Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates

Bryan P. Nell, Charles D. Swor, E. Adrian Henle, Lev N. Zakharov, N. Ian Rinehart,

Aditya Nathan, and David R. Tyler*

Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403,

USA

E-mail: dtyler@uoregon.edu

Table of Contents

 Table S1. Mass spectral data for copper macrocyclic complexes 12-17.

Demetallation of Complex 16.

Figure S1. Possible stereoisomers of phosphine 22 (arc = $-C_3H_6$ -, box = $-C_4H_8$ -).

- Figure S2. ³¹P{¹H} NMR spectrum of 3 in CDCl₃.
- Figure S3. ³¹P{¹H} NMR spectrum of 4 in CDCl₃.
- Figure S4. ³¹P NMR spectrum of 4 in CDCl₃.
- Figure S5. ${}^{31}P{}^{1}H$ NMR spectrum of Cu(MeOPrPE)₂PF₆ (7) in CDCl₃.
- Figure S6. ${}^{31}P{}^{1}H$ NMR spectrum of Cu(MeOPrPP)₂PF₆(8) in CDCl₃.
- Figure S7. ³¹P{¹H} NMR spectrum of Cu(MPPE)₂OTf(9) in CDCl₃.
- Figure S8. ³¹P{¹H} NMR spectrum of Cu(MPPP)₂OTf(10) in CDCl₃.

Figure S9. ³¹P{¹H} NMR spectrum of 11 in CDCl₃.

- Figure S10. ${}^{31}P{}^{1}H$ NMR spectrum of 12 in CDCl₃.
- Figure S11. ${}^{31}P{}^{1}H$ NMR spectrum of 14 in CDCl₃.
- Figure S12. ${}^{31}P{}^{1}H$ NMR spectrum of 15 in CDCl₃.
- Figure S13. ${}^{31}P{}^{1}H$ NMR spectrum of 16 in CDCl₃.
- Figure S14. ${}^{31}P{}^{1}H$ NMR spectrum of 15 from 11.
- Figure S15. ${}^{31}P{}^{1}H$ NMR spectrum of 17.
- Figure S16. ³¹P{¹H} NMR spectrum of 18 in CDCl₃.
- Figure S17. ³¹P{¹H} NMR spectrum of 19 in CDCl₃.
- Figure S18. ${}^{31}P{}^{1}H$ NMR spectrum of 20.
- Figure S19. ³¹P NMR spectrum of 21 in CDCl₃.
- Figure S20. ${}^{31}P{}^{1}H$ NMR spectrum of 22.
- Figure S21. ${}^{31}P{}^{1}H$ NMR spectrum of 23.
- Figure S22. ³¹P{¹H} NMR spectrum of $Co(23)Cl_2$.
- Figure S23. ¹H NMR spectrum of 3.
- Figure S24. ¹H NMR spectrum of 4 in CDCl₃.
- Figure S25. ¹H NMR spectrum of 20.
- Figure S26. ¹H NMR spectrum of 21 in CDCl₃.
- Figure S27. ¹H NMR spectrum of 22.
- Figure S28. ¹H NMR spectrum of 11 vs. 21 in CDCl₃.

