When two are better than one: bright phosphorescence from non-stereogenic dinuclear iridium(III) complexes

R. E. Daniels, S. Culham, M. Hunter, M. C. Durrant, M. R. Probert, W. Clegg, J. A. G. Williams* and V. N. Kozhevnikov*

Supporting Information

Table of Contents

1. Synthetic procedures and characterisation of new compounds	
(a) Synthesis of the tridentate proligands	2
(b) Synthesis of chloro-bridged iridium(III) dimers	4
(c) Synthesis of the dinuclear iridium complexes	5
(d) Metathesis of the monodentate ligand	9
2. TD-DFT results and correlation with experimental data	11
(a) Tables of excitation energies, their oscillator strengths	
and main orbital components	
(b) Simulated absorption spectra	
(c) Additional plots showing experimental versus calculated data	21
(d) Frontier orbital plots of the dinuclear complexes	22
3. X-ray crystallography of complex A3	

Appendix: NMR spectra of new ligands and complexes

^{*} E-mail: valery.kozhevnikov@northumbria.ac.uk j.a.g.williams@durham.ac.uk

1. Synthetic procedures and characterisation of new compounds

(a) Synthesis of the tridentate proligands

4-t-butyl-2-(2,4-difluoro-3-hexyloxyphenyl)pyridine, 2

Potassium phosphate (12.7 g, 60.0 mmol) was dissolved in water (20 mL) and the solution was deaerated by bubbling nitrogen through the mixture for 30 min. A mixture of [2,4-difluoro-3-(hexyloxy)phenyl]boronic acid (5.00 g, 19.4 mmol), 2-chloro-4-tertbutylpyridine (2.78 g, 16.4 mmol), dioxane (60 mL) was deoxygenated by bubbling nitrogen through the mixture for 15 min. Palladium acetate (184 mg, 0.820 mmol), S-Phos (660 mg, 1.64 mmol) and the above solution of K₃PO₄ were added and the mixture was stirred at 100°C (bath) for 14 h. Toluene 10 (mL) was added and the layers were separated. The organic layer was evaporated to dryness by rotary evaporation under reduced pressure. The product was then purified by column chromatography (silica gel) using a 3/1 petroleum ether/ethyl acetate eluent. Yield: 5.50 g, 96 %. ¹H-NMR (400 MHz, CDCl₃): δ 8.66 (br s, 1H), 7.99 (t, 1H, *J* = 15.1, 7.8), 7.68 (br s, 1H), 7.64 (br s, 1H), 7.27 (br s, 1H), 4.09 (t, 2H, *J* = 12.8, 6.4), 1.81-1.71 (m, 2H), 1.51-1.40 (m, 2H), 1.36-1.23 (m, 13H), 0.92-0.80 (m, 3H).

5-(4-t-butylpyridine-2-yl)-2,4-difluoro-3-n-hexyloxyphenyl boronic acid MIDA ester

Compound **2** (5.00 g, 14.4 mmol) and N,N,N',N",N"-pentamethyldiethylenetriamine (2.55 g, 16.0 mmol) were dissolved in dry THF (40 mL), and the solution was cooled to -78° C. To this solution, 1.6 M solution of *n*-butyllithium in hexane (10 mL, 16.0 mmol) was added dropwise. Solution was stirred at -78° C for 45 min. Tri-isopropylborate (5 mL, 21.6 mmol) was added dropwise. The mixture was stirred at -78° C for 3 h and at room temperature for a further 14 h. 1M aqueous

hydrochloric acid was added to neutralise the reaction mixture. The mixture was separated, the organic layer was washed with brine and all volatiles removed under reduced pressure. The residue was dissolved in DMSO (10 mL) at 40-50°C. MIDA (2.10 g, 14.4 mmol) and toluene (160 mL) were added and the mixture was heated with Dean-Stark adapter for 3 h. All volatiles were removed under reduced pressure. The residue was triturated with petrol ether. The petrol ether phase was decanted and the product was left overnight. During this time, a semi-solid formed which was suspended in water and filtered. Yield: 3.96g, 55%. The product was used directly in the subsequent reaction.

1,5-bis(3-tert-butylphenyl)-2,4-difluoro-3-(hexyloxy)benzene, L^AH

A mixture of the boronic acid derivative (1.0 g, 2.6 mmol), 2-chloro-4-*tert*-butylpyridine (0.44 g, 2.4 mmol) and toluene (30 mL) was deoxygenated by bubbling nitrogen through the mixture for 15 min. Pd(PPh₃)₄ (0.12 g, 0.12 mmol) was added and the mixture additionally deoxygenated by bubbling nitrogen for 5 min. An aqueous solution of sodium carbonate (2 M, 3.6 mL, 7.2 mmol) was added and the mixture was additionally degassed for 5 min. The mixture was heated under reflux under nitrogen for 24 h. Brine (30 mL) was added and layers were separated. The organic layer was separated, washed with brine, dried over anhydrous MgSO₄ and filtered. The solvent was removed under reduced pressure. The product was purified by column chromatography (silica gel) using a mixture petroleum ether/ethyl acetate, 3/1 as eluent. A colourless solid was obtained. Yield: 43 %. ¹H NMR (400 MHz, CDCl₃): δ 8.60 (d, 2H, *J* = 5.4), 8.09 (t, 1H, *J* = 8.5), 7.69 (br s, 2H), 7.20 (dd, 2H, *J* = 5.4, 2.1), 4.21 (t, 2H, *J* = 7.0), 1.57 (q, 2H, *J* = 7.2), 1.34 (m, 6H), 0.90 (t, 3H, *J* = 7.2); ¹⁹F NMR (400 MHz): δ -131.30 (d, *J* = 21.5)

(b) Synthesis of chloro-bridged iridium(III) dimers

$[IrL^{A}Cl(\mu-Cl)]_{2}$

A mixture of the proligand $L^{A}H$ (2.10 g, 4.38 mmol), iridium chloride hydrate (1.59 g, 4.38 mmol), 2-ethoxyethanol (90 mL) and water (30 mL) was heated under reflux for 14 h. The solid was filtered off and washed with water and ethanol to give, after drying, the dichloro-bridged compound. Yield: 2.60 g, 80%. ¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, 2H, J = 5.9), 8.25 (br s, 2H), 6.96 (dd, 2H, J = 5.9, 1.9), 4.18 (t, 2H, J = 6.5), 1.89 (m, 2H), 1.58 (m, 2H), 1.49 (s, 18H), 1.42 (m, 4H), 0.95 (t, 3H, J = 6.9); ¹⁹F NMR (400 MHz, CDCl₃): δ –125.1.

 $[IrL^BCl(\mu-Cl)]_2$

A mixture of $L^{B}H$ (0.221 g, 0.581 mmol) and iridium chloride hydrate (0.211 g, 0.581 mmol) were added to a 3:1 mixture of 2-ethoxyethanol and water (25 mL). The reaction mixture was heated to reflux (130°C) for 24 h under argon. The solvent was removed *in vacuo* and the resulting orange solid was filtered and washed with ethanol and water to give the desired product. Yield: 308 mg, 0.486 mmol, 84%. ¹H NMR (400 MHz, d^{6} -DMSO) δ 8.94 (d, 2H, J = 6.0), 8.05 (br s, 2H), 7.73 (br d, 2H, J = 6.4), 7.27 (t, 1H, J = 11.6,), 1.40 (s, 18H); ¹⁹F NMR (400 MHz, d^{6} -DMSO): δ -107.38 (d, J = 12.8).

A mixture of 3,5-bis(4-tert-butylpyridin-2-yl)-2,6-difluoropyridine[†] (0.151 g, 0.396 mmol) and iridium chloride hydrate (0.144 g, 0.396 mmol) were added to a 3:1 mixture of 2-ethoxyethanol and water (60 mL). The reaction mixture was heated to reflux (130 °C) for 24 h under argon. The solvent was removed *in vacuo* and the resulting orange solid was filtered and washed with ethanol and water. Yield: 162 mg, 0.267 mmol, 67%. A satisfactory NMR spectrum could not be obtained in this instance, apparently due to low solubility, so the compound was used directly in the subsequent reactions to form the dinuclear complexes.

(c) Synthesis of the dinuclear iridium complexes

 ${IrL^{A}Cl}_{2}L^{1}$ (A1)

A mixture of $[IrL^{A}Cl(\mu-Cl)]_{2}$ (370 mg, 0.50 mmol), the bis-N^C proligand $L^{1}H_{2}$ (90 mg, 0.26 mmol), silver triflate (191 mg, 0.74 mmol) and toluene (60 mL) was heated under reflux for 8 h. The heating was removed and 10 mL of 3M HCl was added to a still warm mixture. After stirring for 5 min, the organic phase was separated, the solvent evaporated off under reduced pressure and the residue treated with methanol (40 mL). The solid was filtered off, washed with methanol, then dissolved in dichloromethane (20 mL) and the solution filtered. To the filtrate, methanol (40 mL) was added and the volume of the mixture was reduced to approximately 10 mL under reduced pressure. The orange product that formed was filtered off, washed with a small amount of

[†] Prepared as described in patent WO/2014/009716

methanol, and dried. Yield: 210 mg, 48%. ¹H NMR (400 MHz, CDCl₃) δ 11.77 (s, 1H), 8.40 (s, 1H), 8.12 (s, 4H), 7.81 (d, 2H, J = 8.0 Hz), 7.79 (d, 4H, J = 5.9), 6.95 (dd, 2H, J = 8.0, 1.6), 6.92 (dd, 4H, J = 5.9, 1.6), 6.28 (d, 2H, J = 1.6), 4.20 (t, 4H, J = 6.5), 1.92 (m, 4H), 1.62 (m, 4H), 1.44 (m, 8H), 1.32 (s, 36H), 1.01 (s, 18H), 0.97 (t, 6H, J = 6.9); ¹⁹F NMR (400 MHz): δ –126.9; (FTMS⁺): for [M-Cl]⁺ calc'd 1721.6791, found 1721.6795; for [M+Na]⁺ calc'd 1779.6362, found 1779.6771; for [M+NH₄]+ calc'd 1770.6761, found 1770.6771.

