LUMO of 1/2 and various NECs                                 | S21        |
| 25. | Fig. S31 Spectral overlap between emission of 1/2 and absorption of NECs                                | S22        |
| 26. | Fig. S32 UV-vis titration spectra of 1 and 2 in presence of PA                                          | S22        |
| 27. | Table S1 Crystallographic parameter of $H_2L^1$ and 1                                                   | S23        |
| 28. | Table S2-S3 Selected bond distances and bond angles of $H_2L^2$ and 1                                   | S24        |
| 29. | <b>Table S4-S5</b> <sup>1</sup> H NMR data of 1-2 and $1(PA)_4$ and $2(PA)_4$                           | S25        |



Fig. S1  $^{1}$ H (top) and  $^{13}$ C NMR (bottom) spectra of  $H_2L^1$ .



Fig. S2  $^{1}$ H (top) and  $^{13}$ C NMR (bottom) spectra of  $H_{2}L^{2}$ .



**Fig. S3**  $^{1}$ H (top) and  $^{13}$ C NMR (bottom) spectra of 1.



Fig. S4  $^{1}$ H (top) and  $^{13}$ C NMR (bottom) spectra of 2.



Fig. S5 ESI-MS of  $H_2L^1$  (to) and  $H_2L^2$  (bottom).



Fig. S6 ESI-MS of 1 (top) and simulated isotopic pattern for molecular ion peak at m/z 1129.4731 (bottom).



Fig. S7 ESI-MS of 2 (top) and simulated isotopic pattern for the molecular ion peak at m/z 1044.9798 (bottom).



Fig. S8 Intramolecular hydrogen bonding interactions in  $H_2L^1$ .



Fig. S9 Fluorescence Spectra of 1 and 2 (c,  $1 \mu M$  in CH<sub>3</sub>CN) in presence of 14 equiv of various NECs.



Fig. S10 Nonlinear SV plot for 1 and 2 with varying amount of PA.



Fig. S11 Job's plot analysis showed 1:4 binding ratio between 1 and PA.



Fig. S12 Fluorescence spectra of 1 (c, 1  $\mu$ M in CH<sub>3</sub>CN) showing quenching with increasing amounts (0.0-14.0 equiv) of various NECs [TNT (a), 2,4-DNT (b), 2,6-DNT (c), DNB (d), 4-NT (e), 4-NB (f), 4-NM (g)] upon excitation at 378 nm.



Fig. S13 SV plot (a) and percentage fluorescence quenching graph (b) for 1 (c,  $1 \mu M$  in CH<sub>3</sub>CN) in presence of 14 equiv. of various NECs (2,4-DNP, 4-NP, TNT, 2,4-DNT, 2,6-DNT, DNB, 4-NT, 4-NB, 4-NM, phenol).



**Fig. S14** Percentage fluorescence quenching graph for **2** in presence of various NECs (2,4-DNP, 4-NP, TNT, 2,4-DNT, 2,6-DNT, DNB, 4-NT, 4-NB, 4-NM, phenol).



Fig. S15 Fluorescence quenching spectra of 1 (c, 1  $\mu$ M in CH<sub>3</sub>CN) with increasing amounts (0.0-14.0 equiv) of 4-DNP (a), 4-NP (b) and phenol (c) upon excitation at 378 nm.



Fig. S16 Fluorescence quenching spectra of 2 (c, 1  $\mu$ M in CH<sub>3</sub>CN) with increasing amounts (0.0-14.0 equiv) of 4-DNP (a), 4-NP (b) and phenol (c) upon excitation at 390 nm.



Fig. S17 Fluorescence spectra of 1 and 2 (c, 1 µM in CH<sub>3</sub>CN) in presence of TFA (4 equiv).



Fig. S18 <sup>1</sup>H NMR titration spectra of 1 in presence of varying amount of PA in CDCl<sub>3</sub> [red lines represent downfield shift in aromatic and aliphatic protons in 1, blue line presents the appearance of picric acid proton and red star shows the formation of  $(CH_3CH_2)_2N\underline{H}^+$  resulted by the protonation of N,N-diethyl amine nitrogen.



Fig. S19 <sup>1</sup>H NMR spectra of the ensuing species 1.(PA)<sub>4</sub> in CDCl<sub>3</sub>.



Fig. S20 <sup>1</sup>H NMR spectra of the ensuing species 2.(PA)<sub>4</sub> in CDCl<sub>3</sub>.



Fig. S21 ESI-MS of the ensuing species  $1.(PA)_4$ .



**Fig. S22** Fluorescence quenching spectra of **M** with increasing amounts of PA (a) and percentage fluorescence quenching graph in presence of various NECs (2,4-DNP, 4-NP, TNT, 2,4-DNT, 2,6-DNT, DNB, 4-NT, 4-NB, 4-NM, phenol).