- Figure S29. ¹H NMR spectrum of Co(21)Cl₂ for Evans' method.
- Figure S30. ¹H NMR spectrum of 23.
- Figure S31. ESI-MS of Cu(MeOPrPE)₂PF₆ (7).
- Figure S32. ESI-MS of Cu(MeOPrPP)₂OTf (8).
- Figure S33. ESI-MS of Cu(MPPE)₂PF₆ (9).
- Figure S34. ESI-MS of Cu(MPPP)₂OTf (10).
- **Figure S35.** ESI-MS of Cu(4)OTf (11).
- Figure S36. ESI mass spectrum of 12.
- Figure S37. ESI mass spectrum of 13.
- Figure S38. ESI mass spectrum of 15.
- Figure S39. ESI mass spectrum of 16.
- Figure S40. ESI mass spectrum of 17.
- Figure S41. ESI mass spectrum of 15.
- Figure S42. ESI-MS of 18.
- Figure S43. ESI-MS of 19.
- **Figure S44.** ESI-MS of [Co(21)]Cl₂.
- Figure S45. ESI-MS of [Fe(21)(CH₃CN)₂](BPh₄)₂.
- Figure S46. ESI mass spectrum of [Fe(21)(CH₃CN)₂](OTf)₂.
- Figure S47. FAB mass spectrum of 23.
- Figure S48. Hi-Res FAB-MS of 23.
- Figure S49. ESI mass spectrum of Co(23)Cl₂.
- Figure S50. UV-Vis spectrum of Co(21)Cl₂ in dichloromethane.
- Figure S51. UV-Vis spectrum of Co(23)Cl₂ in dichloromethane.
- Figure S52. Infrared spectrum of Cu(4)OTf, 11.
- Figure S53. Infrared spectrum of [Fe(21)(CH₃CN)₂](OTf)₂.

Figure S54. Infrared spectrum of [Fe(**21**)(CH₃CN)₂](OTf)₂ made in an Ar-filled glovebox.

Figure S55. Infrared spectrum of $[Fe(21)(CH_3CN)_2](OTf)_2$ made in an Ar-filled glovebox, redissolved and bubbled with N₂.

Figure S56. Overlay of $[Fe(21)(CH_3CN)_2](OTf)_2$ made in an argon-filled glovebox vs. made in a nitrogen-filled glovebox.

Figure S57. Overlay of [Fe(**21**)(CH₃CN)₂](OTf)₂ made in an argon-filled glovebox vs. made in a nitrogen-filled glovebox (y-axis is absorbance).

Figure S58. ³¹P{¹H} NMR spectrum of isopropyl allyl(phenyl)phosphinate in CDCl₃.

- Figure S59. ¹H NMR spectrum of isopropyl allyl(phenyl)phosphinate in CDCl₃.
- Figure S60. ¹³C NMR spectrum of isopropyl allyl(phenyl)phosphinate in CDCl₃.

Tables S2-S7. X-ray crystallographic data for 15.

complex	R	n	m	Formula	m/z ^a
12	CH ₃ O(C ₃ H ₆)	1	1	$[C_{26}H_{56}O_4P_4Cu]^+$	619
13	$CH_3O(C_3H_6)$	2	1	$[C_{28}H_{60}O_4P_4Cu]^+$	647
14	Ph	1	1	$[C_{34}H_{40}P_4Cu]^+$	635
15	Ph	2	1	$[C_{36}H_{44}P_4Cu]^+$	663
16	Ph	1	2	$[C_{36}H_{44}P_4Cu]^+$	663
17	Ph	2	2	$[C_{38}H_{48}P_4Cu]^+$	691

Table S1. Mass spectral data for copper macrocyclic complexes 12-17.

^acalculated and observed

Demetallation of Complex 16. Complex **16** was demetallated with KCN to give the free phosphine **23** as an oily, colorless residue (Scheme 13). The uncoordinated macrocycle ligand displayed a singlet in the ³¹P{¹H} NMR spectra at -20.4 ppm. The general features of the ¹H NMR spectrum are broad and do not give much structural information, but the disappearance of the P-H protons support the idea that full alkylation was achieved. A FAB mass spectrum of **19** showed the expected molecular ion peak plus a proton at 601 m/z, and high resolution mass spectrometry (HR-MS) gave a molecular formula of $C_{36}H_{45}P_4$, which corresponds to $[m+H]^+$.

Figure S1. Possible stereoisomers of phosphine **21** (arc = $-C_3H_6$ -, box = $-C_4H_8$ -).

Figure S2. ³¹P{¹H} NMR spectrum of 3 in CDCl₃.

Figure S3. ³¹P{¹H} NMR spectrum of 4 in CDCl₃.

Figure S4. ³¹P NMR spectrum of 4 in CDCl₃.