${IrL^{A}Cl}_{2}L^{2}$ (A2)

A mixture of $[IrL^{A}Cl(\mu-Cl)]_{2}$ (148 mg, 0.2 mmol, 2equiv.), the bis-N^C proligand $L^{2}H_{2}$ (24 mg, 0.1 mmol), silver triflate (77 mg, 0.3 mmol, 3 equiv.) and toluene (30 mL) was heated under reflux for 15 h. To the still warm solution, 5 mL of 2M HCl was added and the mixture was stirred for 15 min. The volume of the mixture was reduced to approximately 3 mL. The aqueous layer was decanted, and the solid residue was triturated with methanol (25 mL), filtered and the solid washed with methanol. The solid was then dissolved in dichloromethane and the solution filtered through celite. To the filtrate, methanol (5 mL) was added and the mixture was reduced to a volume of 2 mL, causing formation of solid, which was filtered off and washed with methanol to give the desired product as an orange solid. Yield: 143 mg, 87%. ¹H NMR (400 MHz, CDCl₃): δ 11.86 (s, 1H), 8.53 (s, 1H), 8.12 (br s, 4H), 7.91 (br d, 2H, *J* = 7.8), 7.74 (d, 4H, *J* = 6.0), 6.92 (m, 6H), 6.78 (br t, 2H, *J* = 7.8), 5.78 (d, 2H, *J* = 7.7), 4.21 (t, 4H, *J* = 6.4), 1.91 (m, 4H), 1.61 (m, 4H), 1.43 (m, 8H), 1.32 (s, 36H), 0.97 (t, 6H, *J* = 6.9); ¹⁹F NMR (400 MHz): δ -126.4(s); HRMS (FTMS⁺): for [M-Cl]⁺ calc'd 1609.5539, found 1609.5524; for [M+Na]⁺ calc'd 1667.5108, found 1667.5055.

A mixture of $[IrL^{A}Cl(\mu-Cl)]_{2}$ (148 mg, 0.2 mmol, 2 equiv.), the bis-N^C proligand $L^{3}H_{2}$ (30 mg, 0.1 mmol), silver triflate (77 mg, 0.3 mmol, 3 equiv.) and toluene (30 mL) was heated under reflux for 15 h. To a still warm solution, 5 mL of 2M HCl was added and the mixture was stirred for 15 min. The volume of the mixture was reduced to approximately 5 mL. The residue was triturated with methanol (40 mL), filtered and the solid residue was washed with methanol. The solid was dissolved in dichloromethane and filtered through celite. To the filtrate, methanol (5 ml) was added and the mixture evaporated to a volume of 2 mL causing formation of solid. This orange product was filtered off and washed with methanol. Yield: 116 mg, 68%. ¹H NMR (400 MHz, CDCl₃): δ 11.93 (s, 1H), 9.30 (br t, 1H, J = 3.7), 8.15 (d, 4H, J = 1.8), 7.79 (d, 4H, J = 6.0), 6.97 (dd, 4H, J = 6.0, 1.8), 6.38 (ddd, 2H, J = 11.2, 8.8, 2.4), 5.78 (dd, 2H, J = 8.8, 2.4), 4.21 (t, 4H, J = 6.4), 1.92 (m, 4H), 1.61 (m, 4H), 1.43 (m, 8H), 1.34 (s, 36H), 0.97 (t, 6H, J = 6.9); ¹⁹F NMR (400 MHz): $\delta - 103.3$ (m), -105.6 (m), -126.9; HRMS (FTMS⁺): for [M+Na]⁺ calc'd 1739.4731, found 1739.4670.

${IrL^{A}Cl}_{2}L^{4}$ (A4)

A mixture of $[IrL^{A}Cl(\mu-Cl)]_{2}$ (150 mg, 0.2 mmol), the bis-N^C proligand $L^{4}H_{2}$ (66 mg, 0.22 mmol), silver triflate (67mg, 0.26 mmol, 1.3 eq.) and toluene (7 mL) was heated to reflux for 8 h before the solution was allowed to cool to room temperature and the toluene removed under reduced pressure. The crude mixture was purified by column chromatography (silica gel), gradient elution DCM / EtOAc (0–20%), R_f in DCM / EtOAc (9:1) = 0.69. The product obtained after evaporation of the eluent was treated with methanol and filtered. The solid was recrystallised from DMSO, washed with methanol and dried in vacuum (5 mm Hg) at 140°C for 24 h. Yield: 57 mg,

17%. ¹H NMR (400 MHz, CDCl₃): δ 11.65 (s, 1H), 8.23 (s,1H), 8.12 (s, 4H), 7.81 (d, 2H, J = 8.7), 7.78 (d, 4H, J = 6.0), 6.93 (dd, 2H, J = 6.0, 1.8), 5.75 (d, J = 2.8), 4.19 (t, 4H, J = 6.4), 3.55 (s, 6H) 1.91 (m, 4H), 1.61 (m, 9H), 1.49 (s, 2H), 1.42 (m, 8H), 1.33 (s, 36H), 1.25 (s, 6H), 0.96 (t, J = 6.9, 6H); ¹⁹F NMR (400 MHz, CDCl₃): δ –126.49.

 ${IrL^{A}Cl}_{2}L^{5}$ (A5)

A mixture of $[IrL^{A}Cl(\mu-Cl)]_{2}$ (148 mg, 0.2 mmol, 2 equiv.), the bis-N^C proligand $L^{5}H_{2}$ (41 mg, 0.1 mmol), silver triflate (77 mg, 0.3 mmol, 3 equiv.) and toluene was heated under reflux for 15 hours. To the still warm solution, 5 mL of 2M HCl was added and the mixture was stirred for 15 minutes. The mixture was evaporated to a volume of around 3 mL. The aqueous layer was decanted and the solid residue was triturated with methanol (25 mL), filtered and the solid washed with methanol. The solid was then dissolved in DCM and filtered through celite. To the filtrate, methanol (5 mL) was added and the mixture was evaporated to a volume of 2 mL leading to a solid being formed. The orange solid product was filtered off, washed with methanol and dried. Yield 139 mg, 76%. ¹H NMR (400 MHz, CDCl₃): δ 11.15 (s, 1H), 8.10 (s, 4H), 7.88 (d, 4H, *J* = 6.4), 7.39 (s, 1H), 7.00 (dd, 4H, *J* = 6.0, 1.6), 5.60 (s, 2H), 4.19 (t, 4H, *J* = 6.8), 2.62 (t, 4H, *J* = 7.8), 1.95-1.88 (m, 4H), 1.65-1.57 (m, 4H), 1.51-1.41 (m, 12H), 1.35 (s, 36H), 1.20-1.16 (m, 12H), 0.97 (t, *J* = 7.2, 6H), 0.81 (t, 6H, *J* = 6.8); ¹⁹F NMR (400 MHz, CDCl₃): δ -126.76; (FTMS⁺): for [M-Cl]⁺ calc'd 1789.6545, found 1789.6530; for [M+Na]⁺ calc'd 1847.6114, found 1847.6053; for [M+NH₄]+ calc'd 1838.6525, found 1838.6506.

${IrL^{B}Cl}_{2}L^{1}$ (B1)

A mixture of $[IrL^{A}Cl(\mu-Cl)]_{2}$ (150 mg, 0.23 mmol), the bis-N^C proligand $L^{1}H_{2}$ (40 mg, 0.12 mmol), silver trifluoromethanesulfonate (90 mg, 0.35 mmol) and xylene (30 mL) was heated to 160°C for 8 h. To the cooled reaction mixture, dichloromethane (10 mL) was added and the mixture filtered *in vacuo*. The filtered solid was washed with dichloromethane. Concentrated hydrochloric acid (3 mL) was added to the filtrate and the resulting mixture stirred for 5 min, then filtered through celite and the celite washed with further dichloromethane. The filtrate was

evaporated to dryness under reduced pressure and the residue treated with methanol (20 mL). The orange product was filtered off and washed with methanol. Yield: 125 mg, 0.08 mmol, 69%. ¹H NMR (CDCl₃, 400 MHz): δ 11.75 (s, 1H), 8.41 (s, 1H), 8.11 (s, 4H), 7.81 (d, 6H, *J* = 6.8), 6.94 (d, 6H, *J* = 6.4), 6.82 (t, 2H, *J* = 11.8), 6.27 (s, 2H), 1.32 (s, 36H), 1.02 (s, 18H); ¹⁹F NMR (CDCl₃, 400 MHz): δ –109.49 (d, *J* = 12); HRMS (FTMS⁺): for [M-Cl]⁺ calc'd 1521.5015, found 1521.5026; for [M-(Ir(NCN)Cl)-Cl]⁺ calc'd 915.3789, found 915.3784; for [M-2Cl]²⁺ calc'd 743.2663, found 743.2655.

