Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

Tuning the structure and solubility of nanojars by peripheral ligand substitution, leading to unprecedented liquid-liquid extraction of the carbonate ion from water into aliphatic solvents

Basil M. Ahmed, Brice Calco and Gellert Mezei*

Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA

*Correspondent author. Email: gellert.mezei@wmich.edu

CONTENTS

PAGE

1. Mass spectrometric data (Figures S1–S30)S22. X-ray crystallographic data (Figures S31–S46)S163. ¹H NMR and ¹³C NMR spectra (Figures S47–S62)S32

Figure S1. ESI-MS(-) spectrum of $[CO_3 \subset {Cu(OH)(Hpz)}_n]^{2-}$ (n = 27, 29, 30, 31).

Figure S2. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(4-Fpz)\}_n]^{2-}$ (n = 27, 29, 30, 31).

Figure S3. ESI-MS(-) spectrum of $[CO_3 \subset \{Cu(OH)(4-Clpz)\}_n]^{2-}$ (n = 27, 29, 30, 31).

Figure S4. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(4\text{-}Brpz)\}_n]^{2-}$ (n = 27, 29, 30, 31).

Figure S5. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(4-Ipz)\}_n]^{2-}$ (n = 27, 29, 30, 31).

Figure S6. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(4-EtOpz)\}_n]^{2-}$ (n = 27, 29, 30, 31).

Figure S7. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(4-Mepz)\}_n]^{2-}$ (n = 27, 29, 30, 31).

Figure S8. ESI-MS(–) spectrum of $[CO_3 \subset {Cu(OH)(4^{-n}Bupz)}_n]^{2-}$ (n = 27, 29, 31).

Figure S9. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(4-^nOctpz)\}_n]^{2-}$ (n = 27, 29, 31).

Figure S10. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(4-(HOCH_2CH_2CH_2)pz)\}_n]^{2-}$ (n = 27–31).

Figure S11. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(4-(CH_3OCH_2CH_2O)pz)\}_n]^{2-}$ (n = 27, 29, 31).

Figure S12. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(4-(CH_3(OCH_2CH_2)_2O)pz)\}_n]^{2-}$ (n = 27–31).

Figure S13. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(4-(CH_3(OCH_2CH_2)_3O)pz)\}_n]^{2-}$ (n = 27, 29, 31).

Figure S14. ESI-MS(-) spectrum of $[CO_3 \subset \{Cu(OH)(4-CF_3pz)\}_n]^{2-}$ (n = 27, 29, 31).

Figure S15. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(4-Phpz)\}_n]^{2-}$ (n = 27, 29, 30, 31).

Figure S16. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(3-Mepz)\}_n]^{2-}$ (n = 29, 30, 31).

Figure S17. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(3-Etpz)\}_n]^{2-}$ (n = 30).

Figure S18. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(3-^n Prpz)\}_n]^{2-}$ (n = 30, 32).

Figure S19. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu(OH)(3^{-n}Bupz)\}_n]^{2-}$ (n = 30).

Figure S20. ESI-MS(–) spectrum of $[CO_3 \subset {Cu(OH)(3-^nOctpz)}_n]^{2-}$ (n = 30).

Figure S21. ESI-MS(\neg) spectrum of the product mixture obtained from Cu(NO₃)₂, 3-CF₃pzH/HpzH (1:1), NaOH, Bu₄NOH and Na₂CO₃ (see [CO₃ \sub {Cu_n(OH)_n(3-CF₃pz)_y(pz)_{n-y}}]²⁻ species below).

Figure S22. $[CO_3 \subset \{Cu_n(OH)_n(3-CF_3pz)_y(pz)_{n-y}\}]^{2-}$ species observed (y:n-y & *m/z* shown).

Figure S23. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu_n(OH)_n(3-Phpz)_y(pz)_{n-y}\}]^{2-}$ (y:n-y & *m/z* shown).

Figure S24. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu_n(OH)_n(3,5-Me_2pz)_y(pz)_{n-y}\}]^{2-}$ (y:n-y & *m/z* shown) obtained from Cu(NO_3)_2, 3,5-Me_2pzH/HpzH (1:1), NaOH, Bu₄NOH and Na₂CO₃.