Figure S5. ${}^{31}P{}^{1}H$ NMR spectrum of Cu(MeOPrPE)₂PF₆ (7) in CDCl₃.

Figure S6. ³¹P{¹H} NMR spectrum of Cu(MeOPrPP)₂PF₆(**8**) in CDCl₃. Note this spectrum is for the PF₆⁻ salt. The PF₆⁻ resonance is at approximately -125 ppm.

Figure S7. ³¹P{¹H} NMR spectrum of Cu(MPPE)₂OTf(**9**) in CDCl₃.

Figure S8. ${}^{31}P{}^{1}H$ NMR spectrum of Cu(MPPP)₂OTf(10) in CDCl₃.

Figure S9. ${}^{31}P{}^{1}H$ NMR spectrum of 11 in CDCl₃.

Figure S10. ${}^{31}P{}^{1}H$ NMR spectrum of 12 in CDCl₃.

Figure S12. ${}^{31}P{}^{1}H$ NMR spectrum of 15 in CDCl₃.

Figure S13. ³¹P{¹H} NMR spectrum of 16 in CDCl₃.

Figure S14. ${}^{31}P{}^{1}H$ NMR spectrum of 15 from 11.

Figure S15. ${}^{31}P{}^{1}H$ NMR spectrum of 17.

Figure S16. ³¹P{¹H} NMR spectrum of 18 in CDCl₃.

Figure S17. ³¹P{¹H} NMR spectrum of 19 in CDCl₃.

Figure S18. ${}^{31}P{}^{1}H$ NMR spectrum of 20.

Figure S19. ³¹P NMR spectrum of 21 in CDCl₃.

Figure S20. ${}^{31}P{}^{1}H$ NMR spectrum of 22.

Figure S21. ${}^{31}P{}^{1}H$ NMR spectrum of 23.

Figure S22. ³¹P{¹H} NMR spectrum of Co(23)Cl₂.

Figure S23. ¹H NMR spectrum of 3.

Figure S24. ¹H NMR spectrum of 4 in CDCl₃.

Figure S25. ¹H NMR spectrum of 20.

Figure S26. ¹H NMR spectrum of 21 in CDCl₃.

Figure S27. ¹H NMR spectrum of 22.

Figure S28. ¹H NMR spectrum of 11 vs. 21 in CDCl₃.

Figure S29. ¹H NMR spectrum of Co(**21**)Cl₂ for Evans' method.

Figure S30. ¹H NMR spectrum of 23.

Figure S31. ESI-MS of Cu(MeOPrPE)₂PF₆ (7).

Figure S32. ESI-MS of Cu(MeOPrPP)₂OTf (8).

Figure S33. ESI-MS of Cu(MPPE)₂PF₆ (9).

Figure S34. ESI-MS of Cu(MPPP)₂OTf (10).

Figure S35. ESI-MS of Cu(4)OTf (11).

Figure S36. ESI mass spectrum of 12.

Figure S37. ESI mass spectrum of 13.

Figure S38. ESI mass spectrum of 15.

Figure S39. ESI mass spectrum of 16.

Figure S40. ESI mass spectrum of 17.

Figure S41. ESI mass spectrum of 15.

Figure S42. ESI-MS of 18.

Figure S43. ESI-MS of 19.

Figure S44. ESI-MS of [Co(21)]Cl₂.

Figure S45. ESI-MS of [Fe(21)(CH₃CN)₂](BPh₄)₂.

Figure S46. ESI mass spectrum of $[Fe(21)(CH_3CN)_2](OTf)_2$. The peak at m/z 819 is $Fe(21)OTf]^+$ and the peak at 335 is $[Fe(21)]^{2+}$.

Figure S47. FAB mass spectrum of 23.