${IrL^{C}Cl}_{2}L^{1}$ (C1)

A mixture of $[IrL^{C}Cl(\mu-Cl)]_{2}$ (150 mg, 0.25 mmol), the bis-N^C proligand $L^{1}H_{2}$ (43 mg, 0.12 mmol), silver trifluoromethanesulfonate (101 mg, 0.37 mmol) and xylene (30 mL) was heated at 160°C for 8 h. To the cooled reaction mixture, dichloromethane (15 mL) and concentrated hydrochloric acid (3 mL) were added the mixture stirred for 5 min. The resulting mixture was filtered through celite and the celite washed with further dichloromethane. The filtrate was evaporated to dryness under reduced pressure and the residue treated with methanol (20 mL). The resulting orange-yellow product was filtered off and washed with methanol. Yield: 114 mg, 0.07 mmol, 59%. ¹H NMR (CDCl₃, 400 MHz): δ 11.76 (s, 1H), 8.46 (s, 1H), 8.12 (d, 4H, *J* = 2.0), 7.85 (d, 2H, *J* = 8.4), 7.82 (d, 4H, *J* = 6.0), 7.02 (dd, 4H, *J* = 6.4, 2.4), 6.99 (dd, 2H, *J* = 8.4, 1.6), 6.24 (s, 2H), 1.35 (s, 36H), 1.02 (s, 18H); ¹⁹F NMR (CDCl₃, 400 MHz): δ -69.43 (s); HRMS (FTMS⁺) for [M-Cl]⁺ calc'd 1523.4920, found 1523.4917; for [M-(Ir(NCN)Cl)-Cl]⁺ calc'd 916.3742, found 916.3735; for [M+NH₄]⁺ calc'd 1572.4900, found 1572.4914.

(d) Metathesis of the monodentate ligand to form ${IrL^A(CN)}_2L^1$ (A1')

- 9 -

To a solution of {IrL^ACl}₂L¹ (88 mg, 0.05 mmol) in dichloromethane (15 mL), a solution of KCN (65 mg, 1 mmol) in methanol (15 mL) was added and the mixture was stirred at RT for 4 h. The mixture was then reduced to a volume of 2 mL. Methanol (10 mL) was added, and the resulting yellow solid product was filtered off, washed with methanol and dried. Yield: 65 mg, 75%. ¹H NMR (400 MHz, CDCl₃): δ 11.47 (s, 1H), 8.47 (s,1H), 8.15 (br s, 4H), 7.87 (d, 2H, *J* = 8.0), 7.83 (d, 4H, *J* = 5.9), 7.00 (dd, 2H, *J* = 8.0, 1.6), 6.93 (dd, 4H, *J* = 5.9, 1.6), 6.30 (d, 2H, *J* = 1.6), 4.22 (t, 4H, *J* = 6.5), 1.94 (m, 4H), 1.64 (m, 4H), 1.44 (m, 8H), 1.34 (s, 36H), 1.02 (s, 18H), 0.97 (t, 6H, *J* = 6.9); ¹⁹F NMR (400 MHz, CDCl₃): δ -126.5; HRMS (FTMS⁺) for [M+H]⁺ calc'd 1739.7252, found 1739.7240.

2. TD-DFT results and correlation with experimental data

(a) Tables of excitation energies, their oscillator strengths and main orbital components

Table S1 Selected calculated excitation energies (ΔE), oscillator strengths (f), and main orbital components for complex A1.^{*a*}

vacuum		dichloromethane			
ΔΕ,	f	transition (coefficient)	ΔΕ,	f	transition (coefficient)
nm			nm		
526	(triplet)	HOMO-1 \rightarrow LUMO (0.59)	499	(triplet)	HOMO-1 \rightarrow LUMO (0.50)
		HOMO \rightarrow LUMO (0.32)			HOMO \rightarrow LUMO (-0.43)
516	(triplet)	HOMO-3 \rightarrow LUMO (0.55)	484	(triplet)	HOMO-5 \rightarrow LUMO (0.16)
		HOMO-2 \rightarrow LUMO (0.37)			HOMO-3 \rightarrow LUMO (0.60)
499	(triplet)	HOMO-1 \rightarrow LUMO (-0.32)	462	(triplet)	HOMO-2 \rightarrow LUMO+1 (0.31)
		HOMO \rightarrow LUMO (0.60)			HOMO-1 \rightarrow LUMO+2 (-0.32)
494	0.033	HOMO \rightarrow LUMO (0.70)	461	(triplet)	HOMO-2 \rightarrow LUMO+2 (-0.28)
					HOMO-1 \rightarrow LUMO+1 (0.35)
490	0.118	HOMO-1 \rightarrow LUMO (0.70)	459	(triplet)	HOMO-3 \rightarrow LUMO+1 (0.26)
					HOMO \rightarrow LUMO+2 (0.36)
441	0.060	HOMO-2 \rightarrow LUMO+1 (0.42)	459	(triplet)	HOMO-2 \rightarrow LUMO+2 (-0.30)
		HOMO \rightarrow LUMO+2 (0.39)			HOMO \rightarrow LUMO+1 (0.41)
433	0.018	HOMO-3 \rightarrow LUMO+1 (0.42)	456	0.308	HOMO-1 \rightarrow LUMO (-0.47)
		HOMO-1 \rightarrow LUMO+2 (-0.38)			HOMO \rightarrow LUMO (0.52)
418	0.115	HOMO-3 \rightarrow LUMO+4 (-0.33)	408	0.157	HOMO-2 \rightarrow LUMO+1 (0.44)
		HOMO-1 \rightarrow LUMO+3 (0.38)			HOMO \rightarrow LUMO+2 (-0.37)
412	0.053	HOMO-2 \rightarrow LUMO+4 (0.40)	398	0.020	HOMO-3 \rightarrow LUMO+1 (0.42)
		HOMO \rightarrow LUMO+3 (0.40)			HOMO-1 \rightarrow LUMO+2 (-0.37)
379	0.371	HOMO-5 \rightarrow LUMO (-0.17)	387	0.219	HOMO-3 \rightarrow LUMO+5 (-0.34)
		HOMO-4 \rightarrow LUMO (0.60)			HOMO-1 \rightarrow LUMO+3 (0.37)
369	0.040	HOMO-6 \rightarrow LUMO (0.49)	381	0.114	HOMO-2 \rightarrow LUMO+5 (0.36)
		HOMO \rightarrow LUMO+4 (-0.28)			HOMO \rightarrow LUMO+3 (-0.36)
369	0.030	HOMO-6 \rightarrow LUMO (0.43)	380	0.030	HOMO-2 \rightarrow LUMO+3 (0.41)
		HOMO-2 \rightarrow LUMO+3 (-0.35)			HOMO-1 \rightarrow LUMO+5 (-0.31)
			374	0.092	HOMO-4 \rightarrow LUMO (0.48)
					HOMO-3 → LUMO+4 (-0.36)
			373	0.018	HOMO \rightarrow LUMO+4 (0.41)
					HOMO \rightarrow LUMO+5 (0.40)
			364	0.160	HOMO-3 \rightarrow LUMO+1 (0.39)
					HOMO-1 \rightarrow LUMO+2 (0.36)
			362	0.054	HOMO-5 \rightarrow LUMO (0.54)
					HOMO-3 \rightarrow LUMO+2 (0.33)
			362	0.024	HOMO-5 \rightarrow LUMO (-0.32)
					HOMO-3 \rightarrow LUMO+2 (0.38)
			359	0.109	HOMO-2 \rightarrow LUMO+1 (0.32)
					HOMO-2 \rightarrow LUMO+4 (0.28
			359	0.075	HOMO-3 \rightarrow LUMO+4 (0.32)
					HOMO \rightarrow LUMO+2 (-0.30)

vacuum		dichloromethane			
ΔΕ,	f	transition (coefficient)	ΔΕ,	f	transition (coefficient)
nm			nm		
527	(triplet)	HOMO-1 \rightarrow LUMO (-0.20)	498	(triplet)	HOMO-4 \rightarrow LUMO (0.18)
		HOMO \rightarrow LUMO (0.64)			HOMO \rightarrow LUMO (0.66)
516	(triplet)	HOMO-3 \rightarrow LUMO (-0.16)	483	(triplet)	HOMO-3 \rightarrow LUMO (-0.19)
		HOMO-2 \rightarrow LUMO (0.65)			HOMO-2 \rightarrow LUMO (0.59)
492	0.130	HOMO \rightarrow LUMO (0.70)	453	0.305	HOMO \rightarrow LUMO (0.70)
486	0.012	HOMO-1 \rightarrow LUMO (0.70)	399	0.107	HOMO-3 \rightarrow LUMO+1 (-0.35)
					HOMO-1 → LUMO+2 (0.44)
433	0.026	HOMO-2 \rightarrow LUMO+1 (0.32)	393	0.011	HOMO-2 \rightarrow LUMO+2 (0.36)
		HOMO-1 \rightarrow LUMO+2 (0.44)			HOMO \rightarrow LUMO+1 (0.52)
428	0.026	HOMO-2 \rightarrow LUMO+1 (-0.34)	393	0.029	HOMO-2 \rightarrow LUMO+1 (0.37)
		HOMO \rightarrow LUMO+2 (0.49)			HOMO \rightarrow LUMO+2 (0.50)
415	0.127	HOMO-2 \rightarrow LUMO+5 (-0.34)	383	0.268	HOMO-2 \rightarrow LUMO+4 (-0.32)
		HOMO \rightarrow LUMO+3 (0.43)			HOMO \rightarrow LUMO+3 (0.45)
406	0.048	HOMO-2 \rightarrow LUMO+4 (-0.37)	374	0.240	HOMO-4 \rightarrow LUMO (0.37)
		HOMO-1 \rightarrow LUMO+3 (0.42)			HOMO-1 \rightarrow LUMO+3 (0.41)
398	0.019	HOMO-2 \rightarrow LUMO+4 (0.43)	373	0.034	HOMO-3 \rightarrow LUMO+3 (0.32)
		HOMO-2 → LUMO+5 (0.28)			HOMO-1 \rightarrow LUMO+4 (0.33)
380	0.015	HOMO-3 \rightarrow LUMO+1 (0.44)	371	0.048	HOMO-4 \rightarrow LUMO (0.43)
		HOMO-1 \rightarrow LUMO+2 (-0.39)			HOMO-2 \rightarrow LUMO+5 (0.42)
379	0.341	HOMO-4 \rightarrow LUMO (0.61)	369	0.045	HOMO-5 \rightarrow LUMO (-0.36)
		HOMO-2 \rightarrow LUMO+4 (-0.19)			HOMO \rightarrow LUMO+5 (0.49)
369	0.067	HOMO-5 \rightarrow LUMO (0.68)	360	0.128	HOMO-2 \rightarrow LUMO+1 (-0.33)
					HOMO \rightarrow LUMO+2 (0.43)
			360	0.046	HOMO-5 \rightarrow LUMO (0.54)
					HOMO-1 \rightarrow LUMO+4 (-0.25)
			356	0.111	HOMO-3 \rightarrow LUMO+5 (-0.30)
					HOMO-2 \rightarrow LUMO+5 (0.34)