Fig. S23 <sup>1</sup>H NMR spectra of M in presence of PA (4.0 equiv).



Fig. S24 Fluorescence quenching spectra of 1 (c, 1  $\mu$ M) with increasing amounts of PA (0.0-14.0 equiv) in different solvents CH<sub>2</sub>Cl<sub>2</sub> (a), CHCl<sub>3</sub> (b), THF (c) and DMSO (d).



Fig. S25 Fluorescence quenching spectra of 1 (c, 1  $\mu$ M in CH<sub>3</sub>CN) with increasing amounts of PA (0.0-14.0 equiv) in different water samples [distilled water (a), tap water (b), river water (c)] and in presence of blank water [200–400  $\mu$ L, (d)].



Fig. S26 Fluorescence spectra of 1 (c, 1  $\mu$ M in CH<sub>3</sub>CN) in presence of various NECs [14 equiv of TNT (a), 2,4-DNT (b), 2,6-DNT (c), DNB (d), 4-NT (e), 4-NB (f), 4-NM (g) (redlines)] followed by the incremental addition of PA.



Fig. S27 Fluorescence spectra of 1 (c, 1  $\mu$ M in CH<sub>3</sub>CN) in simultaneous presence of various NECs [7 × 14 equiv, redline] followed by



**Fig. S28** Changes in % fluorescence intensity of **2** on addition of various NECs followed by PA, [100% intensity for pure **2** (blue circle), and in presence of various NECs without PA (red circle), followed by additions PA (other points)].



**Fig. S29** Fluorescence titration spectra (a) and % fluorescence quenching (b) for **2** (c, 1  $\mu$ M in CH<sub>3</sub>CN) on exposure of vapour of PA at different time intervals (5–30 min).



Fig. S30 Energy level diagram for the frontier molecular orbital (HOMO and LUMO) for the complexes 1/2 and various NECs. The HOMO for 1 and 2 showed lower energy than LUMO of NECs and ruled out the GS charge transfer between complexes (without protonation) and NECs.



Fig. S31 Spectral overlap between the normalized emission spectrum of 1/2 and normalized absorption spectra of various NECs (a), higher spectral overlap between emission spectra of 1/2 and normalized absorption spectra picrate than PA (b).



Fig. S32 UV–vis titration spectra of 1 and 2 (c, 1  $\mu$ M in CH<sub>3</sub>CN) in presence of various amount of PA (14 equiv).

|                                     | $H_2L^1$                       | 1                              |
|-------------------------------------|--------------------------------|--------------------------------|
| empirical formula                   | $C_{31}H_{40}N_4O_2$           | $C_{62}H_{76}N_8O_8Zn_2$       |
| formula weight                      | 500.6                          | 1192.09                        |
| crystal system                      | orthorhombic                   | Monoclinic                     |
| space group                         | Fdd2                           | $P2_1/n$                       |
| a (A°)                              | 20.763(3)                      | 13.2334(5)                     |
| b (A°)                              | 31.748(5)                      | 16.7995(6)                     |
| c (A°)                              | 8.6715(12)                     | 15.3797(6)                     |
| a (deg)                             | 90.00                          | 90.00                          |
| β (deg)                             | 90.00                          | 103.611(2)                     |
| γ (deg)                             | 90.00                          | 90.00                          |
| V (A° 3)                            | 5716.3(15)                     | 3323.1(2)                      |
| Color and habit                     | Light Yellow block             | Yellow block                   |
| Z                                   | 8                              | 2                              |
| dcal (g/cm <sup>3</sup> )           | 1.164                          | 1.191                          |
| Crystalsize (mm <sup>3</sup> )      | $0.18 \times 0.16 \times 0.12$ | $0.30 \times 0.27 \times 0.22$ |
| Temperature (K)                     | 292(2)                         | 292(2)                         |
| wavelength (A°)                     | ΜοΚ\α 0.71073                  | MoK\α 0.71073                  |
| $\mu$ (mm <sup>-1</sup> )           | 0.073                          | 0.776                          |
| GOFa on F2                          | 1.108                          | 1.243                          |
| final R indices[ $I > 2\sigma(I)$ ] | R1 = 0.0321                    | R1 = 0.0598                    |
|                                     | wR2= 0.0865                    | wR2= 0.1647                    |
| R indices (All data)                | R1 = 0.0351                    | R1 = 0.1196                    |
|                                     | wR2 = 0.0895                   | wR2 = 0.1859                   |

Table S1. Crystallographic parameter of  $H_2L^1$  and 1.

