## **Supporting Information**

for

## Reductive nitrosylation of nickel(II) complex by nitric oxide followed by

## release of nitrous oxide

Somnath Ghosh<sup>*a*</sup>, Hemanta Deka<sup>*a*</sup>, Yuvraj B. Dangat<sup>*b*</sup>, Soumen Saha<sup>*a*</sup>, Kuldeep Gogoi<sup>*a*</sup>, Kumar Vanka<sup>*b*</sup> and Biplab Mondal<sup>*a*,\*</sup>

<sup>a</sup>Department of Chemsitry, Indian Institute of Technology Guwahati, Assam 781039, India

<sup>b</sup>Academy of Scientific and Innovative Research, National Chemical Laboratory, Pune 411008, Maharashtra, India

## **Table of Contents**

| Sl. | Description                                                                                         | Page |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------|------|--|--|--|--|--|
| No. |                                                                                                     | No.  |  |  |  |  |  |
| 1   | <b>Figure S1:</b> <sup>1</sup> H-NMR spectrum of ligand L in CD <sub>3</sub> OD.                    |      |  |  |  |  |  |
| 2   | <b>Figure S2:</b> <sup>13</sup> C-NMR spectrum of ligand L in CD <sub>3</sub> OD.                   |      |  |  |  |  |  |
| 3   | Figure S3: FT-IR spectrum of ligand L in KBr pellet.                                                |      |  |  |  |  |  |
| 4   | Figure S4: FT-IR spectrum of complex 1 in KBr pellet.                                               | 4    |  |  |  |  |  |
| 5   | Figure S5: UV-visible spectrum of complex 1 in methanol.                                            |      |  |  |  |  |  |
| 6   | Figure S6: GC Mass spectra of methyl nitrite.                                                       |      |  |  |  |  |  |
| 7   | <b>Figure S7:</b> GC Mass spectra of $N_2O$ , gas taken from the head space of the                  | 6    |  |  |  |  |  |
|     | reaction mixture.                                                                                   |      |  |  |  |  |  |
| 8   | Figure S8: GC- Mass spectra of the head space gas taken from the round bottom                       | 6    |  |  |  |  |  |
|     | flask containing dry MeOH and NO <sub>(g)</sub> purged into it.                                     |      |  |  |  |  |  |
| 9   | Figure S9: FT-IR spectrum of complex 2 in KBr.                                                      | 7    |  |  |  |  |  |
| 10  | Figure S10: UV-Vis Spectrum of complex 2 in dry methanol.                                           | 7    |  |  |  |  |  |
| 11  | <b>Figure S11:</b> ESI Mass spectra of $[L_2Ni(NO)(CH_3OH)]^+$ in methanol (isotropic               | 8    |  |  |  |  |  |
|     | distribution pattern is shown inset).                                                               |      |  |  |  |  |  |
| 12  | Figure S12: FT-IR spectrum of complex 3 in KBr.                                                     | 8    |  |  |  |  |  |
| 13  | Figure S13: UV-Vis Spectrum of complex 3 in dry methanol.                                           | 9    |  |  |  |  |  |
| 14  | Figure S14: The possible structures corresponding to the proposed intermediate                      | 9    |  |  |  |  |  |
| 15  | Figure S15: <sup>1</sup> H-NMR spectrum of complex 1 in CD <sub>3</sub> OD                          | 11   |  |  |  |  |  |
| 16  | Figure S16: <sup>13</sup> C-NMR spectrum of complex 1 in CD <sub>3</sub> OD.                        | 11   |  |  |  |  |  |
| 17  | Figure S17: Double integration of EPR spectrum of Ni(I) species                                     | 12   |  |  |  |  |  |
|     | (concentration, 0.7 mmol) in methanol at 77K.                                                       |      |  |  |  |  |  |
| 18  | Figure S18: Double integration of standard CuSO <sub>4</sub> .5H <sub>2</sub> O (concentration, 0.7 | 12   |  |  |  |  |  |
|     | mmol) solution in methanol at 77K.                                                                  |      |  |  |  |  |  |
| 19  | Figure S19: Plot of Oscillator strength vs Wavelength for intermediate                              | 13   |  |  |  |  |  |
|     | {NiNO} <sup>10</sup> complex in methanol (ten excitations has been considered) using TD-            |      |  |  |  |  |  |
|     | DFT calculations at PBE/TZVP level of theory.                                                       |      |  |  |  |  |  |
| 20  | <b>Figure S20:</b> Solution FT-IR spectrum of $[L_2Ni(NO)(CH_3OH)]^+$ in methanol                   | 13   |  |  |  |  |  |
|     | (with <sup>15</sup> NO; only 2200 – 1600 cm <sup>-1</sup> range is shown for clarity).              |      |  |  |  |  |  |
| 21  | <b>Figure S21:</b> ESI Mass spectrum of $[I_2Ni(NO)(CH_3OH)]^+$ in methanol (with                   | 14   |  |  |  |  |  |

