Dimethyldihydropyrene-Cyclophanediene Photochromic Couple

Functionalized with Terpyridyl Metal Complexes as Multi-Addressable Redox-

and Photo-Switches

Assil Bakkar,^a Saioa Cobo, ^{a*} Frédéric Lafolet,^{a,b} Diego Roldan,^a Margot Jacquet,^a Christophe Bucher,^c Guy Royal, ^a and Eric Saint-Aman ^{a*}

^a Univ. Grenoble Alpes, DCM UMR 5250, F-38000 Grenoble, France; CNRS, DCM UMR 5250,F-38000 Grenoble, France.

^b Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France.

^c Laboratoire de Chimie (UMR5182), École Normale Supérieure de Lyon/CNRS Université de Lyon 1, Lyon-France.

Table of contents:

- 1. Additional NMR spectra
- 2. Electrochemical ring closure
- 3. Crystal data

1. Additional NMR spectra

Figure ESI 1 : ¹H NMR spectrum of $Fe(1_c)_2^{2+}$

Figure ESI 2 : ¹H NMR spectrum of $Zn(1_c)2^{2+}$

Figure ESI 3 : ¹H NMR spectrum of $Fe(2_c)_2^{4+}$

Figure ESI 4 : ¹H NMR spectrum of the photoisomerisation of $Fe(2_c)_2^{4+}$

Figure ESI 5 : ¹H NMR spectrum of $Zn(2_c)_2^{4+}$

Figure ESI 7 : ¹H NMR spectrum correlation of $Zn(2_c)_2^{4+}$ and $Zn(2_o)_2^{4+}$

8

2. Cyclic voltammetry data of compounds

Figure ESI 7: Repeated cyclic voltammogramms of the photogenerated solutions of (a) $Zn(2_o)_2^{4+}$, (b) $Co(2_o)_2^{4+}$ and (c) $Fe(2_o)_2^{4+}$, black line 1st cycle. [C] = 1 mmol in 0.1M TBAP/CH₃CN. Scan rate: 100 mv.s⁻¹. Potentials are referred to the formal potential of the Ag⁺/Ag redox couple.

	tpy.+/tpy2-	tpy/ tpy.+	E _{1/2} (DHP ^{0/-})	$E_{1/2}$ (Py ^{+/0})	E _{1/2} (DHP ^{+/0})	Е _{ра} (DHP ^{2+/+}) ^с	$\begin{array}{c} E_{1/2} \\ (M^{\rm III}\!/\!M^{\rm II}) \end{array}$	E _{1/2} (M ^{II} /M ^I)
DHP(py ⁺ tpy)	-2.175(100)	-1.99(170)		-1.40 (210)	0.47 (200)	1.17 ^b		
$Co(1_c)_2^{2+}$		-1.85(50)		-	0.31 (70)	0.88 ^b	-0.08 (60)	-1.05 (70)
$Fe(1_c)_2^{2+}$	-1.63(60)	-1.51(60)		-	0.29(60)	0.82 ^{b,c}	0.82°	
$Zn(1_c)_2^{2+}$	-1.69(abs)	-1.53(60)		-	0.3 (70)	0.84 ^b		
$Co(2_c)_2^{4+}$	-1.96 ^b	-1.85	-2.28(60)	-1.36(60)	0.43(60)	0.95 ^b	-0.05 (40)	-1.03 (60)
$Fe(2_c)_2^{4+}$	-1.60 ^b	-1.50	-1.93(60)	-1.35(60)	0.43(60)	0.97 ^b	0.79 (70)	
$Zn(2_{c})_{2}^{4+}$	-1.65(60)	-1.5	-2.97(80)	-1.37(60)	0.42(60)	0.95 ^b		

^aAll potentials are given in volts referred to the Ag⁺/Ag (10⁻² M in CH₃CN) reference electrode in CH₃CN + TBAP 0.1 M, at a stationary vitreous carbon electrode (\emptyset = 3 mm). E_{1/2}= (E_{pa}+E_{pc})/2 at 0.1 V s⁻¹; Δ Ep= E_{pa}-E_{pc}. ^b peak potential (irreversible system). ^c superimposed waves.

3. Crystal data

Table S1. (Crystal Da	a and Structu	re Refinemen	t for Zn	$(1c)_2^{2+}$
-------------	------------	---------------	--------------	----------	---------------

Fw (g mol ⁻¹) Crystal system Space group <i>a</i> (Å) <i>b</i> (Å) <i>c</i> (Å) <i>α</i> (deg.)	1722.96 triclinic P-1 9.4857(19) 16.519(3) 30.909(6)
Crystal system Space group <i>a</i> (Å) <i>b</i> (Å) <i>c</i> (Å) α (deg.)	triclinic P-1 9.4857(19) 16.519(3) 30.909(6)
Space group <i>a</i> (Å) <i>b</i> (Å) <i>c</i> (Å) <i>α</i> (deg.)	P-1 9.4857(19) 16.519(3) 30.909(6)
a (Å) b (Å) c (Å) α (deg.)	9.4857(19) 16.519(3) 30.909(6)
b (Å) c (Å) α (deg.)	16.519(3) 30.909(6)
c (Å) α (deg.)	30.909(6)
α (deg.)	100.04(0)
	103.94(2)
β (deg.)	91.56(5)
γ(deg.)	91.38(4)
$V(\text{\AA}^3) / Z$	4696.4(16)
$Dx (g \text{ cm}^{-3})$	1.218
μ (cm ⁻¹)	0.344
Crystal dim. (mm)	0.28x0.24x0.20
Т(К)	200
θ range for coll. (deg.)	1,36 -25,26
nb. of rflns. coll.	28336
Data/restraints/parameters	10944/1930/1514
$R(I) all/R[I > 2\sigma(I)]$	20.38% / 16.36%
Goodness of fit S	1.090
$\Delta \rho_{\rm min} / \Delta \rho_{\rm max} \ (e \ {\rm \AA}^{-3})$	-0.617 / 0.962