Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Fluorescence behaviour of an anthracene-BODIPY system affected by spin states of a dioxolene-cobalt centre

Koichi Katayama, Masakazu Hirotsu,* Akitaka Ito and Yoshio Teki*

Division of Molecular Materials Science, Graduate School of Science, Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan) E-mail: <u>mhiro@sci.osaka-cu.ac.jp</u>; <u>teki@sci.osaka-cu.ac.jp</u>

Supplementary Information Data

IR spectra of complexes 1 and 2 and H_2L , absorption spectra of H_2L , cyclic voltammograms of 1, 2, 1', and 2', ¹H NMR spectra of 1, 2 and 1', fluorescence spectra of 1', H_2L and H_2L' , and ¹H NMR spectra of (i), (ii) and H_2L are presented as supplementary information.

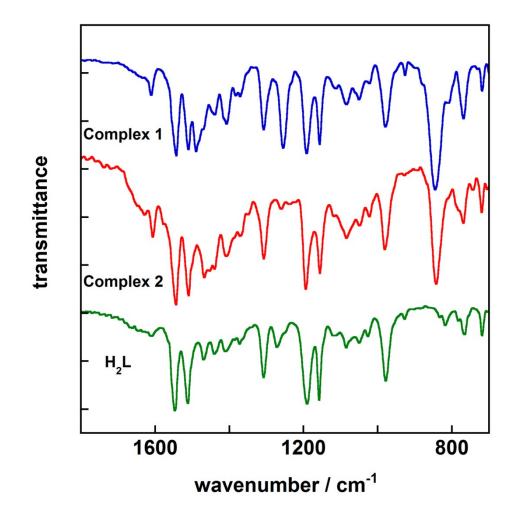
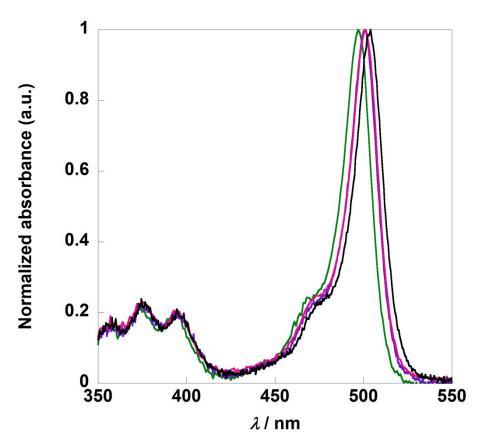



Fig. S1 IR spectra of complexes 1 and 2 and H_2L .

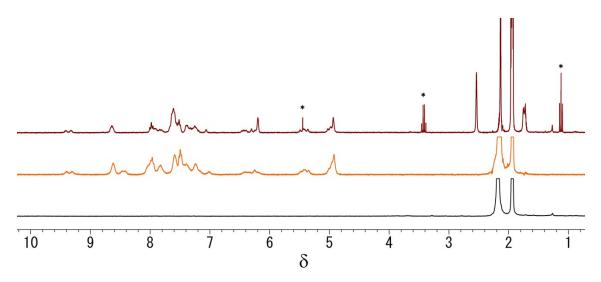


Fig. S2 Normalized absorption spectra of H_2L in several solutions: CH_3CN , (—); CH_2Cl_2 , (—); toluene, (—); THF, (—).

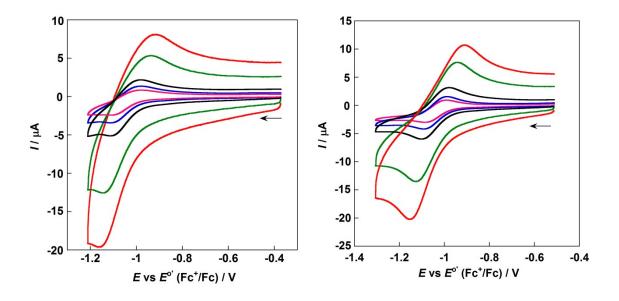
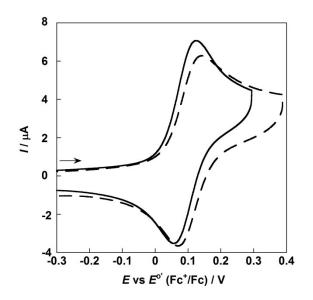
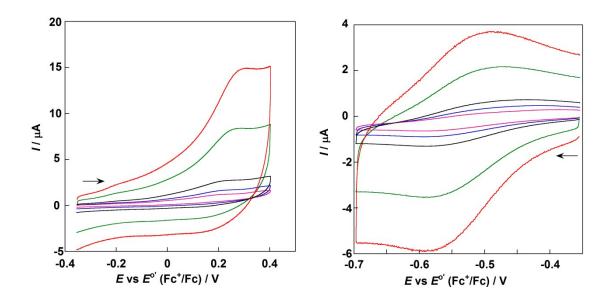
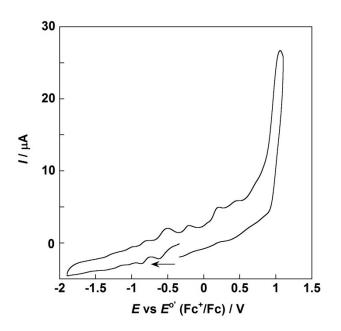