|    | <sup>15</sup> NO)                                                                         |    |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| 22 | Figure S22: <sup>1</sup> H-NMR spectra of ligand, complex 1, after purging 1 eq. of NO in | 14 |  |  |  |  |  |  |
|    | complex 1 and after purging 2 eq. of NO in complex 1 are respectively (a), (b),           |    |  |  |  |  |  |  |
|    | (c) and (d) in $CD_3OD$ .                                                                 |    |  |  |  |  |  |  |
| 23 | Figure S23: <sup>1</sup> H-NMR spectrum of complex 1 after purging 2 eq. of NO, in        | 15 |  |  |  |  |  |  |
|    | CD <sub>3</sub> OD.                                                                       |    |  |  |  |  |  |  |
| 24 | Figure S24: <sup>13</sup> C-NMR spectrum of complex 1 after purging 2 eq. of NO, in       | 15 |  |  |  |  |  |  |
|    | CD <sub>3</sub> OD.                                                                       |    |  |  |  |  |  |  |
| 25 | Figure S25: <sup>1</sup> H-NMR spectra of complex 2 in $CD_3OD$ .                         | 16 |  |  |  |  |  |  |
| 26 | <b>Figure S26:</b> <sup>1</sup> H-NMR spectra of complex <b>3</b> in CD <sub>3</sub> OD.  | 16 |  |  |  |  |  |  |
| 27 | Figure S27: Cyclic voltammogram of complex 1 in methanol solvent. Working                 | 17 |  |  |  |  |  |  |
|    | electrode, Glassy-carbon; Reference electrode, Ag/AgCl; TBAP supporting                   |    |  |  |  |  |  |  |
|    | electrolyte; scan rate 50 mV/s.                                                           |    |  |  |  |  |  |  |



Figure S1: <sup>1</sup>H-NMR spectrum of L in methanol-d<sub>4</sub>.



Figure S2: <sup>13</sup>C NMR spectrum of L in methanol-d<sub>4</sub>.



Figure S3: FT-IR spectrum of L in KBr.



Figure S4: FT-IR spectrum of complex 1 in KBr.



Figure S5: UV-visible Spectrum of complex 1 in dry methanol. Extinction coefficient at  $\lambda_{max}$  636 nm is 25 lit.mol<sup>-1</sup>.cm<sup>-1</sup>.



Figure S6: GC-mass spectra of methyl nitrite.



Figure S7: GC Mass spectra of N<sub>2</sub>O, gas taken from the head space of the reaction mixture.



**Figure S8:** GC- Mass spectra of the head space gas taken from the round bottom flask containing dry MeOH and  $NO_{(g)}$  purged into it (This suggests that N<sub>2</sub>O does not form in the absence of the metal complex).



Figure S9: FT-IR spectrum of complex 2 in KBr.



Figure S10: UV-visible Spectrum of complex 2 in dry methanol.



**Figure S11:** ESI Mass spectra of  $[L_2Ni(NO)(CH_3OH)]^+$  in methanol (isotropic distribution pattern is shown inset).



Figure S12: FT-IR spectrum of complex 3 in KBr.



Figure S13: UV-Visible Spectrum of complex 3 in dry methanol.



**Figure S14:** The possible structures corresponding to the proposed intermediate; the color scheme is as follows: nickel: green, chlorine: light green, carbon: black, oxygen: red, nitrogen: blue and hydrogen: white; the hydrogens have been removed for the purpose of clarity.

