Iridium Containing Honeycomb Delafossites by Topotactic Cation Exchange

Supplemental Material

John H. Roudebush¹, K. A. Ross^{2,3,4}, and R. J. Cava¹

¹Department of Chemistry, Princeton University, Princeton NJ 08544 USA

²Institute for Quantum Matter, Johns Hopkins University, Baltimore MD, 21218 USA

³NIST Center for Neutron Research, Gaithersburg MD 20899 USA

⁴Current address: Colorado State University, Fort Collins CO, 80523 USA

Supplemental Table S1: Crystallographic data for Cu₃LiIr₂O₆ at 295 K. Space group C2/c, a = 5.2910(2), b = 9.1434(5), c = 11.6203(5), beta = 98.798(8), 555.55(4) Å³. Parameters = 27. Powder X-ray diffraction: $\lambda = \text{CuK}\alpha$, 5-110 °2 θ , data points = 5245, reflections = 401. Agreement factors: Rbragg = 19.6, Rf = 13.7, $\chi^2 = 3.87$.

Atom	Position	x	У	Z	В	Осс
Cu1	4e	0	0.728(3)	1/4	1.5	1
Cu2	4e	0	0.454(3)	1/4	1.5	1
Cu3	4e	1/2	0.581(3)	1/4	1.5	1
Ir1	8f	0.238(1)	0.078(1)	0.003(1)	0.5	0.79(1)
Li1	8f	0.238(1)	0.078(1)	0.003(1)	0.5	0.21(1)
Ir2	4d	1/4	3/4	0	0.5	0.57(1)
Li2	4d	1/4	3/4	0	0.5	0.43(1)
01	8f	0.44(1)	0.224(7)	0.084(3)	0.93	1
02	8f	1.01(1)	0.487(5)	0.100(5)	0.93	1
03	9f	0.45(1)	0.566(7)	0.091(4)	0.93	1

Supplemental Table S2: Crystallographic data for Cu₃NaIr₂O₆, 295 K. Space group C2/m, a = 5.39017(19), b = 9.29984(36), c = 5.97093(20), beta = 107.6399(36), 285.24(2) Å³. Parameters = 23. Powder X-ray diffraction: $\lambda = CuK\alpha$, 5-110 °20, data points = 5251, reflections = 238, parameters. Agreement factors: R_{Bragg} = 8.50 R_f = 7.27. Powder neutron diffraction: $\lambda = 1.5398$, 13-156 °20, data points = 3296, reflections = 342. Agreement factors: R_{Bragg} = 10.8 R_f = 8.71. Global $\chi^2 = 1.42$.

Atom	Position	x	У	Z	В	Осс
Cu1	2c	0	0	1/2	1.9(1)	1
Cu2	4h	0	0.340(2)	1/2	1.9(1)	1
Ir1	4g	0	0.160(1)	0	0.54(1)	0.57(3)
Na1	4g	0	0.160(1)	0	0.54(1)	0.43(3)
Ir2	2b	0	1/2	0	0.54(1)	0.85(3)
Na2	2b	0	1/2	0	0.54(1)	0.15(3)
01	8j	0.881(2)	0.343(2)	0.172(2)	0.8(1)	1
02	4i	0.916(3)	0	0.183(4)	0.8(1)	1

Table S3: Crystallographic data for Cu₃NaIr₂O₆ at 5 K. Space group C2/c, a = 5.3882(1), b = 9.2908(2), c = 11.5196(2), beta = 99.050(3), 569.50(2) Å³. Bov = -0.52(1), parameters = 21. Powder neutron diffraction: $\lambda = 1.5406$, 13-156 °20, data points = 3296, reflections = 642. Agreement factors: Rbragg = 9.15, Rf = 7.75, $\chi^2 = 2.37$. **B* and *Occ* are fixed to the values obtained for the refinement at RT, a universal B factor (*Bov*) is used to compensate for changes in thermal parameters.

Atom	Position	x	У	Z	<i>B*</i>	Occ*
Cu1	4e	0	0.757(2)	1/4	1.5	1
Cu2	4e	0	0.421(2)	1/4	1.5	1
Cu3	4e	1/2	0.593(1)	1/4	1.5	1
Ir1	8f	0.254(2)	0.080(1)	0.004(1)	0.51	0.76
Na1	8f	0.254(2)	0.080(1)	0.004(1)	0.51	0.24
Ir2	4d	1/4	3/4	0	0.51	0.52
Na2	4d	1/4	3/4	0	0.51	0.48
01	8f	0.440(3)	0.237(2)	0.088(1)	0.93	1
02	8f	0.941(3)	0.422(2)	0.080(1)	0.93	1
03	9f	0.462(3)	0.576(2)	0.095(1)	0.93	1

Table S4: Unit cell refinements in C2/m of Cu ₃ NaIr ₂ O ₆ and Cu ₃ Li ₂ IrO ₆ as well as Na ₂ IrO ₃ and
Li ₂ IrO ₃ . Interlayer spacing and Ir-Ir distances are also given. All units in Å, unless otherwise
noted.