Figure S25. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu_n(OH)_n(3,5-Et_2pz)_y(pz)_{n-y}\}]^{2-}$ (y:n-y & *m/z* shown).

Figure S26. ESI-MS(–) spectrum of $[CO_3 \subset \{Cu_n(OH)_n(3^{-n}Bu-5^{-n}Hexpz)_y(pz)_{n-y}\}]^{2-}$ (y:n-y & *m/z* shown).

Figure S27. ESI-MS(–) spectrum of the product mixture obtained from $Cu(NO_3)_2$, 3-Me-5-CF₃pzH/HpzH (1:1), NaOH, Bu₄NOH and Na₂CO₃ (see $[CO_3 \subset \{Cu_n(OH)_n(3-Me-5-CF_3pz)_y(pz)_{n-y}\}]^{2-}$ species below).

Figure S28. $[CO_3 \subset \{Cu_n(OH)_n(3-Me-5-CF_3pz)_y(pz)_{n-y}\}]^{2-}$ species observed (y:n-y & *m/z* shown).

Figure S29. ESI-MS(–) spectrum of the product mixture obtained from Cu(NO₃)₂, 4-NO₂pzH, NaOH, Bu₄NOH and Na₂CO₃.

Figure S30. ESI-MS(–) spectrum of the product mixture obtained from Cu(NO₃)₂, 3-NO₂pzH, NaOH, Bu₄NOH and Na₂CO₃.

Figure S31. Thermal ellipsoid plot (50% probability) of Et₄N-1·2H₂O. H-atoms, counterions and solvent molecules are omitted for clarity. Color code: Cu–dark blue; O–red; N–light blue; C–black.

Figure S32. Ball-and-stick representation (top- and side-views) of Et₄N-1·2H₂O, showing the position of the disordered pyrazole and carbonate units. Color code: Cu–dark blue; O–red; N–light blue; C–black; H–pink. C–H hydrogen atoms, solvent and counterion molecules are omitted for clarity.

Figure S33. Top- and side-views of Et₄N-1·2H₂O, showing the hydrogen-bonding pattern (green dashed lines; orange for the H₂O molecules) and axial Cu-O interactions (black dashed lines). Color code:
Cu-dark blue; O-red; N-light blue; C-black; H-pink. Only one position of the disordered pyrazole and carbonate units is shown. C-H hydrogen atoms, solvent and counterion molecules are omitted for clarity.

Figure S34. Comparison (top- and side-views) of the near-identical structures of Bu₄N-1 (left) and Et₄N-1·2H₂O (right; only one position of the disordered pyrazole and carbonate units is shown).

Figure S35. Thermal ellipsoid plot (50% probability) of **2**. H-atoms, counterions and solvent molecules are omitted for clarity. Color code: Cu–dark blue; O–red; N–light blue; C–black.

Figure S36. Top- and side-views of **2** (for clarity, only the major component of the disordered units is shown). H-bonds are shown as green dashed lines, and weak Cu–O bonds as black dashed lines.

Figure S37. Top- and side-views of the Cu₇-ring in **2**, showing hydrogen-bonding (green dashed lines for O…O distances <3.00(5) Å, grey dashed lines for O…O distances 3.00(5)–3.20(5) Å) to the carbonate ion (only the major component of the disordered units is shown).

Figure S38. Top- and side-views of the Cu_{14} -ring in 2, with the carbonate ion at the center (only the major component of the disordered units is shown).

Figure S39. Top- and side-views of the Cu₉-ring in **2**, showing hydrogen-bonding (green dashed lines for O···O distances <3.00(5) Å, grey dashed lines for O···O distances 3.00(5)–3.20(5) Å) to the carbonate ion (only the major component of the disordered units is shown). Cu–O bonds to the H₂O molecule are shown with black dashed lines.

Figure S40. Top- and side-views of the Cu₇- and Cu₉-rings in **2**, showing hydrogen-bonding (green dashed lines for O···O distances <3.00(5) Å, grey dashed lines for O···O distances 3.00(5)–3.20(5) Å) to the carbonate ion (only the major component of the disordered units is shown). Cu–O bonds to the H₂O molecule are shown with black dashed lines.