Elemental Composition Report

Single Mass Analysis

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 8 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)

Elements Used: C: 0-36 H: 0-45 Na: 0-1 P: 0-4 Nathan, MW=600.24, Tyler_U of O, 28070A-0812, C36H44P4 091613TR-05 36 (0.793) Cm (36:48) 301.1228 443.1200 543.120

	142	2.9876	203.0	69524	1.120	1	260.13	315	328.14	487 328.65	22 4	19.17	95	151.18	31,465	1961	522	.1878	563.2	015	2 252	6 834.22	79
100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	• m/z
Minimum Maximum	12					5.0		50.0	0	-1. 50.	5												
Mass		Cald	. M	a.s.s	1	mDa		PPM		DBE		i-	FIT		For	mula							
601.246	6	601	.247	2		-0.6		-1.0)	16.	5	43	.1		C36	H45	5 P4	6					

Figure S48. Hi-Res FAB-MS of 23.

Figure S49. ESI mass spectrum of Co(23)Cl₂.

1: TOF MS ES+

601.2466

2.77e4

Figure S50. UV-Vis spectrum of $Co(21)Cl_2$ in dichloromethane.

Figure S51. UV-Vis spectrum of $Co(23)Cl_2$ in dichloromethane.

Figure S52. Infrared spectrum (ATR method) of Cu(4)OTf, 11.

Figure S53. Infrared spectrum (ATR method) of [Fe(21)(CH₃CN)₂](OTf)₂.

Figure S54. Infrared spectrum (ATR method) of [Fe(**21**)(CH₃CN)₂](OTf)₂ prepared in an Ar-filled glovebox.

Figure S55. Infrared spectrum (ATR method) of $[Fe(21)(CH_3CN)_2](OTf)_2$ prepared in an Ar-filled glovebox, redissolved and and bubbled with N₂.

Figure S56. Overlay of $[Fe(21)(CH_3CN)_2](OTf)_2$ prepared in an argon-filled glovebox vs. the same complex prepared in a nitrogen-filled glovebox.

Figure S57. Overlay of $[Fe(21)(CH_3CN)_2](OTf)_2$ prepared in an argon-filled glovebox vs. the same complex prepared in a nitrogen-filled glovebox (y-axis is absorbance).

Figure S58. ³¹P{¹H} NMR spectrum of isopropyl allyl(phenyl)phosphinate in CDCl₃.

Figure S59. ¹H NMR spectrum of isopropyl allyl(phenyl)phosphinate in CDCl₃.

Figure S60. ¹³C NMR spectrum of isopropyl allyl(phenyl)phosphinate in CDCl₃.

Table S2. Crystal data and structure refinement for 15.

 $C_{37}H_{44}CuF_{3}O_{3}P_{4}S$, M = 813.20, 0.21 x 0.12 x 0.06 mm, T = 150 K, Tetragonal, space group *I-4*, *a* = 13.207(4) Å, *b* = 13.207(4) Å, *c* = 10.681(4) Å, *V* = 1862.9(14) Å³, *Z* = 2, D_{c} = 1.450 Mg/m³, μ (Mo) = 0.865 mm⁻¹, *F*(000) = 844, $2\theta_{max}$ = 50.0°, 3231 reflections, 1536 independent reflections [R_{int} = 0.0696], R1 = 0.0822, wR2 = 0.2187 and GOF = 1.081 for 1536 reflections (94 parameters) with I>2 σ (I), R1 = 0.1026, wR2 = 0.2337 and GOF = 1.081 for all reflections, max/min residual electron density +2.147/-0.489 eÅ⁻³.