| bond distances (Å) |          |        |           |  |
|--------------------|----------|--------|-----------|--|
| Н                  | $H_2L$   |        | 1         |  |
| O1 C13             | 1.356(5) | N1 C1  | 1.440(4)) |  |
| N1 C7              | 1.264(6) | N1 C10 | 1.308(4)  |  |
| N1 C1              | 1.423(6) | O1 C12 | 1.316(4)  |  |
| N2 C11             | 1.362(6) | C21 N2 | 1.299(4)  |  |
| N2 C16             | 1.454(8) | O2 C23 | 1.315(4)  |  |
| O1 H1A             | 1.06(6)  | Zn1 O1 | 1.924(3)  |  |
|                    |          | Zn1 N1 | 1.988(3)  |  |
|                    |          | Zn1 N2 | 1.998(3)  |  |
|                    |          | Zn1 O2 | 1.928(3)  |  |

Table S2. Selected bond lengths (Å) in  $H_2L^1$  and 1.

 Table S3. Selected bond angles (°) for 1.

| Selected bond angles (°) |            |  |  |  |
|--------------------------|------------|--|--|--|
| Ol Znl O2                | 110.77(12) |  |  |  |
| Ol Znl Nl                | 96.64(11)  |  |  |  |
| O2 Zn1 N1                | 120.52(12) |  |  |  |
| O1 Zn1 N2                | 117.66(12) |  |  |  |
| O2 Zn1 N2                | 96.33(11)  |  |  |  |
| N1 Zn1 N2                | 116.31(12) |  |  |  |

| Protons                  | signals | $H_2L^1\delta$ | <b>1</b> δ (ppm) | <b>1</b> (PA) <sub>4</sub> δ | Shift            |
|--------------------------|---------|----------------|------------------|------------------------------|------------------|
|                          |         | (ppm)          |                  | (ppm)                        |                  |
| <u>H</u> a               | (s)     | 13.55          |                  |                              |                  |
| <u><i>H</i></u> b        | (s)     | 8.07           | 7.52             | 7.62                         | 0.10 (downfield) |
| <u>H</u> c               | (d)     | 7.10           | 6.80             | 7.20                         | 0.40 (downfield) |
| <u><i>H</i></u> d        | (d)     | 6.25           | 6.04             | 6.42                         | 0.38 (downfield) |
| <u>H</u> e               | (s)     | 6.22           | 6.10             | 6.79                         | 0.69 (downfield) |
| <u><i>H</i></u> f        | (s)     | 6.95           | 6.73             | 7.18                         | 0.45 (downfield) |
| <u><i>H</i></u> i        | (q)     | 3.42           | 3.38             | 3.57                         | 0.19 (downfield) |
| <u>H</u> j               | (t)     | 1.20           | 1.18             | 1.29                         | 0.11 (downfield) |
| <u>H</u> g               | (s)     | 2.16           | 2.28             | 2.41                         | 0.13 (downfield) |
| <u><i>H</i></u> h        | (s)     | 2.04           | 0.85             | 2.18                         | 1.33 (downfield) |
| Picrate ( <u>H</u> l)    | (s)     |                |                  | 8.99                         |                  |
| -NH ( <u><i>H</i></u> k) | (s)     |                |                  | 11.09                        |                  |

 Table S4. <sup>1</sup>H NMR data of 1 and 1(PA)<sub>4</sub>.

| Protons               | signals | $H_2L^2 \delta$ | <b>2</b> δ (ppm) | <b>1</b> (PA) <sub>4</sub> δ | Shift            |
|-----------------------|---------|-----------------|------------------|------------------------------|------------------|
|                       |         | (ppm)           |                  | (ppm)                        |                  |
| <u>H</u> a            | (s)     | 13.64           |                  |                              |                  |
| <u><i>H</i></u> b     | (s)     | 8.44            | 8.06             | 8.22                         | 0.16 (downfield) |
| <u>H</u> c            | (d)     | 7.35            | 6.97             | 7.09                         | 0.12 (downfield) |
| <u><i>H</i></u> d     | (d)     | 7.27            | 6.02             | 6.12                         | 0.10 (downfield) |
| <u>H</u> e            | (s)     | 6.23            | 6.53             | 6.75                         | 0.22 (downfield) |
| <u><i>H</i></u> f     | (s)     | 7.08            | 6.75             | 7.18                         | 0.38 (downfield) |
| <u><i>H</i></u> i     | (q)     | 3.41            | 3.41             | 3.53                         | 0.12 (downfield) |
| <u>H</u> j            | (t)     | 1.21            | 1.23             | 1.35                         | 0.12 (downfield) |
| Picrate ( <u>H</u> l) | (s)     |                 |                  | 8.80                         |                  |

**Table S5**. <sup>1</sup>H NMR data of **2** and **2**(PA)<sub>4</sub>.