		$\lambda_{\rm abs}~({ m max/nm})^a$	$\lambda_{abs} ({ m max/nm})^b$	$\lambda_{\rm em} ({\rm max/nm})$	$\Phi_{\rm ex350}^{c}$	$\Phi_{\rm ex465}^{c}$
Complex 1	CH ₃ CN	373	497	509	0.003	0.005
Complex 2	CH ₃ CN	373	497	509	0.020	0.027
H_2L	CH ₃ CN	374	497	509	0.030 ± 0.006	0.038
	CH_2Cl_2	375	501	512	0.42 ± 0.08	0.39
	Toluene	375	504	515 (435) ^d	0.57±0.07	0.55
	THF	375	501	511		

 Table S1
 Photophysical properties of H₂L, and complexes 1 and 2 in several solvents.


^{*a*}The anthracene moiety. ^{*b*}The BODIPY moiety. ^{*c*}The fluorescence quantum yields were determined using fluorescein as a standard ($\Phi = 0.85$ in carbonate-bicarbonate buffer at a pH of about 9.6) ^{*d*}Fluorescence band was observed in toluene at excitation at 350 nm.


Fig. S3 ¹H NMR spectra (300 MHz, CD₃CN) of complexes **1** (top), **1'** (middle) and **2** (bottom) (* solvent).


Fig. S4 The reduction processes of complexes **1** (left) and **1'** (right) in CH₃CN containing 0.10 M Bu₄NPF₆ recorded at scan rates of 25 (—), 50 (—), 100 (—), 500 (—), and 1000 (—) mV s⁻¹: working electrode, glassy carbon; auxiliary electrode, platinum wire; reference electrode, Ag/Ag⁺. Potentials are versus ferrocenium/ferrocene (Fc⁺/Fc).

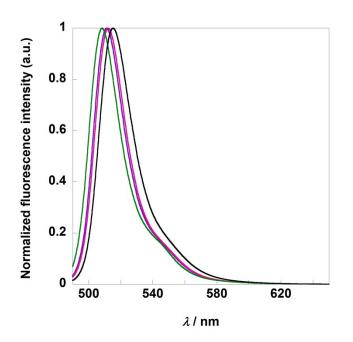

Fig. S5 The oxidation processes of complexes 1 (--) and 1' (--) in CH₃CN containing 0.10 M Bu₄NPF₆ recorded at a scan rate of 100 mV s⁻¹: working electrode, glassy carbon; auxiliary electrode, platinum wire; reference electrode, Ag/Ag⁺. Potentials are versus ferrocenium/ferrocene (Fc⁺/Fc).

Fig. S6 The oxidation (left) and reduction (right) processes of complex **2** in CH₃CN containing 0.10 M Bu₄NPF₆ recorded at scan rates of 25 (—), 50 (—), 100 (—), 500 (—), and 1000 (—) mV s⁻¹: working electrode, glassy carbon; auxiliary electrode, platinum wire; reference electrode, Ag/Ag⁺. Potentials are versus ferrocenium/ferrocene (Fc⁺/Fc).

Fig. S7 Cyclic voltammogram of **2'** (—) in CH₃CN containing 0.10 M Bu₄NPF₆ recorded at a scan rate of 100 mV s⁻¹: working electrode, glassy carbon; auxiliary electrode, platinum wire; reference electrode, Ag/Ag⁺. Potentials are versus ferrocenium/ferrocene (Fc⁺/Fc).

Fig. S8 Normalized fluorescence spectra of H_2L in several solutions: CH_3CN , (—); CH_2Cl_2 , (—); toluene, (—); THF, (—). Excitation wavelength = 470 nm.

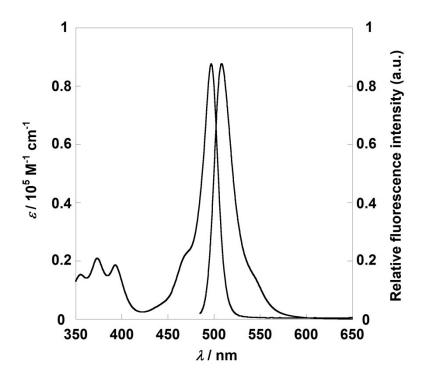


Fig. S9 Absorption and fluorescence spectra of H_2L in CH_3CN .

