Supplementary Information

Barium borohydride chlorides;

Synthesis, crystal structures and thermal properties

Elisabeth Grube^a, Cathrine H. Olesen^a, Dorthe B. Ravnsbæk^{b*}, Torben R. Jensen^a

^a Center for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark

^b Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55,
5230 Odense M, Denmark

Figure S1. Powder X-ray diffraction for LiBH₄–BaCl₂ (1:1) measured at 295 K showing observed (circles), calculated (upper line) and difference (bottom line) plots. The position of the Bragg reflections are shown as tic marks for *h*-Ba(BH₄)_{0.86}Cl_{1.14} (upper), *o*-Ba(BH₄)_{0.16}Cl_{1.84} (middle), and LiCl (lower) ($\lambda = 0.70082$ Å).

o-Ba(BH₄)_{0.16}Cl_{1.84}: space group *Pnma*, a = 8.228(6) Å, b = 4.785(3) Å, c = 9.620(6) Å, $\alpha = \beta = \gamma = 90^{\circ}$. $\chi^2 = 0.112 \cdot 10^6$, $R_{wp} = 10.8\%$, $R_p = 10.2\%$, and $R_{Bragg} = 3.00\%$.

Figure S2. Powder X-ray diffraction for LiBH₄–BaCl₂ (2:1) measured at 295 K showing observed (circles), calculated (upper line) and difference (bottom line) plots. The position of the Bragg reflections are shown as tic marks for *h*-Ba(BH₄)_{0.85}Cl_{1.15} (upper) and LiCl (lower). ($\lambda = 0.70082$ Å). *h*-Ba(BH₄)_{0.85}Cl_{1.15}: space group P-62m, *a* = *b* = 8.2945(3) Å, *c* = 4.7776(3) Å, *a* = 90°, *β* = 90°, *γ* = 120°. $\chi^2 = 0.253 \cdot 10^5$, $R_{wp} = 6,68\%$, $R_p = 9.95\%$, and $R_{Bragg} = 3.65\%$.

Figure S3 Powder X-ray diffraction for LiBH₄–BaCl₂ (2:1) measured at 473 K showing observed (circles), calculated (upper line) and difference (bottom line) plots. The position of the Bragg reflections are shown as tic marks for *o*-Ba(BH₄)_{0.85}Cl_{1.15}. ($\lambda = 0.70082$ Å). *o*-Ba(BH₄)_{0.85}Cl_{1.15}: space group *Pmna*, a = = 8.3659(6) Å, b = 4.8731(3) Å, c = 9.6898(7) Å, $\chi^2 = 0.351 \cdot 10^4$, $R_{wp} = 4.83\%$, $R_p = 14.9\%$, and $R_{Bragg} = 7.20\%$.

Figure S4. *In situ* SR-PXD data of a sample NaBH₄ + BaCl₂ 2:1 measured from *RT* to 500 °C, 5 °C/min (BM01A, ESRF, $\lambda = 0.70082$ Å). No reaction occurred during ball milling as reflexes from NaBH₄ and *o*-BaCl₂ are present at *RT*. As the sample is heating the reflexes are moving to lower 20 values indicating cell expansion of NaBH₄ and *o*-BaCl₂. This expansion occurs up to 360 °C where Cl substitution into NaBH₄ begins giving a solid solution of Na(BH₄)_{1-x}Cl_x. At 320 °C reflexes from *o*-BaCl₂ disappear and reflexes from *o*-Ba(BH₄)_xCl_{2-x} appear.

Figure S5. Zoom in of Figure S3 showing $2\theta = 15-21^{\circ}$. *In situ* SR-PXD data of the ball milled sample NaBH₄–BaCl₂ (2:1) measured from *RT* to 500 °C, 5 °C/min (BM01A, ESRF, $\lambda = 0.70082$ Å).

Table S1. Atomic coordinates of *o*-Ba(BH₄)_{0.16}Cl_{1.84} refined from the SR-PXD data measured at *RT* for LiBH₄:BaCl₂ 1:1. Space group *Pnma*, a = 8.228(6) Å, b = 4.785(3) Å, c = 9.620(6) Å, $\alpha = \beta = \gamma = 90^{\circ}$. $\chi^2 = 0.112 \cdot 10^6$, $R_{wp} = 10.8\%$, $R_p = 10.2\%$, and $R_{Bragg} = 3.00\%$.

Atom	X	У	Ζ	occupancy
Ba1	0.2672	0.25000	0.1162	4.00
B1	0.0034	0.25000	0.8222	0.64
Cl1	0.1475	0.25000	0.4264	4.00
Cl2	0.0034	0.25000	0.8222	3.36

Table S2. Atomic coordinates of *h*-Ba(BH₄)_{0.85}Cl_{1.15} as refined from the SR-PXD data measured at *RT* for LiBH₄:BaCl₂ 2:1. Space group *P*-62*m*, a = b = 8.2945(3) Å, c = 4.7776(3) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 120^{\circ}$. $\chi^2 = 0.253 \cdot 10^5$, $R_{wp} = 6,68\%$, $R_p = 9.95\%$, and $R_{Bragg} = 3.65\%$.

Atom	X	У	Z	occupancy
Ba1	0.0000	0.0000	0.5000	1.00
Ba2	0.3333	0.6667	0.0000	2.00
B1	0.5699	0.0000	0.5000	2.55
Cl1	0.5699	0.0000	0.5000	0.45
Cl2	0.2508	0.0000	0.0000	3.00

Table S3. Atomic coordinates of *o*-Ba(BH₄)_{0.85}Cl_{1.15} as refined from the SR-PXD data measured at 200°C for LiBH₄–BaCl₂ (2:1). Space group *Pnma*, a = 8.3659(6) Å, b = 4.8731(3) Å, c = 9.6898(7) Å, $\chi^2 = 0.351 \cdot 10^4$, $R_{wp} = 4.83\%$, $R_p = 14.9\%$, and $R_{Bragg} = 7.20\%$.

Atom	X	У	Z	occupancy
Ba1	0.2658	0.25000	0.1160	4.00
B1	0.0034	0.25000	0.8222	3.40
Cl1	0.1459	0.25000	0.4264	4.00
Cl2	0.0034	0.25000	0.8222	0.60