Phase	Instrume nt	temp	Space group	а	b	с	beta	layer spacing	Ir-Ir dis	ref
Na ₂ IrO ₃	SXRD	RT	C2/m	5.4270(1)	9.395(1)	5.614(1)	109.037(18)	5.307(1)	3.130(7) 3.138(14)	1
Cu ₃ NaIr ₂ O ₆	NPD + PXRD	RT	C2/m	5.3902(2)	9.2998(4)	5.9709(2)	108.640 (4)	5.6902(2)	3.080(5) 3.159(11)	this work
Cu ₃ NaIr ₂ O ₆	NPD	5 K	C2/m	5.3759(2)	9.3136(3)	5.9720(1)	107.757(2)	5.6875(1)	3.097(4) 3.118(6)	this work
Li ₂ IrO ₃	PXRD	RT	C2/m	5.1633(2)	8.9290(3)	5.1219(2)	109.759(3)	4.8203(1)	2.973(3) 2.979(1)	O'Mally
Cu ₃ LiIr ₂ O ₆	PXRD	RT	C2/m	5.2908(3)	9.1463(5)	6.0114(2)	107.198(5)	5.7426(2)	3.041(4) 3.078(6)	this work

Table S5: Bond lengths and angles of $Cu_3NaIr_2O_6$ (s.g. = C2/m) at room temperature and 5 K

Phase	radiation	temp	Ir-Ir dis " Ir-Ir mean, STD, % dev	Ir-O1 Ir-O2 Ir-O avg, STD, % dev	Na-O1 Na-O2 Na-O avg, STD, % dev	Ir-O1-Ir Ir-O2-Ir Ir-O-Ir avg
Cu ₃ NaIr ₂ O ₆	Neutron +X-ray	RT	3.080(5) 3.159(11) 3.12 +/- 0.06, 1.8%	1.999(9), 2.181(15) 1.980(13) 2.053 +/- 0.11, 5.3%	2.001(12) 2.176(13) 2.089 +/- 0.12, 5.7%	97.7(4) 98.5(3) 98.1
Cu ₃ NaIr ₂ O ₆	Neutron	5 K	3.097(4) 3.118(6) 3.108 +/- 0.15, 4.8%	2.016(6), 2.154(8) 2.046(8) 2.072 +/- 0.073, 3.5%	1.946(6) 2.157(8) 2.052 +/- 0.15, 7.3%	96.71(15) 97.5(3) 97.1

Figure S1: Powder X-ray diffraction pattern and Rietveld fit of $Cu_3LiIr_2O_6$ at room temperature in space group C2/c. Data is given as red circles, the fit as a black line, the difference as a blue line and Bragg reflections as green hashes.

Figure S2: Neutron (upper panel) and X-ray (lower panel) powder diffraction of $Cu_3NaIr_2O_6$ (s.g. = C2/m) at 295 K with Rietveld fit. Data is given as red circles, the fit as a black line, the difference as a blue line and Bragg reflections as green hashes.

Figure S3: Resistivity ρ (Ω •cm), of Cu₃NaIr₂O₆ from 350 to 65 K measured upon cooling. Upper left inset - log plot of ρ vs. 1/T. The date cannot be fitted to an activated Arrhenius behavior $\rho(T) = \exp(-\Delta/T)$. Lower right inset - log plot of ρ vs. 1/T^{-1/4} allowing for a good fit to an activated $\rho(T) = \exp[(-\Delta/T)^{1/4}]$ associated with a variable-range hopping mechanism and similar to Na₂IrO₃. {Singh, 2010 #930}

Figure S4: Upper – Field cooled (FC) and zero-field cooled (ZFC) magnetization of $Cu_3NaIr_2O_6$ measured with an applied field of 100 Oe. Lower – AC magnetization, real M' (Left) and imaginary (right) portions of the signal in the temperature range of the magnetic transition. Samples were measured with a 10 Oe applied field and 500, 1000, 5000 and 10,000 Hz. A change in the transition temperature with frequency, a classic characteristic of a spin-glass, is not observed.

1. Choi, S. K.; Coldea, R.; Kolmogorov, A. N.; Lancaster, T.; Mazin, I. I.; Blundell, S. J.; Radaelli, P. G.; Singh, Y.; Gegenwart, P.; Choi, K. R.; Cheong, S. W.; Baker, P. J.; Stock, C.; Taylor, J., Spin waves and revised crystal structure of honeycomb iridate Na2IrO3. *Phys Rev Lett* **2012**, 108, (12), 127204.