Figure S41. Top- and side-views of the Cu₇- and Cu₁₄-rings in **2**, showing hydrogen-bonding (green dashed lines for O···O distances <3.00(5) Å, grey dashed lines for O···O distances 3.00(5)–3.20(5) Å) and axial Cu-O interactions (black dashed lines for Cu···O distances <2.50 Å) (only the major component of the disordered units is shown).

Figure S42. Top- and side-views of the Cu₉- and Cu₁₄-rings in **2**, showing hydrogen-bonding (green dashed lines for O···O distances <3.00(5) Å, grey dashed lines for O···O distances 3.00(5)–3.20(5) Å) and axial Cu-O interactions (black dashed lines for Cu···O distances <2.50 Å) between the two (only the major component of the disordered units is shown).

Figure S43. Top- and side-views of the hydrogen-bonding pattern (green dashed lines for O…O distances <3.00(5) Å, grey dashed lines for O…O distances 3.00(5)–3.20(5) Å) to the carbonate ion in **2** (only the major component of the disordered carbonate ion is shown).

Figure S44. Top- and side-views of the overall hydrogen-bonding pattern (green dashed lines for O···O distances <3.00(5) Å, grey dashed lines for O···O distances 3.00(5)–3.20(5) Å) in **2**, converging at the central carbonate ion (only the major component of the disordered carbonate ion is shown).

Figure S45. Space-filling representations (two different top- and side-views) of 2 (only the major component of the disordered units is shown).

Figure S46. Space-filling representations (top- and side-views) of 3 (no H-atoms and only one position of the disordered $CO_3^{2^-}$ ion is shown).

Figure S47. ¹H NMR spectrum (400 MHz, CDCl₃) of 7-ethoxy-2,5,8-trioxadecane.

Figure S48. ¹³C-NMR spectrum (101 MHz, CDCl₃) of 7-ethoxy-2,5,8-trioxadecane.

Figure S49. ¹H NMR spectrum (400 MHz, CDCl₃) of 10-ethoxy-2,5,8,11-tetraoxatridecane.

Figure S50. ¹³C-NMR spectrum (101 MHz, CDCl₃) of 10-ethoxy-2,5,8,11-tetraoxatridecane.

Figure S51. ¹H NMR spectrum (400 MHz, CDCl₃) of 13-ethoxy-2,5,8,11,14-pentaoxahexadecane.

Figure S52. ¹³C-NMR spectrum (101 MHz, CDCl₃) of 13-ethoxy-2,5,8,11,14-pentaoxahexadecane.

Figure S53. ¹H NMR spectrum (400 MHz, CDCl₃) of 4-(2-methoxyethoxy)-1*H*-pyrazole.

Figure S54. ¹³C-NMR spectrum (101 MHz, CDCl₃) of 4-(2-methoxyethoxy)-1*H*-pyrazole.

Figure S55. ¹H NMR spectrum (400 MHz, CDCl₃) of 4-(2-(2-methoxy)ethoxy)pyrazole.

Figure S56. ¹³C-NMR spectrum (101 MHz, CDCl₃) of 4-(2-(2-methoxyethoxy)ethoxy)pyrazole.

Figure S57. ¹H NMR spectrum (400 MHz, CDCl₃) of 4-(2-(2-(2-methoxy)ethoxy)ethoxy)pyrazole.

S58. ¹³C-NMR spectrum (101 MHz, CDCl₃) of 4-(2-(2-(2-methoxy)ethoxy)ethoxy)pyrazole.

Figure S59. ¹H NMR spectrum (400 MHz, CDCl₃) of 4-ethoxypyrazole.

S60. ¹³C-NMR spectrum (101 MHz, CDCl₃) of 4-ethoxypyrazole.

Figure S61. ¹H NMR spectrum (400 MHz, CDCl₃) of 3,5-dimethyl-4-octylpyrazole.

S62. ¹³C-NMR spectrum (101 MHz, CDCl₃) of 3,5-dimethyl-4-octylpyrazole.