## Insertion of 'BuNC into Thorium-Phosphorus and Thorium-Arsenic Bonds: Phosphaazaallene and Arsaazaallene Moieties in *f* Element Chemistry

Andrew C. Behrle and Justin R. Walensky\* Department of Chemistry, University of Missouri, Columbia, MO 65211

Email: Walenskyj@missouri.edu

## **Supporting Information**

## **Table of Contents**

| 1.  | <sup>1</sup> H NMR Spectra of $(C_5Me_5)_2$ Th $[P(H)Mes]_2$ , 1                                                                                        | S3  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.  | <sup>31</sup> P{ <sup>1</sup> H} NMR Spectra of $(C_5Me_5)_2$ Th[P(H)Mes] <sub>2</sub> , <b>1</b>                                                       | S4  |
| 3.  | <sup>31</sup> P NMR Spectra of $(C_5Me_5)_2$ Th[P(H)Mes] <sub>2</sub> , 1                                                                               | S5  |
| 4.  | <sup>1</sup> H NMR Spectra of $(C_5Me_5)_2$ Th[As(H)Tipp] <sub>2</sub> , <b>2</b>                                                                       | S6  |
| 5.  | <sup>1</sup> H NMR Spectra of $(C_5Me_5)_2$ Th $(CN'Bu)(\eta^2-(N,C)-(BuNCPTipp), 3$                                                                    | S7  |
| 6.  | <sup>31</sup> P{ <sup>1</sup> H} NMR Spectra of $(C_5Me_5)_2$ Th $(CN'Bu)(\eta^2-(N,C)-('BuNCPTipp), 3$                                                 | S8  |
| 7.  | <sup>1</sup> H NMR Spectra of $(C_5Me_5)_2$ Th $(CN'Bu)(\eta^2-(N,C)-(BuNCPMes), 4$                                                                     | S9  |
| 8.  | <sup>31</sup> P{ <sup>1</sup> H} NMR Spectra of $(C_5Me_5)_2$ Th $(CN'Bu)(\eta^2-(N,C)-('BuNCPMes), 4$                                                  | S10 |
| 9.  | <sup>1</sup> H NMR Spectra of $(C_5Me_5)_2$ Th $(CN'Bu)(\eta^2-(N,C)-(BuNCAsTipp), 5$                                                                   | S11 |
| 10. | $-80 \text{ °C }^{31}P{^1H} \text{ NMR spectra of } (C_5Me_5)_2Th[P(H)Tipp]_2 \text{ and two equivalents of } BuNC$                                     | S12 |
| 11. | -80 °C <sup>31</sup> P NMR spectra of (C <sub>5</sub> Me <sub>5</sub> ) <sub>2</sub> Th[P(H)Tipp] <sub>2</sub> and two equivalents of <sup>t</sup> BuNC | S13 |
| 12. | $-70 \text{ °C} {}^{31}\text{P} \text{ NMR}$ spectra of $(C_5\text{Me}_5)_2\text{Th}[P(H)\text{Tipp}]_2$ and two equivalents of 'BuNC                   | S14 |
| 13. | Stacked VT <sup>31</sup> P NMR spectra of $(C_5Me_5)_2$ Th[P(H)Tipp] <sub>2</sub> and two equivalents of 'BuNC                                          | S15 |



Figure S1. <sup>1</sup>H NMR spectrum ( $C_6D_6$ ) of ( $C_5Me_5$ )<sub>2</sub>Th[P(H)Mes]<sub>2</sub>, 1 (Mes = 2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>).

|     |     |                         |             |   |                                   |                              |                                                                                                                 |     | Current Data Parameters<br>NAME acb122915a<br>EXPNO 2<br>PROCNO 1                                                                                                                              |                                 |
|-----|-----|-------------------------|-------------|---|-----------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|     |     |                         |             |   |                                   |                              |                                                                                                                 |     | F2 - Acquisition Paramete<br>Date_ 20151229<br>Time 8.33<br>INSTRUM spect<br>PROBHD 5 mm Multinucl<br>PULPPOC 77dc230                                                                          | ¢r                              |
|     |     |                         |             |   |                                   |                              |                                                                                                                 |     | POLFROG 29de30   TD 65536   SOLVENT C6D6   NS 57   DS 4   SWH 51546.391   FIDRES 0.786536   AQ 0.6356992   RG 11585.2   DW 9.700   DE 6.00   TE 297.1   D1 2.00000000   d11 0.03000000   TD0 1 | Hz<br>Hz<br>is<br>is<br>K<br>Se |
|     |     |                         |             |   |                                   |                              |                                                                                                                 |     | ====== CHANNEL f1 =====<br>NUC1 31P<br>P1 7.00 t<br>PL1 6.00 c<br>SF01 121.4949025 M                                                                                                           | ==<br>1S<br>1E<br>1E            |
|     |     | -10°= -11-12-11-12-11-1 | <del></del> |   | 97-12979-1294, de 197-197-197-197 | ar a gun sión y tur spóradag | er verster er verster verster er v |     |                                                                                                                                                                                                | is<br>dE<br>dF                  |
| 200 | 150 | 100                     | 50          | 0 | -50                               | -100                         | -150                                                                                                            | ppm | F2 - Processing parameter<br>SI 32768                                                                                                                                                          | 22                              |