Table S2 Selected calculated excitation energies (ΔE), oscillator strengths (f), and main orbital components for complex **B1**.^{*a*}

vacuum		dichloromethane			
ΔΕ,	f	transition (coefficient)	ΔΕ,	f	transition (coefficient)
nm			nm		
520	(triplet)	HOMO-4 \rightarrow LUMO (-0.17)	492	(triplet)	HOMO-4 \rightarrow LUMO (0.19)
		HOMO \rightarrow LUMO (0.67)			HOMO \rightarrow LUMO (0.65)
509	(triplet)	HOMO-7 \rightarrow LUMO (-0.13)	476	(triplet)	HOMO-1 → LUMO (0.61)
		HOMO-1 \rightarrow LUMO (0.66)			HOMO \rightarrow LUMO+5 (-0.18)
484	0.144	HOMO \rightarrow LUMO (0.70)	449	(triplet)	HOMO-1 \rightarrow LUMO+1 (-0.36)
					HOMO \rightarrow LUMO+2 (0.38)
409	0.127	HOMO-3 \rightarrow LUMO+1 (-0.35)	449	(triplet)	HOMO-1 \rightarrow LUMO+2 (-0.36)
		HOMO-2 \rightarrow LUMO+2 (0.42)			HOMO \rightarrow LUMO+1 (0.38)
396	0.014	HOMO-1 \rightarrow LUMO+4 (-0.30)	448	0.324	HOMO \rightarrow LUMO (0.70)
		HOMO-1 \rightarrow LUMO+5 (0.47)			
390	0.071	HOMO-3 \rightarrow LUMO+4 (-0.31)	397	0.013	HOMO-1 \rightarrow LUMO+2 (-0.43)
		HOMO-2 \rightarrow LUMO+3 (0.44)			HOMO \rightarrow LUMO+1 (0.54)
376	0.142	HOMO-4 \rightarrow LUMO (0.40)	397	0.016	HOMO-1 \rightarrow LUMO+1 (-0.44)
		HOMO-3 \rightarrow LUMO+5 (0.37)			HOMO \rightarrow LUMO+2 (0.52)
375	0.204	HOMO-4 \rightarrow LUMO (0.45)	374	0.277	HOMO-3 \rightarrow LUMO+1 (-0.42)
		HOMO-3 \rightarrow LUMO+5 (-0.37)			HOMO-2 → LUMO+2 (0.47)
365	0.070	HOMO-5 \rightarrow LUMO (0.68)	368	0.093	HOMO-4 \rightarrow LUMO (0.46)
					HOMO-1 \rightarrow LUMO+5 (0.42)
			363	0.189	HOMO-1 \rightarrow LUMO+1 (0.43)
					HOMO \rightarrow LUMO+2 (0.38)
			360	0.246	HOMO-2 \rightarrow LUMO+3 (-0.29)
					HOMO-1 \rightarrow LUMO+5 (0.46)
			360	0.120	HOMO-5 \rightarrow LUMO (0.63)
					HOMO-2 → LUMO+4 (0.20)

Table S3 Selected calculated excitation energies (ΔE), oscillator strengths (f), and main orbital components for complex C1.^{*a*}

vacuum			dichloromethane		
ΔΕ,	f	transition (coefficient)	ΔΕ,	f	transition (coefficient)
nm			nm		
496	(triplet)	HOMO-5 \rightarrow LUMO (0.21)	482	(triplet)	HOMO-5 \rightarrow LUMO (0.24)
		HOMO-2 → LUMO (0.65)			HOMO-2 \rightarrow LUMO (0.63)
483	(triplet)	HOMO-3 \rightarrow LUMO (0.47)	466	(triplet)	HOMO-4 \rightarrow LUMO (0.36)
		HOMO-1 \rightarrow LUMO (0.36)			HOMO-3 \rightarrow LUMO (0.42)
472	(triplet)	HOMO-1 \rightarrow LUMO+1 (-0.34)	451	(triplet)	HOMO-1 \rightarrow LUMO+1 (0.37)
		HOMO \rightarrow LUMO (0.50)			HOMO \rightarrow LUMO+2 (0.33)
470	(triplet)	HOMO-1 → LUMO+2 (0.40)	451	(triplet)	HOMO-1 → LUMO+2 (0.37)
		HOMO \rightarrow LUMO+1 (0.42)			HOMO \rightarrow LUMO+1 (0.36)
463	(triplet)	HOMO \rightarrow LUMO (0.47)	445	(triplet)	HOMO-1 \rightarrow LUMO+1 (0.26)
		HOMO \rightarrow LUMO+2 (0.37)			HOMO \rightarrow LUMO+2 (0.31)
450	0.237	HOMO-2 \rightarrow LUMO (0.69)	445	(triplet)	HOMO-3 → LUMO+2 (0.26)
					HOMO \rightarrow LUMO+1 (-0.30)
413	0.023	HOMO-1 → LUMO+2 (0.48)	438	(triplet)	HOMO \rightarrow LUMO (0.64)
		HOMO \rightarrow LUMO+1 (0.48)			HOMO \rightarrow LUMO+2 (0.18)
412	0.151	HOMO-1 → LUMO+1 (0.48)	431	0.418	HOMO-2 \rightarrow LUMO (0.69)
		HOMO \rightarrow LUMO+2 (0.48)			
390	0.046	HOMO-3 \rightarrow LUMO+1 (-0.40)	393	0.041	HOMO-1 \rightarrow LUMO+2 (0.48)
		HOMO-2 → LUMO+2 (0.50)			HOMO \rightarrow LUMO+1 (0.49
379	0.010	HOMO-1 \rightarrow LUMO+1 (-0.20)	392	0.286	HOMO-1 \rightarrow LUMO+1 (0.48)
		HOMO-1 \rightarrow LUMO+3 (0.60)			HOMO \rightarrow LUMO+2 (0.49)
375	0.177	HOMO-5 \rightarrow LUMO (0.43)	371	0.017	HOMO-3 → LUMO+2 (0.36)
		HOMO \rightarrow LUMO+4 (-0.35)			HOMO-2 → LUMO+1 (0.54)
374	0.048	HOMO-1 \rightarrow LUMO+4 (0.36)	371	0.041	HOMO-3 → LUMO+1 (0.37)
		HOMO \rightarrow LUMO+5 (0.40)			HOMO-2 → LUMO+2 (0.54)
370	0.032	HOMO-5 \rightarrow LUMO (0.33)	364	0.133	HOMO-4 \rightarrow LUMO (0.61)
		HOMO-3 \rightarrow LUMO+3 (0.38)			HOMO-1 → LUMO+4 (0.21)
368	0.109	HOMO-3 \rightarrow LUMO+5 (-0.40)	363	0.351	HOMO-8 \rightarrow LUMO (-0.17)
		HOMO-2 → LUMO+4 (0.51)			HOMO-5 \rightarrow LUMO (0.62)
367	0.057	HOMO-3 \rightarrow LUMO+4 (-0.38)	358	0.035	HOMO-1 \rightarrow LUMO+3 (0.51)
		HOMO-2 → LUMO+5 (0.47)			HOMO \rightarrow LUMO+4 (-0.29)
360	0.123	HOMO-3 → LUMO+1 (0.37)	354	0.014	HOMO-1 \rightarrow LUMO+3 (0.33)
		HOMO-2 → LUMO+2 (0.37)			HOMO-1 → LUMO+5 (-0.32
356	0.050	HOMO-3 \rightarrow LUMO+1 (0.33)	351	0.096	HOMO-3 \rightarrow LUMO+5 (-0.40)
		HOMO-3 \rightarrow LUMO+3 (0.47)			HOMO-2 \rightarrow LUMO+4 (0.53)
			351	0.015	HOMO-2 \rightarrow LUMO+3 (0.29)
					HOMO-2 \rightarrow LUMO+5 (0.31)
			351	0.011	HOMO-2 \rightarrow LUMO+3 (-0.32)
					HOMO-2 \rightarrow LUMO+5 (0.41)