	Х	у	Z	U(eq)
 Cu(1)	10000	10000	5000	38(1)
P(1)	8571(2)	9590(2)	4019(3)	38(1)
C(1)	8399(6)	8230(7)	3766(10)	46(3)
C(2)	8800(7)	7563(6)	4842(13)	52(3)
C(3)	9991(6)	7516(6)	5004(13)	46(2)
C(4)	8168(6)	10086(6)	2495(12)	48(3)
C(5)	7234(7)	9832(6)	2005(11)	46(3)
C(6)	6950(9)	10216(8)	874(14)	66(3)
C(7)	7570(8)	10877(8)	227(13)	58(3)
C(8)	8476(9)	11157(9)	698(12)	62(3)
C(9)	8794(7)	10772(6)	1874(11)	48(3)
O(1S)	10000	10000	690(30)	500(90)

Table S3. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for mo_dtr26_0m_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Cu(1)-P(1)	2225(2)
Cu(1) P(1) #1	2 225(2)
Cu(1) - P(1) # 2	2 225(2)
Cu(1) P(1)#3	2.225(2)
P(1)-C(3)#2	1.827(10)
P(1)-C(1)	1.831(9)
P(1)-C(4)	1.834(12)
C(1)-C(2)	1.542(15)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(2)-C(3)	1 584(13)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-P(1)#3	1.827(10)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-C(9)	1.394(13)
C(4)-C(5)	1.382(13)
C(5)-C(6)	1.363(16)
C(5)-H(5A)	0.9500
C(6)-C(7)	1.382(17)
C(6)-H(6A)	0.9500
C(7)-C(8)	1.349(17)
C(7)-H(7A)	0.9500
C(8)-C(9)	1.418(18)
C(8)-H(8A)	0.9500
C(9)-H(9A)	0.9500
O(1S)-O(1S)#4	1.48(7)
P(1)-Cu(1)-P(1)#1	123.82(14)
P(1)-Cu(1)-P(1)#2	102.81(6)
P(1)#1-Cu(1)-P(1)#2	102.81(6)
P(1)-Cu(1)-P(1)#3	102.81(6)
P(1)#1-Cu(1)-P(1)#3	102.81(6)

Table S4. Bond lengths [Å] and angles [°] for mo_dtr26_0m_a.

P(1)#2-Cu(1)-P(1)#3	123.82(14)
C(3)#2-P(1)-C(1)	106.7(4)
C(3)#2-P(1)-C(4)	100.2(5)
C(1)-P(1)-C(4)	100.6(5)
C(3)#2-P(1)-Cu(1)	107.7(4)
C(1)-P(1)-Cu(1)	114.4(3)
C(4)-P(1)-Cu(1)	125.3(3)
C(2)-C(1)-P(1)	114.1(7)
C(2)-C(1)-H(1A)	108.7
P(1)-C(1)-H(1A)	108.8
C(2)-C(1)-H(1B)	108.7
P(1)-C(1)-H(1B)	108.7
H(1A)-C(1)-H(1B)	107.6
C(1)-C(2)-C(3)	116.4(9)
C(1)-C(2)-H(2A)	108.2
C(3)-C(2)-H(2A)	108.2
C(1)-C(2)-H(2B)	108.1
C(3)-C(2)-H(2B)	108.3
H(2A)-C(2)-H(2B)	107.3
C(2)-C(3)-P(1)#3	109.5(6)
C(2)-C(3)-H(3A)	109.9
P(1)#3-C(3)-H(3A)	109.8
C(2)-C(3)-H(3B)	109.8
P(1)#3-C(3)-H(3B)	109.7
H(3A)-C(3)-H(3B)	108.2
C(9)-C(4)-C(5)	120.5(11)
C(9)-C(4)-P(1)	118.8(8)
C(5)-C(4)-P(1)	120.6(8)
C(6)-C(5)-C(4)	119.4(10)
C(6)-C(5)-H(5A)	120.3
C(4)-C(5)-H(5A)	120.4
C(5)-C(6)-C(7)	121.1(11)
C(5)-C(6)-H(6A)	119.5
C(7)-C(6)-H(6A)	119.4
C(8)-C(7)-C(6)	120.8(12)
C(8)-C(7)-H(7A)	119.6

119.6
119.7(11)
120.2
120.1
118.6(10)
120.7
120.7

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+2,z #2 y,-x+2,-z+1 #3 -y+2,x,-z+1