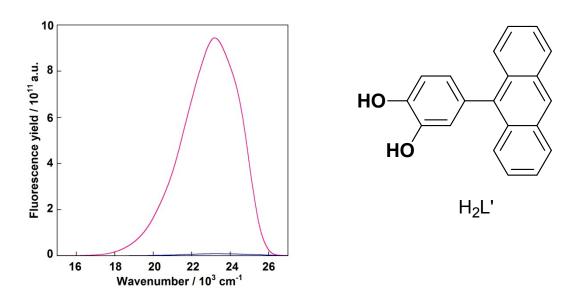
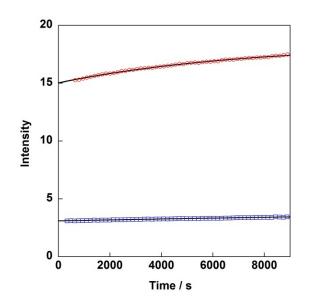
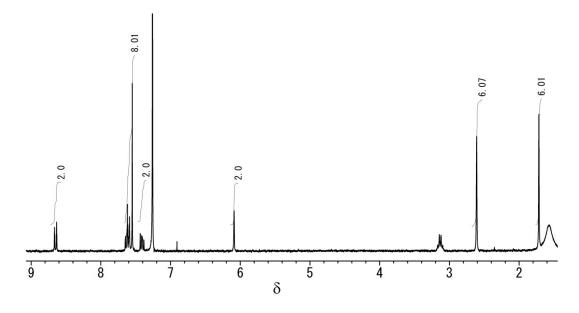



Fig. S10 Fluorescence spectra of H_2L' (—), complex 1' (—) in 350 nm excitation wavelength. Solvent: CH_3CN .

Fig. S11 Time variations of fluorescence intensity of complexes 1 (\Box) and 2 (\circ); $\lambda_{ex} = 470$ nm, maximum fluorescence intensity (508 nm monitored) of emission spectra in CH₃CN over 9000 s.

$$[Co(L)] \xrightarrow{k_{d}} [Co] + L$$


Scheme S1. A simple model for ligand dissociation.

 $[Int] = [Int]_0 + C[1 - \exp(-k_d t)]$ (S1)

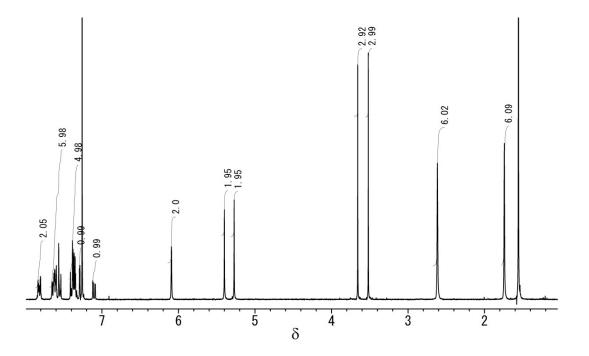

The [Int], $[Int]_0$, *C*, k_d , and *t* represent the fluorescence intensity, the deduced stating value, the species dependent value, the dissociation rate constant, and time, respectively

Table S2The obtained values by using equation (S1).

	[Int] ₀	С	k _d	<i>R</i> ²
Complex 1	3.10	1.49	$2.93 \times 10^{-5}\text{s}^{-1}$	0.98677
Complex 2	15.0	3.36	$1.38 imes 10^{-4} s^{-1}$	0.99706

Fig. S12 ¹H NMR spectrum (300 MHz, CDCl₃) of (i).

Fig. S13 ¹H NMR spectrum (300 MHz, $CDCl_3$) of (ii).

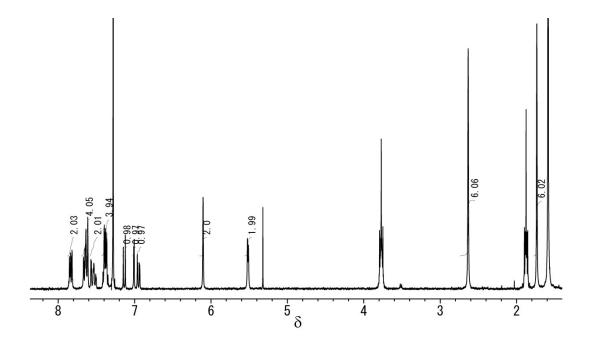


Fig. S14 1 H NMR spectrum (300 MHz, CDCl₃) of H₂L.

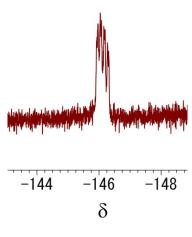


Fig. S15 19 F NMR spectrum (282.4 MHz, CDCl₃) of H₂L.