Table S4 Selected calculated excitation energies (ΔE), oscillator strengths (f), and main orbital components for complex A1'.^{*a*}

vacuum		dichloromethane			
ΔΕ,	f	transition (coefficient)	ΔΕ,	f	transition (coefficient)
nm			nm		
535	(triplet)	HOMO-1 \rightarrow LUMO (0.64)	504	(triplet)	HOMO-1 \rightarrow LUMO (0.64)
		HOMO \rightarrow LUMO (-0.21)			HOMO \rightarrow LUMO (-0.21)
525	(triplet)	HOMO-3 \rightarrow LUMO (0.62)	490	(triplet)	HOMO-3 \rightarrow LUMO (0.64)
		$HOMO-2 \rightarrow LUMO (-0.26)$			HOMO-1 \rightarrow LUMO+3 (-0.14)
510	(triplet)	HOMO-1 \rightarrow LUMO (0.22)	466	(triplet)	HOMO-1 \rightarrow LUMO (0.20)
		HOMO \rightarrow LUMO (0.66)			HOMO \rightarrow LUMO (0.62)
497	0.123	HOMO-1 \rightarrow LUMO (0.70)	461	0.202	HOMO-1 \rightarrow LUMO (-0.48)
					HOMO \rightarrow LUMO (0.51)
438	0.070	HOMO-2 → LUMO+1 (-0.42)	459	0.059	HOMO-1 \rightarrow LUMO (0.51)
		HOMO \rightarrow LUMO+2 (0.45)			HOMO \rightarrow LUMO (0.48)
430	0.017	HOMO-3 \rightarrow LUMO+1 (0.45)	405	0.177	HOMO-2 → LUMO+1 (-0.45)
		HOMO-1 \rightarrow LUMO+2 (0.43)			HOMO \rightarrow LUMO+2 (0.46)
415	0.116	HOMO-3 \rightarrow LUMO+5 (0.42)	394	0.011	HOMO-3 → LUMO+2 (-0.40)
		HOMO-1 → LUMO+4 (-0.42)			HOMO-1 \rightarrow LUMO+1 (0.48)
412	0.057	HOMO-2 \rightarrow LUMO+5 (0.35)	394	0.024	HOMO-3 → LUMO+1 (-0.42)
		HOMO \rightarrow LUMO+4 (0.41)			HOMO-1 \rightarrow LUMO+2 (0.45)
382	0.171	HOMO-5 \rightarrow LUMO (-0.29)	384	0.215	HOMO-3 \rightarrow LUMO+5 (0.42)
		HOMO-4 \rightarrow LUMO (0.58)			HOMO-1 \rightarrow LUMO+4 (0.46)
380	0.110	HOMO-5 \rightarrow LUMO (0.56)	380	0.143	HOMO-2 \rightarrow LUMO+5 (0.37)
		HOMO-4 \rightarrow LUMO (0.36)			HOMO \rightarrow LUMO+4 (0.41)
370	0.021	HOMO-7 \rightarrow LUMO (0.33)	379	0.018	HOMO-2 → LUMO+4 (0.36)
		HOMO-6 \rightarrow LUMO (0.61)			HOMO \rightarrow LUMO+5 (0.34)
368	0.013	HOMO-2→ LUMO+4 (0.38)	376	0.058	HOMO-4 \rightarrow LUMO (0.48)
		HOMO \rightarrow LUMO+5 (-0.37)			HOMO-3 → LUMO+3 (-0.45)
368	0.025	HOMO-7 \rightarrow LUMO (0.48)	373	0.023	HOMO-5 \rightarrow LUMO (0.27)
		HOMO-2 \rightarrow LUMO+4 (0.31)			HOMO-1 \rightarrow LUMO+3 (0.56)
			362	0.180	HOMO-4 \rightarrow LUMO (0.39)
					HOMO-1 \rightarrow LUMO+2 (0.33)
			362	0.061	$HOMO-5 \rightarrow LUMO (0.61)$
					HOMO-1 → LUMO+3 (-0.19)
			358	0.026	HOMO-3 \rightarrow LUMO+1 (0.38)
					HOMO-3 \rightarrow LUMO+3 (-0.36)

Table S5 Selected calculated excitation energies (ΔE), oscillator strengths (f), and main orbital components for complex A2.^{*a*}

vacuum		dichlor	omethane		
ΔΕ,	f	transition (coefficient)	ΔΕ,	f	transition (coefficient)
nm			nm		
518	(triplet)	HOMO-2 \rightarrow LUMO (0.59)	492	(triplet)	HOMO-2 \rightarrow LUMO (0.63)
		HOMO \rightarrow LUMO (0.33)			HOMO \rightarrow LUMO (0.21)
509	(triplet)	HOMO-3 \rightarrow LUMO (0.57)	481	(triplet)	HOMO-3 \rightarrow LUMO (0.58)
		HOMO-1 \rightarrow LUMO (-0.37)			HOMO-1 \rightarrow LUMO (-0.28)
506	(triplet)	HOMO-2 \rightarrow LUMO (-0.33)	473	(triplet)	HOMO-2 \rightarrow LUMO (-0.21)
		$HOMO \rightarrow LUMO (0.61)$			$HOMO \rightarrow LUMO (0.66)$
501	(triplet)	HOMO \rightarrow LUMO (0.70)	470	(triplet)	HOMO-3 → LUMO+2 (0.31)
					HOMO \rightarrow LUMO+4 (-0.40)
487	0.092	$HOMO-2 \rightarrow LUMO (0.70)$	468	0.016	HOMO \rightarrow LUMO (0.70)
426	0.082	HOMO-1 → LUMO+1 (0.45)	456	0.195	HOMO-2 \rightarrow LUMO (0.70)
		HOMO \rightarrow LUMO+2 (0.46)			
413	0.029	HOMO-3 → LUMO+1 (0.42)	397	0.016	HOMO-1 → LUMO+2 (-0.46)
		HOMO-2 → LUMO+2 (0.41)			HOMO \rightarrow LUMO+1 (0.50)
402	0.072	HOMO-3 \rightarrow LUMO+4 (0.39)	396	0.214	HOMO-1 → LUMO+1 (-0.46)
		HOMO \rightarrow LUMO+3 (-0.36)			HOMO \rightarrow LUMO+2 (0.49)
399	0.119	HOMO-2 → LUMO+3 (0.31)	379	0.011	HOMO-1 \rightarrow LUMO+4 (-0.34)
		HOMO-1 → LUMO+4 (0.38)			HOMO \rightarrow LUMO+3 (0.37)
397	0.021	HOMO-1 → LUMO+3 (0.41)	378	0.402	HOMO-5 \rightarrow LUMO (0.59)
		HOMO \rightarrow LUMO+4 (-0.38)			$HOMO-2 \rightarrow LUMO+2 (-0.23)$
385	0.121	HOMO-5 \rightarrow LUMO (-0.30)	373	0.095	HOMO-4 \rightarrow LUMO (0.55)
		$HOMO-4 \rightarrow LUMO (0.48)$			HOMO \rightarrow LUMO+4 (-0.24)
380	0.022	HOMO-1 \rightarrow LUMO+1 (0.40)	371	0.036	HOMO-3 \rightarrow LUMO+3 (-0.44)
		HOMO \rightarrow LUMO+2 (-0.35)			HOMO-2 → LUMO+4 (0.47)
374	0.015	HOMO-1 → LUMO+1 (0.27)	371	0.145	HOMO-3 → LUMO+4 (-0.45)
		$HOMO-1 \rightarrow LUMO+5 (0.56)$			HOMO-2 \rightarrow LUMO+3 (0.48)
373	0.044	HOMO-3 \rightarrow LUMO+1 (-0.43)			
		HOMO-2 → LUMO+2 (0.46)			
373	0.018	HOMO-6 \rightarrow LUMO (0.47)			
		HOMO-3 \rightarrow LUMO+2 (-0.34)			
368	0.084	HOMO-5 \rightarrow LUMO (-0.22)			
		HOMO-3 \rightarrow LUMO+5 (0.60)			
368	0.043	HOMO-7 \rightarrow LUMO (0.55)			
		HOMO-2 \rightarrow LUMO+5 (0.35)			

Table S6 Selected calculated excitation energies (ΔE), oscillator strengths (f), and main orbital components for complex A3.^{*a*}

vacuum			dichloromethane		
ΔΕ,	f	transition (coefficient)	ΔΕ,	f	transition (coefficient)
nm			nm		
510	(triplet)	HOMO-4 \rightarrow LUMO (0.21)	497	(triplet)	HOMO-4 \rightarrow LUMO (0.17)
		HOMO \rightarrow LUMO (0.60)			HOMO \rightarrow LUMO (0.65)
490	(triplet)	HOMO-3 \rightarrow LUMO (-0.39)	475	(triplet)	HOMO-5 \rightarrow LUMO (-0.26)
		HOMO-2 \rightarrow LUMO (0.43)			HOMO-3 → LUMO (0.52)
485	(triplet)	HOMO-2 \rightarrow LUMO+1 (0.37)	459	(triplet)	HOMO-3 → LUMO+1 (-0.22)
		HOMO-1 \rightarrow LUMO+2 (0.41)			HOMO \rightarrow LUMO+2 (0.24)
485	(triplet)	HOMO-2 \rightarrow LUMO+2 (0.34)	459	(triplet)	HOMO-3 → LUMO+2 (-0.23)
		HOMO-1 \rightarrow LUMO+1 (0.46)			HOMO \rightarrow LUMO+1 (0.24)
476	(triplet)	HOMO-3 → LUMO+1 (0.31)	456	(triplet)	HOMO-2 → LUMO+1 (0.40)
		HOMO \rightarrow LUMO+2 (0.39)			HOMO-1 → LUMO+2 (0.41)
476	(triplet)	HOMO-3 \rightarrow LUMO+2 (0.31)	456	(triplet)	HOMO-2 → LUMO+2 (0.38)
		HOMO \rightarrow LUMO+1 (0.40)			HOMO-1 → LUMO+1 (0.44)
461	0.238	HOMO \rightarrow LUMO (0.69)	438	0.529	HOMO \rightarrow LUMO (0.69)
457	0.024	HOMO-2 \rightarrow LUMO+1 (0.10)	406	0.148	HOMO-2 → LUMO+1 (0.43)
		HOMO-1 \rightarrow LUMO (0.69)			HOMO-1 → LUMO+2 (0.47)
441	0.054	HOMO-2 → LUMO+1 (0.36)	387	0.224	HOMO-3 → LUMO+4 (-0.37)
		HOMO-1 \rightarrow LUMO+2 (0.47)			HOMO \rightarrow LUMO+3 (0.50)
419	0.121	HOMO-3 \rightarrow LUMO+4 (0.32)	379	0.030	HOMO-2 → LUMO+4 (0.40)
		HOMO \rightarrow LUMO+3 (0.46)			HOMO-1 \rightarrow LUMO+3 (0.47)
410	0.021	HOMO-2 \rightarrow LUMO+4 (0.33)	378	0.016	HOMO-2 \rightarrow LUMO+3 (0.43)
		HOMO-1 \rightarrow LUMO+3 (0.48)			HOMO-1 → LUMO+4 (0.44)
384	0.062	HOMO-4 \rightarrow LUMO (0.41)	367	0.232	HOMO-4 \rightarrow LUMO (0.51)
		HOMO-2 \rightarrow LUMO+5 (0.42)			HOMO-3 → LUMO+1 (0.28)
370	0.366	HOMO-4 \rightarrow LUMO (0.48)	352	0.091	HOMO-4 \rightarrow LUMO (0.15)
		HOMO-3 \rightarrow LUMO+5 (0.28)			HOMO-2 → LUMO+5 (0.65)
368	0.073	HOMO-3 \rightarrow LUMO+4 (0.36)	352	0.137	HOMO-7 \rightarrow LUMO (-0.13)
		HOMO-2 → LUMO+4 (0.37)			HOMO-5 \rightarrow LUMO (0.67)
358	0.056	HOMO-8 → LUMO+1 (0.17)	350	0.292	HOMO-4 \rightarrow LUMO (0.27)
		HOMO-4 \rightarrow LUMO+2 (0.63)			HOMO-3 → LUMO+5 (0.61)
354	0.103	HOMO-8 \rightarrow LUMO (-0.16)			
		HOMO-5 \rightarrow LUMO (0.64)			
353	0.023	HOMO-7 \rightarrow LUMO+1 (-0.14)			
		HOMO-6 \rightarrow LUMO (0.68)			