Figure S2.  ${}^{31}P{}^{1}H$  NMR spectrum (C<sub>6</sub>D<sub>6</sub>) of (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th[P(H)Mes]<sub>2</sub>, 1.



Figure S3. <sup>31</sup>P NMR spectrum  $(C_6D_6)$  of  $(C_5Me_5)_2$ Th $[P(H)Mes]_2$ , 1.



**Figure S4.** <sup>1</sup>H NMR spectrum ( $C_6D_6$ ) of ( $C_5Me_5$ )<sub>2</sub>Th[As(H)Tipp]<sub>2</sub>, **2**, (Tipp = 2,4,6<sup>-i</sup>Pr<sub>3</sub>C<sub>6</sub>H<sub>2</sub>).



**Figure S5.** <sup>1</sup>H NMR spectrum (C<sub>6</sub>D<sub>6</sub>) of (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th(CN'Bu)( $\eta^2$ -(*N*,*C*)-('BuNCPTipp), **3**. (\*) represents presence of H<sub>2</sub>PTipp; (+) represents presence of diethyl ether.



**Figure S6.** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (C<sub>6</sub>D<sub>6</sub>) of (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th(CN<sup>*i*</sup>Bu)( $\eta^2$ -(*N*,*C*)-(<sup>*i*</sup>BuNCPTipp), **3.** (\*) represents presence of H<sub>2</sub>PTipp.



**Figure S7.** <sup>1</sup>H NMR spectrum (C<sub>6</sub>D<sub>6</sub>) of (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th(CN'Bu)( $\eta^2$ -(*N*,*C*)-('BuNCPMes), **4.** (+) represents presence of diethyl ether.



**Figure S8.** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (C<sub>6</sub>D<sub>6</sub>) of (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th(CN<sup>*t*</sup>Bu)( $\eta^2$ -(*N*,*C*)-(<sup>*t*</sup>BuNCPMes), **4.** (\*) represents presence of H<sub>2</sub>PMes.



**Figure S9.** <sup>1</sup>H NMR spectrum (C<sub>6</sub>D<sub>6</sub>) of (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th(CN<sup>*t*</sup>Bu)( $\eta^2$ -(*N*,*C*)-(<sup>*t*</sup>BuNCAsTipp), **5.** (+) represents presence of toluene.



**Figure S10.** -80 °C <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (C<sub>7</sub>D<sub>8</sub>) of (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th[P(H)Tipp]<sub>2</sub> and two equivalents of <sup>1</sup>BuNC. (#) represents (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th[P(H)Tipp]<sub>2</sub>; (!) represents unidentified intermediate; (\$) represents 1,1–insertion product (**3**); (\*) represents H<sub>2</sub>PTipp.



**Figure S11.** -80 °C <sup>31</sup>P NMR spectrum (C<sub>7</sub>D<sub>8</sub>) of (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th[P(H)Tipp]<sub>2</sub> and two equivalents of <sup>t</sup>BuNC. (#) represents (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th[P(H)Tipp]<sub>2</sub>; (!) represents unidentified intermediate; (\$) represents 1,1-insertion product (**3**); (\*) represents H<sub>2</sub>PTipp.



**Figure S12.**  $-70 \text{ °C }^{31}\text{P}$  NMR spectrum (C<sub>7</sub>D<sub>8</sub>) of (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th[P(H)Tipp]<sub>2</sub> and two equivalents of <sup>t</sup>BuNC. (#) represents (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th[P(H)Tipp]<sub>2</sub>; (\$) represents 1,1–insertion product (**3**); (\*) represents H<sub>2</sub>PTipp.



**Figure S13.** Stacked VT <sup>31</sup>P NMR spectra (C<sub>7</sub>D<sub>8</sub>) of (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th[P(H)Tipp]<sub>2</sub> and two equivalents of 'BuNC. Bottom spectrum is -80 °C displaying unidentified intermediate resonance at -27.16 ppm (!). (#) represents (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th[P(H)Tipp]<sub>2</sub>; (\$) represents 1,1-insertion product (**3**); (\*) represents H<sub>2</sub>PTipp.