#4 y,-x+2,-z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cu(1)	25(1)	25(1)	63(2)	0	0	0
P(1)	28(1)	29(1)	58(2)	2(1)	0(1)	-5(1)
C(1)	29(4)	37(5)	71(8)	-3(4)	2(5)	0(3)
C(2)	47(5)	38(4)	72(8)	3(5)	-1(6)	-6(3)
C(3)	44(4)	31(4)	64(6)	0(6)	6(6)	9(3)
C(4)	26(4)	32(5)	84(8)	-8(5)	2(5)	3(3)
C(5)	40(5)	25(4)	73(8)	7(4)	0(5)	-2(3)
C(6)	66(7)	43(6)	88(9)	-9(6)	-9(7)	-6(5)
C(7)	57(6)	58(6)	60(8)	8(6)	3(6)	15(4)
C(8)	71(8)	53(6)	61(8)	-2(6)	9(6)	12(6)
C(9)	40(5)	27(4)	75(8)	2(5)	6(5)	-3(3)
O(1S)	900(200)	550(110)	25(19)	0	0	-400(140)

Table S5. Anisotropic displacement parameters (Å²x 10³) for mo_dtr26_0m_a. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	X	У	Z	U(eq)
H(1A)	7668	8092	3651	55
H(1B)	8749	8036	2983	55
H(2A)	8548	6864	4711	63
H(2B)	8503	7812	5636	63
H(3A)	10321	7555	4174	56
H(3B)	10185	6867	5400	56
H(5A)	6793	9392	2452	55
H(6A)	6316	10027	525	79
H(7A)	7356	11138	-558	70
H(8A)	8898	11609	244	74
H(9A)	9420	10977	2230	57

Table S6. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³)for mo_dtr26_0m_a.

P(1)#1-Cu(1)-P(1)-C(3)#2	-148.2(3)
P(1)#2-Cu(1)-P(1)-C(3)#2	-33.0(3)
P(1)#3-Cu(1)-P(1)-C(3)#2	96.6(3)
P(1)#1-Cu(1)-P(1)-C(1)	93.4(4)
P(1)#2-Cu(1)-P(1)-C(1)	-151.4(4)
P(1)#3-Cu(1)-P(1)-C(1)	-21.9(4)
P(1)#1-Cu(1)-P(1)-C(4)	-31.2(4)
P(1)#2-Cu(1)-P(1)-C(4)	84.0(4)
P(1)#3-Cu(1)-P(1)-C(4)	-146.5(4)
C(3)#2-P(1)-C(1)-C(2)	-82.9(8)
C(4)-P(1)-C(1)-C(2)	173.0(7)
Cu(1)-P(1)-C(1)-C(2)	36.1(8)
P(1)-C(1)-C(2)-C(3)	-69.8(11)
C(1)-C(2)-C(3)-P(1)#3	86.3(11)
C(3)#2-P(1)-C(4)-C(9)	120.9(8)
C(1)-P(1)-C(4)-C(9)	-129.9(8)
Cu(1)-P(1)-C(4)-C(9)	0.4(9)
C(3)#2-P(1)-C(4)-C(5)	-55.4(8)
C(1)-P(1)-C(4)-C(5)	53.9(8)
Cu(1)-P(1)-C(4)-C(5)	-175.8(6)
C(9)-C(4)-C(5)-C(6)	3.4(14)
P(1)-C(4)-C(5)-C(6)	179.6(8)
C(4)-C(5)-C(6)-C(7)	-1.7(15)
C(5)-C(6)-C(7)-C(8)	0.2(17)
C(6)-C(7)-C(8)-C(9)	-0.3(17)
C(5)-C(4)-C(9)-C(8)	-3.4(14)
P(1)-C(4)-C(9)-C(8)	-179.7(7)
C(7)-C(8)-C(9)-C(4)	1.9(15)

 Table S7.
 Torsion angles [°] for mo_dtr26_0m_a.

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+2,z #2 y,-x+2,-z+1 #3 -y+2,x,-z+1

#4 y,-x+2,-z