| С  | -1.827 | 13.900 | 4.460  | С | -1.552 | 11.407 | 0.081  | Η | 0.346  | 7.981  | 0.944 |
|----|--------|--------|--------|---|--------|--------|--------|---|--------|--------|-------|
| С  | -2.206 | 12.606 | 4.180  | С | 1.236  | 10.468 | -2.105 | Н | 1.790  | 8.652  | 0.163 |
| N  | -1.310 | 12.035 | 3.286  | С | 0.952  | 8.898  | 0.830  | Н | 3.919  | 8.816  | 0.922 |
| С  | -0.390 | 12.963 | 3.013  | С | 1.479  | 9.329  | 2.166  | Η | 4.641  | 8.377  | 2.488 |
| N  | -0.680 | 14.099 | 3.711  | Ν | 0.609  | 9.754  | 3.162  | Н | 4.726  | 10.059 | 1.910 |
| С  | -3.343 | 11.808 | 4.738  | С | 1.356  | 10.151 | 4.191  | Н | 1.335  | 11.748 | 5.588 |
| С  | -2.848 | 10.537 | 5.349  | N | 2.674  | 9.969  | 3.885  | Н | -0.195 | 10.887 | 5.394 |
| N  | -2.142 | 9.630  | 4.575  | С | 2.780  | 9.457  | 2.601  | Н | 0.785  | 8.893  | 6.628 |
| С  | -1.820 | 8.600  | 5.359  | С | -2.783 | 12.190 | 0.375  | Н | 0.857  | 10.372 | 7.620 |
| N  | -2.303 | 8.834  | 6.612  | С | -2.567 | 13.711 | 0.365  | Н | 2.325  | 9.769  | 6.813 |
| С  | -2.958 | 10.055 | 6.634  | С | 0.887  | 10.745 | 5.476  | Н | -4.428 | 9.947  | 8.202 |
| Ni | -1.455 | 9.999  | 2.697  | С | 1.236  | 9.892  | 6.706  | Н | -4.049 | 11.588 | 7.625 |
| N  | -2.367 | 8.556  | 2.150  | С | 4.085  | 9.163  | 1.951  | Н | -2.900 | 10.727 | 8.678 |
| 0  | -2.245 | 7.988  | 1.087  | 0 | -4.808 | 7.733  | 3.269  | Н | -4.060 | 11.563 | 3.931 |
| С  | -3.616 | 10.604 | 7.850  | С | -5.158 | 8.202  | 4.574  | Н | -3.887 | 12.402 | 5.486 |
| С  | -1.089 | 7.366  | 4.959  | Η | -1.844 | 14.005 | 1.139  | Н | -3.297 | 14.546 | 5.858 |
| С  | 0.775  | 12.863 | 2.089  | Η | -3.517 | 14.228 | 0.564  | Н | -2.708 | 15.839 | 4.785 |
| С  | 2.077  | 13.405 | 2.696  | Η | -2.191 | 14.055 | -0.610 | Н | -1.685 | 15.259 | 6.123 |
| С  | -2.406 | 14.942 | 5.351  | Η | -3.130 | 11.856 | 1.363  | Н | 0.895  | 11.812 | 1.813 |
| N  | -0.998 | 10.481 | 0.863  | Η | -3.563 | 11.923 | -0.358 | Н | 0.546  | 13.411 | 1.157 |
| С  | 0.105  | 9.961  | 0.199  | Η | 0.765  | 10.161 | -3.052 | Н | 1.997  | 14.473 | 2.952 |
| С  | 0.236  | 10.601 | -1.012 | Η | 1.982  | 9.708  | -1.835 | Н | 2.902  | 13.294 | 1.978 |
| N  | -0.818 | 11.501 | -1.061 | Н | 1.766  | 11.418 | -2.284 | Н | 2.340  | 12.851 | 3.610 |



Figure S15: <sup>1</sup>H NMR spectrum of complex 1 in CD<sub>3</sub>OD.



Figure S16: <sup>13</sup>C-NMR spectrum of complex 1 in CD<sub>3</sub>OD.



**Figure S17**: Double integration of EPR spectrum of Ni(I) species (concentration, 0.7 mmol) in methanol at 77K.



Figure S18: Double integration of standard  $CuSO_4.5H_2O$  (concentration, 0.7 mmol) solution in methanol at 77K.



**Figure S19**: Plot of Oscillator strength *vs* Wavelength for intermediate {NiNO}<sup>10</sup> complex in methanol (ten excitations has been considered) using TD-DFT calculations at PBE/TZVP level of theory.



**Figure S20**: Solution FT-IR spectrum of  $[L_2Ni(NO)(CH_3OH)]^+$  in methanol (with <sup>15</sup>NO; only 2200 – 1600 cm<sup>-1</sup> range is shown for clarity).



Figure S21: ESI Mass spectrum of  $[L_2Ni(NO)(CH_3OH)]^+$  in methanol (with <sup>15</sup>NO)



**Figure S22:** <sup>1</sup>H-NMR spectra of ligand, complex **1**, after purging 1 eq. of NO in complex **1** and after purging 2 eq. of NO in complex **1** are respectively (**a**), (**b**), (**c**) and (**d**) in CD<sub>3</sub>OD.





Figure S24: <sup>13</sup>C-NMR spectrum of complex 1 after purging 2 eq. of NO, in CD<sub>3</sub>OD.



Figure S25: <sup>1</sup>H-NMR spectra of complex 2 in CD<sub>3</sub>OD.



Figure S26: <sup>1</sup>H-NMR spectra of complex 3 in CD<sub>3</sub>OD.



**Figure S27:** Cyclic voltammogram of complex 1 in methanol solvent. Working electrode, Glassy-carbon; Reference electrode, Ag/AgCl; TBAP supporting electrolyte; scan rate 50 mV/s.



**Figure S28:** Cyclic voltammogram of NO in methanol solvent. Working electrode, Glassy-carbon; Reference electrode, Ag/AgCl; TBAP supporting electrolyte; scan rate 50 mV/s.