Table S7 Selected calculated excitation energies (ΔE), oscillator strengths (f), and main orbital components for complex A4.^{*a*}

vacuum		dichloromethane			
ΔΕ,	f	transition (coefficient)	ΔΕ,	f	transition (coefficient)
nm			nm		
581	(triplet)	HOMO-4 \rightarrow LUMO (-0.18)	572	(triplet)	HOMO-2 \rightarrow LUMO+5 (-0.13)
		HOMO \rightarrow LUMO (0.63)			HOMO \rightarrow LUMO (0.65)
546	(triplet)	HOMO-2 \rightarrow LUMO (0.51)	536	(triplet)	HOMO-2 \rightarrow LUMO (0.51)
		HOMO \rightarrow LUMO+5 (-0.30)			HOMO \rightarrow LUMO+5 (-0.35)
485	(triplet)	HOMO-3 \rightarrow LUMO+1 (0.43)	461	(triplet)	HOMO-2 → LUMO+2 (0.28)
		HOMO-1 \rightarrow LUMO+2 (0.38)			HOMO \rightarrow LUMO+1 (0.34)
484	(triplet)	HOMO-3 \rightarrow LUMO+2 (0.39)	461	(triplet)	HOMO-2 → LUMO+1 (0.28)
		HOMO-1 \rightarrow LUMO+1 (0.48)			HOMO \rightarrow LUMO+2 (0.33)
479	(triplet)	HOMO-2 \rightarrow LUMO+2 (0.35)	461	0.620	HOMO \rightarrow LUMO (0.69)
		HOMO \rightarrow LUMO+1 (0.45)			
478	(triplet)	HOMO-2 \rightarrow LUMO+1 (0.36)	408	0.049	HOMO-1 → LUMO+2 (0.37)
		HOMO \rightarrow LUMO+2 (0.43)			HOMO \rightarrow LUMO+3 (0.41)
477	0.362	HOMO-2 → LUMO+1 (0.10)	394	0.322	HOMO-1 → LUMO+2 (-0.35)
		HOMO \rightarrow LUMO (0.69)			HOMO \rightarrow LUMO+3 (0.45)
455	0.012	HOMO-2 \rightarrow LUMO (0.64)	378	0.019	HOMO-2 → LUMO+1 (0.52)
		HOMO \rightarrow LUMO+1 (0.21)			HOMO-1 → LUMO+3 (-0.22)
440	0.034	HOMO-3 \rightarrow LUMO+1 (0.37)	373	0.013	HOMO-2 \rightarrow LUMO+2 (0.54)
		HOMO-1 \rightarrow LUMO+2 (0.43)			HOMO-1 → LUMO+4 (-0.24)
422	0.157	HOMO-2 \rightarrow LUMO+4 (-0.31)	368	0.106	HOMO-4 \rightarrow LUMO (0.56)
		HOMO \rightarrow LUMO+3 (0.47)			HOMO-2 → LUMO+5 (-0.29
385	0.098	HOMO-4 \rightarrow LUMO (0.55)	362	0.012	HOMO-2 → LUMO+4 (0.55)
		HOMO-2 \rightarrow LUMO+5 (0.38)			HOMO \rightarrow LUMO+3 (-0.33)
368	0.088	HOMO-3 \rightarrow LUMO+4 (0.43)			
		HOMO-1 \rightarrow LUMO+3 (-0.41)			
366	0.203	HOMO-3 \rightarrow LUMO+4 (-0.34)			
		HOMO-2 \rightarrow LUMO+5 (0.45)			
355	0.066	HOMO-4 \rightarrow LUMO+2 (0.61)			
		HOMO-2 \rightarrow LUMO+5 (-0.19)			
354	0.017	HOMO-7 \rightarrow LUMO+1 (0.12)			
		HOMO-5 \rightarrow LUMO (0.68)			
350	0.148	HOMO-8 \rightarrow LUMO (-0.26)			
		HOMO-6 \rightarrow LUMO (0.61)			

Table S8 Selected calculated excitation energies (ΔE), oscillator strengths (f), and main orbital components for complex A5.^{*a*}

(b) Simulated absorption spectra

Figure S1 Simulated absorption spectra of the A1–C1 series of complexes, also including A1', using the spin-allowed transitions obtained from TD-DFT calculations; *top:* in vacuum; *bottom:* in DCM using the polarised continuum model.

Figure S2 Simulated absorption spectra of the A1–A5 series of complexes generated using the spin-allowed transitions obtained from TD-DFT calculations; *top:* in vacuum; *bottom:* in DCM using the polarised continuum model.

(c) Additional plots showing experimental versus calculated data

Figure S3 Top: Calculated energy of the first-excited singlet state S_1 of the dinuclear complexes in vacuum (blue) and in DCM (red), with the experimental value shown in black, estimated based on λ_{max} of the lowest-energy absorption band (excluding the weak band at 554 nm for A5, which is concluded to be a triplet transition, $S_0 \rightarrow T_1$ – see text). **Bottom:** Corresponding plots for the lowest-lying triplet state T_1 , using experimental λ_{max} (0,0) values from emission spectra at 298 K and at 77 K. The lines between points are provided solely as a guide to aid the eye.

(d) Frontier orbital plots of the dinuclear complexes, with their energies in Hartree (energies in eV in parenthesis)

Figure S4 Frontier orbitals and their energies in Hartree (eV) for complex A1

Figure S5 Frontier orbitals and their energies in Hartree (eV) of complex B1

Figure S6 Frontier orbitals and their energies in Hartree (eV) of complex C1

Figure S7 Frontier orbitals and their energies in Hartree (eV) of complex A1'

Figure S8 Frontier orbitals and their energies in Hartree (eV) of complex A2

Figure S9 Frontier orbitals and their energies in Hartree (eV) of complex A3

Figure S10 Frontier orbitals and their energies in Hartree (eV) of complex A4

Figure S11 Frontier orbitals and their energies in Hartree (eV) of complex A5

3. X-ray crystallography of complex A3

Data collected at Diamond Light Source, April 2014 Bill Clegg and Mike Probert

The molecular structure with H atoms omitted. The molecule has a crystallographic mirror plane, passing through atoms C38 and C39. Twofold disorder was modelled for atoms C28–C30 (and their H atoms) of the hexyl chain (minor disorder component not shown). Displacement parameters and residual electron density peaks suggest further disorder of this chain and of the t-butyl groups, but this was not modelled.

The structure contains highly disordered and unidentified solvent in large void volumes (shown in yellow in the *a*-axis projection below) between the molecules of the dinuclear Ir complex. This was dealt with by the SQUEEZE procedure of the program PLATON. Calculations based on unit cell contents do not include this solvent.

 Table S9
 Crystal data and structure refinement for complex A3

Chemical formula (moiety) Chemical formula (total) Formula weight Temperature Radiation, wavelength Crystal system, space group Unit cell parameters Cell volume Ζ Calculated density Absorption coefficient µ F(000) Crystal colour and size Reflections for cell refinement Data collection method θ range for data collection Index ranges Completeness to $\theta = 24.4^{\circ}$ Reflections collected Independent reflections Reflections with $F^2 > 2\sigma$ Absorption correction Min. and max. transmission Structure solution Refinement method Weighting parameters a, b Data / restraints / parameters Final R indices $[F^2 > 2\sigma]$ R indices (all data) Goodness-of-fit on F^2 Extinction coefficient Largest and mean shift/su Largest diff. peak and hole

Identification code

vnk93 (manuscript code = A3) C₇₆H₈₀Cl₂F₈Ir₂N₆O₂ C₇₆H₈₀Cl₂F₈Ir₂N₆O₂ 1716.76 100(2) K synchrotron, 0.6889 Å hexagonal, P6₃/m a = 20.589(3) Å $\alpha = 90^{\circ}$ b = 20.589(3) Å $\beta = 90^{\circ}$ c = 34.721(5) Å $\gamma = 120^{\circ}$ 12747(4) Å³ 6 1.342 g/cm^3 2.965 mm⁻¹ 5124 orange, $0.30 \times 0.18 \times 0.05 \text{ mm}^3$ 9883 (θ range 2.2 to 29.6°) Rigaku Saturn 724+ on kappa diffractometer wide-frame ω scans 1.1 to 29.7° h -29 to 26, k -19 to 28, 1 -49 to 48 998% 149879 $13393 (R_{int} = 0.0498)$ 9776 multi-scan (SADABS) 0.624 and 0.862 direct methods Full-matrix least-squares on F^2 0,86.0783 13393 / 141 / 473 R1 = 0.0566, wR2 = 0.1098R1 = 0.0839, wR2 = 0.12661.169 0.00015(3)0.004 and 0.000 3.54 and $-3.83 \text{ e} \text{ Å}^{-3}$

Table S10 Atomic coordinates and equivalent isotropic displacement parameters (Ų) for A3. U_{eq} is defined as one third of the trace of the orthogonalised U^{ij} tensor.

