Supporting Information for:

Probing Bistability in Fe^{II} and Co^{II} Complexes with an Unsymmetrically Substituted Quinonoid Ligand

Margarethe van der Meer,^{*a,b*} Yvonne Rechkemmer,^{*c,b*} Frauke D. Breitgoff,^{*c*} Sebastian Dechert,^{*d*} Raphael Marx,^{*c*} María Dörfel,^{*c*} Petr Neugebauer,^{*c*} Joris van Slageren,^{*c*,*} and Biprajit Sarkar^{*a*,*}

^{*a*} Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany. Email: <u>biprajit.sarkar@fu-berlin.de</u>

^c Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany. Email: <u>ipcjosl@ipc.uni-stuttgart.de</u>

^{*d*} Institut für Anorganische Chemie, Georg August Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany.

^b Both authors contributed equally to this work.

X-ray

[1]BF₄·2 CH₂Cl₂ [2]BF₄·2CH₂Cl₂ compound empirical formula C₃₈H₄₀BCl₆F₄FeN₅O₃ C₃₈H₄₀BCl₆CoF₄N₅O₃ formula weight 970.11 973.19 T[K]140(2)133(2) crystal size [mm³] $0.50\times0.33\times0.17$ $0.18 \times 0.10 \times 0.08$ crystal system monoclinic monoclinic space group $P2_1/n$ $P2_{1}/n$ a [Å] 15.925(3) 15.7289(6) *b* [Å] 15.3978(4) 15.360(3) *c* [Å] 17.4980(7) 17.764(3) 90 90 α [°] 94.213(3) 92.216(4) β[°] 90 90 γ [°] V[Å³] 4226.4(3) 4342.0(14) Ζ 4 4 1.525 1.489 $\rho \left[g/cm^{3} \right]$ *F*(000) 1984 1988 μ [mm⁻¹] 0.798 0.824 0.7432 / 0.8680 0.6637 / 0.7452 T_{\min} / T_{\max} 1.681 - 25.698 1.685 - 25.112 θ-range [°] *hkl*-range ±19, -18 - 17, ±21 $-18 - 17, \pm 18, \pm 21$ measured refl. 44734 34967 unique refl. $[R_{int}]$ 7959 [0.0541] 7707 [0.0492] 6992 5201 observed refl. $(I > 2\sigma(I))$ data / restraints / param. 7959 / 9 / 593 7707 / 8 / 580 goodness-of-fit (F^2) 1.059 1.112 0.0695, 0.1725 0.0605, 0.1435 R1, wR2 ($I > 2\sigma(I)$) R1, wR2 (all data) 0.0784, 0.1779 0.0946, 0.1629 resid. el. dens. [e/Å³] -0.930 / 0.894 -0.668 / 0.729

Table S1. Crystal data and refinement details for [1]BF₄·2CH₂Cl₂and [2]BF₄·2CH₂Cl₂.

Fig. S1 Magnetization curve for [1]BF₄ measured at 1.8 K. The best fit with the parameters given in the text is shown as a solid line.

Fig. S2. Isothermal LIESST study of [1]BF₄ at 15 K. The effect of sample heating due to laser irradiation can clearly be observed by jumps in χT on switching on and off the irradiation.

Fig. S3 ¹H-NMR of [1]⁺ measured at 20 °C to -70 °C in CD₂Cl₂.

Fig. S4 X-band EPR measurement of **[1]**BF₄ recorded at 4 K. The best fit with the parameters given in the text is shown as a dotted line.

Fig. S5 χT as a function of *T* for the complex [2]BF₄ measured at 1000Oe. Inset: Magnetization curve for [2]BF₄ measured at 1.8 K. Simulations with the parameters given in the text are shown as solid lines.

Fig. S6 ¹H NMR spectrum of $[2]^{2+}$ in acetone-d₆ measured after 12 h of dissolving the sample.

Fig. S7 ¹H NMR spectrum of H_2L in CDCl₃. Sample contains a residue of CH_2Cl_2 .

Fig. S8 13 C NMR spectrum of H_2L in CDCl₃.