	X	У	Z	U_{eq}
т	0 74455(2)	0 (2122(2)	0((010))	0.0272((0)
lr Cl	0.74455(2)	0.63133(2)	0.66018(2)	0.03/36(8)
	0.72751(9)	0.73180(8)	0.68640(5)	0.04/8(3)
NI	0.6306(3)	0.5613(3)	0.6593/(16)	0.0434(11)
N2	0.8502(3)	0./101(2)	0.64296(16)	0.0430(12)
Cl	0.5877(4)	0.5197(3)	0.6885(2)	0.0519(16)
C2	0.5109(4)	0.4/45(4)	0.6857(3)	0.064(2)
C3	0.4749(3)	0.4686(4)	0.6514(3)	0.063(2)
C4	0.5187(4)	0.5121(4)	0.6210(3)	0.0609(19)
C5	0.5960(4)	0.5587(4)	0.6251(2)	0.0517(16)
C6	0.6487(4)	0.6093(3)	0.5960(2)	0.0510(15)
C7	0.6344(4)	0.6225(4)	0.5588(2)	0.0605(18)
C8	0.6905(5)	0.6745(5)	0.5350(2)	0.066(2)
C9	0.7637(5)	0.7115(4)	0.5488(2)	0.0590(19)
C10	0.7830(4)	0.6998(3)	0.58551(19)	0.0471(14)
C11	0.7233(3)	0.6496(3)	0.60859(19)	0.0432(13)
C12	0.8553(4)	0.7339(3)	0.6058(2)	0.0492(16)
C13	0.9241(4)	0.7882(3)	0.5909(2)	0.0539(17)
C14	0.9885(4)	0.8214(3)	0.6134(2)	0.0569(19)
C15	0.9810(4)	0.7973(3)	0.6513(3)	0.0590(19)
C16	0.9123(3)	0.7422(3)	0.6647(2)	0.0500(15)
C17	0.3901(4)	0.4173(5)	0.6456(3)	0.082(3)
C18	0.3778(4)	0.3605(5)	0.6139(3)	0.084(3)
C19	0.3554(5)	0.4649(6)	0.6347(5)	0.128(5)
C20	0.3542(5)	0.3743(5)	0.6826(4)	0.108(4)
C21	1.0642(4)	0.8835(4)	0.5987(3)	0.079(3)
C22	1.0925(5)	0.9501(4)	0.6270(4)	0.102(4)
C23	1.0580(6)	0.9100(5)	0.5586(3)	0.108(4)
C24	1.1211(6)	0.8558(6)	0.6007(5)	0.161(7)
F1	0.5642(3)	0.5861(3)	0.54402(14)	0.0794(14)
F2	0.8184(3)	0.7606(2)	0.52486(13)	0.0724(13)
0	0 6750(4)	0.6857(4)	0.49756(17)	0.092(2)
C25	0.6569(6)	0.7433(6)	0.4935(3)	0.092(2)
C26	0.5965(7)	0.7427(6)	0.1920(3) 0.5149(3)	0.097(3)
C27	0.5757(6)	0.8003(6)	0.5078(3)	0.091(3)
C28	0.5730(11)	0.8083(11)	0.5355(5)	0.097(4)
C29	0.5016(9)	0.8679(10)	0.5355(5) 0.5291(5)	0.081(4)
C30	0.3610(9) 0.4647(10)	0.8646(11)	0.3291(5) 0.4931(5)	0.001(1) 0.087(5)
C28'	0.4077(10)	0.0040(11) 0.7776(15)	0.4991(9) 0.5192(9)	0.007(3) 0.108(7)
C20'	0.47701(14)	0.7770(15)	0.5172(9)	0.103(7)
C_{20}	0.4791(14) 0.4002(14)	0.8370(10) 0.8207(18)	0.5071(0)	0.107(0) 0.137(10)
N3	0.402(14) 0.7635(2)	0.0207(10)	0.3247(10) 0.71504(15)	0.137(10) 0.0382(10)
C31	0.7033(2) 0.7610(3)	0.5770(2)	0.71374(13)	0.0382(10)
C32	0.7610(3)	0.5736(3)	0.0+30(2)	0.0717(13)
C32	0.7043(4) 0.7744(4)	0.3230(3) 0.4620(4)	0.0003(2)	0.0510(10) 0.062(2)
C34	0.7744(4) 0.7810(4)	0.4020(4)	0.0029(2)	0.002(2)
C35	0.7010(4) 0.7776(2)	0.4213(4) 0.4447(2)	0.0521(5)	0.003(2)
C35 C26	0.7710(3)	0.4447(3)	0.0000(2)	0.0331(17)
0.50	0.7092(3)	0.3004(3)	0.0703(2)	0.0404(13)

C37	0.7683(3)	0.5340(3)	0.71550(19)	0.0399(13)
C38	0.7716(4)	0.5022(4)	0.7500	0.046(2)
C39	0.7615(5)	0.6265(4)	0.7500	0.0423(18)
F3	0.7782(3)	0.4416(3)	0.56609(15)	0.0846(15)
F4	0.7815(2)	0.4031(2)	0.69783(14)	0.0640(12)

Table S11	Bond lengths	[Å] and angles	[°] for A3 .

Ir–Cl	2.4406(15)	Ir–N1	2.049(5)
Ir-N2	2.048(5)	Ir-C11	1.926(7)
Ir–N3	2.157(5)	Ir-C31	1.996(5)
N1-C1	1.334(8)	N1-C5	1.376(9)
N2-C12	1.366(9)	N2-C16	1.341(8)
C1-H1	0.950	C1–C2	1.380(9)
С2-Н2	0.950	C2–C3	1.375(12)
C3–C4	1.388(11)	C3–C17	1.536(9)
C4–H4	0.950	C4–C5	1.395(9)
C5–C6	1.467(10)	C6–C7	1.382(10)
C6–C11	1.401(9)	C7–C8	1.388(12)
C7–F1	1.353(8)	C8–C9	1.392(11)
С8–О	1.384(10)	C9–C10	1.390(10)
C9–F2	1.358(8)	C10–C11	1.397(8)
C10–C12	1.470(10)	C12–C13	1.392(8)
С13-Н13	0.950	C13–C14	1.388(11)
C14–C15	1.390(11)	C14–C21	1.525(9)
С15-Н15	0.950	C15-C16	1.378(8)
C16–H16	0.950	C17–C18	1.531(13)
C17–C19	1.521(12)	C17–C20	1.526(15)
C18–H18A	0.980	C18–H18B	0.980
C18–H18C	0.980	C19–H19A	0.980
C19–H19B	0.980	С19-Н19С	0.980
C20–H20A	0.980	C20–H20B	0.980
C20–H20C	0.980	C21–C22	1.545(13)
C21–C23	1.526(15)	C21–C24	1.539(12)
C22–H22A	0.980	C22–H22B	0.980
C22–H22C	0.980	C23–H23A	0.980
С23–Н23В	0.980	С23–Н23С	0.980
C24–H24A	0.980	C24–H24B	0.980
C24–H24C	0.980	O–C25	1.417(11)
C25–H25A	0.990	С25–Н25В	0.990
C25–C26	1.442(13)	C26–H26A	0.990
C26–H26B	0.990	C26–C27	1.470(13)
C27–H27A	0.990	С27–Н27В	0.990
С27–Н27С	0.990	C27–H27D	0.990
C27–C28	1.521(16)	C27–C28'	1.488(18)
C28–H28A	0.990	C28–H28B	0.990
C28–C29	1.512(17)	C29–H29A	0.990
С29–Н29В	0.990	C29–C30	1.447(19)
C30–H30A	0.980	С30–Н30В	0.980
С30–Н30С	0.980	C28'–H28C	0.990

C28'-H28D	0.990	C28'-C29'	1.51(2)
C29'-H29C	0.990	C29'–H29D	0.990
C29'-C30'	1.44(2)	C30'-H30D	0.980
C30'-H30E	0.980	C30'-H30F	0.980
N3-C37	1.361(6)	N3–C39	1.334(6)
C31–C32	1.399(9)	C31–C36	1.408(9)
С32–Н32	0.950	C32–C33	1.397(9)
C33–C34	1.361(11)	C33–F3	1.361(8)
C34–H34	0.950	C34–C35	1.367(10)
C35–C36	1.392(7)	C35–F4	1.357(8)
C36–C37	1.478(9)	C37–C38	1.384(7)
C38–C37a	1 384(7)	C38–H38	0 950
C39–N3a	1 334(6)	C39–H39	0.950
Cl-Ir-N1	90.12(14)	Cl-Ir-N2	89.05(13)
Cl-Ir-C11	92.16(17)	Cl–Ir–N3	93.66(12)
Cl-Ir-C31	172.6(2)	N1–Ir–N2	160.4(2)
N1-Ir-C11	80.3(2)	N1–Ir–N3	96.5(2)
N1-Ir-C31	91.0(2)	N2–Ir–C11	80.1(2)
N2-Ir-N3	103.0(2)	N2–Ir–C31	92.4(2)
C11–Ir–N3	173.4(2)	C11–Ir–C31	95.3(3)
N3-Ir-C31	78.9(2)	Ir-N1-C1	126.8(5)
Ir-N1-C5	115.3(4)	C1-N1-C5	117.8(5)
Ir-N2-C12	114.9(4)	Ir-N2-C16	126.8(5)
C12-N2-C16	118.2(5)	N1-C1-H1	118.4
N1C1C2	123.2(7)	H1-C1-C2	118.4
С1-С2-Н2	119.8	C1–C2–C3	120.4(7)
H2C2C3	119.8	C2–C3–C4	117.0(6)
C2-C3-C17	123.6(8)	C4–C3–C17	119.5(8)
С3-С4-Н4	119.5	C3–C4–C5	121.1(8)
H4-C4-C5	119.5	N1-C5-C4	120.4(7)
N1-C5-C6	112.5(5)	C4–C5–C6	127.1(7)
C5-C6-C7	128.9(7)	C5-C6-C11	114.1(6)
C7-C6-C11	117.0(7)	C6–C7–C8	122.1(7)
C6-C7-F1	121.3(7)	C8-C7-F1	116.6(7)
C7–C8–C9	118.1(7)	C7–C8–O	121.0(8)
C9–C8–O	120 7(8)	C8-C9-C10	1232(7)
C8-C9-F2	117.5(7)	C10–C9–F2	119 3(7)
C9–C10–C11	115.6(6)	C9–C10–C12	131.6(6)
C11-C10-C12	112 7(6)	Ir-C11-C6	117 7(5)
Ir-C11-C10	118 4(5)	C6-C11-C10	123 9(6)
N2-C12-C10	113 7(5)	N2-C12-C13	120.2(7)
C10-C12-C13	1260(7)	C12-C13-H13	119.2
C_{12} - C_{13} - C_{14}	121.6(7)	H13-C13-C14	119.2
C13-C14-C15	116 6(6)	C13-C14-C21	123 4(8)
C15-C14-C21	120 0(8)	C14-C15-H15	120.0
C14-C15-C16	120.0(0)	H15-C15-C16	120.0
N2_C16_C15	123.0(7)	N2_C16_H16	118 4
C15-C16-H16	118.4	C_{3} C_{17} C_{18}	108 5(7)
$C_{3}-C_{17}-C_{19}$	109 2(7)	C_{3} - C_{17} - C_{20}	1100.9(7)
C18-C17-C19	111 2(0)	$C_{18} - C_{17} - C_{20}$	108 3(8)
$C19_C17_C20$	109 6(0)	C17 - C18 - H18A	100.5(0)
C_{1} C_{1} C_{2}	107.0(7)		107.5

C17-C18-H18B	109.5	C17–C18–H18C	109.5
H18A-C18-H18B	109.5	H18A-C18-H18C	109.5
H18B-C18-H18C	109.5	С17-С19-Н19А	109.5
C17-C19-H19B	109.5	С17-С19-Н19С	109.5
H19A-C19-H19B	109.5	H19A-C19-H19C	109.5
H19B-C19-H19C	109.5	C17-C20-H20A	109.5
С17-С20-Н20В	109.5	C17–C20–H20C	109.5
H20A-C20-H20B	109.5	H20A-C20-H20C	109.5
H20B-C20-H20C	109.5	C14–C21–C22	107.8(7)
C14–C21–C23	111 8(8)	C14–C21–C24	108 9(6)
C22–C21–C23	109.0(7)	C22–C21–C24	106.3(10)
C23–C21–C24	112 8(9)	C21–C22–H22A	109.5
C21–C22–H22B	109.5	C21–C22–H22C	109.5
H22A-C22-H22B	109.5	H22A-C22-H22C	109.5
H22B-C22-H22C	109.5	C21–C23–H23A	109.5
C21–C23–H23B	109.5	$C_{21} - C_{23} - H_{23}C_{23}$	109.5
H23A-C23-H23B	109.5	$H_{23}A = C_{23} = H_{23}C$	109.5
$H_{23B} - C_{23} - H_{23C}$	109.5	C21–C24–H24A	109.5
C_{21} C_{24} H_{24B}	109.5	$C_{21} - C_{24} - H_{24}C$	109.5
H24A_C24_H24B	109.5	$H_{24} = C_{24} = H_{24} C_{24}$	109.5
$H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 $	109.5	$(2 - 0)^{-1}$	107.5 114.2(7)
$\Omega_{-C25-H25A}$	105.5	$O_{-}C_{25}H_{25B}$	106.8
0-025-026	121 0(0)	H25A_C25_H25B	106.7
H_{25}^{-}	106.8	H25B_C25_C26	106.7
$C_{25} = C_{25} = C_{20}$	107.2	C25_C26_H26B	100.8
$C_{25} = C_{26} = C_{120} = C_{26} = C_{27} = $	120 3(0)	H26A C26 H26B	107.2
$H_{25} = C_{20} = C_{27}$	120.3(9)	$H_{2}OA = C_{2}O = H_{2}OB$	100.9
1120A - C20 - C27	107.2	1120D - C20 - C27 C26 C27 H27D	107.2
$C_{20} - C_{27} - H_{27} - H_{27}$	107.4	$C_{20} = C_{27} = H_{27} D$	107.4
$C_{20} = C_{27} = 1127C$	100.7 110.6(10)	$C_{20} = C_{27} = \Pi_{27} D$	100.7 114.1(12)
$U_{20} - U_{27} - U_{20}$	119.0(10)	20-27-220	114.1(12) 107.4
$\Pi 2/A - C 2/-\Pi 2/D$	107.0	$H_2/A = C_2/=C_{20}$	107.4
$H_2/D - C_2/-C_{20}$	107.4	$\Pi 2/C - C 2/ - \Pi 2/D$	107.0
12/C - C2/-C20	100.7	$D = C_2 / -C_2 \delta$	100.7
$C_{27} = C_{28} = C_{20}$	10/.2 120 6(14)	$U_2 = U_2 $	107.2
127 - 120 - 129	120.0(14)	$H_{2}\circ A - C_{2}\circ - H_{2}\circ D$	100.8
$H_{28}A - C_{28} - C_{29}$	107.2	$H_{28}B - C_{28} - C_{29}$	107.2
$C_{28} = C_{29} = H_{29}A$	108.2	$U_{20} = U_{20} = H_{20}B$	108.2
128 - 129 - 130	110.0(15)	H29A-C29-H29B	107.3
$H_{29}A - C_{29} - C_{30}$	108.2	$H_{29}B_{-}C_{29}-C_{30}$	108.2
C29-C30-H30A	109.5	U29-U30-H30B	109.5
U29-C30-H30C	109.5	H30A-C30-H30B	109.5
$H_{30}A - C_{30} - H_{30}C$	109.5	$H_{30B} - C_{30} - H_{30C}$	109.5
$C_2/-C_28'-H_28C$	109.7	$C_2/-C_28$ -H28D	109.7
$C_{27} - C_{28} - C_{29}$	110.0(16)	H28C-C28'-H28D	108.2
H28C-C28'-C29'	109.7	H28D-C28'-C29'	109.7
C28'-C29'-H29C	110.0	C28'-C29'-H29D	110.0
C28'-C29'-C30'	109(2)	H29C-C29'-H29D	108.4
H29C-C29'-C30'	110.0	H29D-C29'-C30'	110.0
C29'-C30'-H30D	109.5	C29'-C30'-H30E	109.5
C29'-C30'-H30F	109.5	H30D-C30'-H30E	109.5
H30D-C30'-H30F	109.5	H30E-C30'-H30F	109.5
Ir-N3-C37	114.3(4)	Ir-N3-C39	127.0(4)

C37–N3–C39	118.2(6)	Ir-C31-C32	126.1(5)
Ir-C31-C36	116.6(5)	C32–C31–C36	117.3(5)
С31-С32-Н32	120.4	C31–C32–C33	119.2(7)
H32–C32–C33	120.4	C32–C33–C34	124.3(7)
C32–C33–F3	117.5(8)	C34–C33–F3	118.2(6)
С33–С34–Н34	122.0	C33–C34–C35	115.9(6)
H34–C34–C35	122.0	C34–C35–C36	123.3(7)
C34–C35–F4	116.3(6)	C36–C35–F4	120.4(7)
C31–C36–C35	119.9(7)	C31–C36–C37	116.0(5)
C35–C36–C37	124.0(6)	N3-C37-C36	113.6(5)
N3-C37-C38	119.4(6)	C36–C37–C38	127.0(5)
C37–C38–C37a	119.9(7)	С37-С38-Н38	120.0
С37а-С38-Н38	120.0	N3-C39-N3a	124.9(7)
N3-C39-H39	117.5	N3a-C39-H39	117.5

Symmetry operations for equivalent atoms a x,y,-z+3/2

Table S12Torsion angles $[^{\circ}]$ for A3.

Ir-N1-C1-C2	179.2(5)	C5-N1-C1-C2	0.2(10)
N1-C1-C2-C3	2.1(11)	C1-C2-C3-C4	-2.6(11)
C1C2C3C17	177.7(7)	C2-C3-C4-C5	1.0(10)
C17–C3–C4–C5	-179.2(7)	Ir-N1-C5-C4	179.1(5)
Ir-N1-C5-C6	-1.7(7)	C1-N1-C5-C4	-1.7(9)
C1-N1-C5-C6	177.5(5)	C3-C4-C5-N1	1.1(10)
C3-C4-C5-C6	-178.0(6)	N1-C5-C6-C7	-178.8(7)
N1-C5-C6-C11	0.3(8)	C4-C5-C6-C7	0.3(12)
C4C5C6C11	179.5(6)	C5-C6-C7-C8	177.7(7)
C5-C6-C7-F1	-0.9(12)	C11-C6-C7-C8	-1.4(10)
C11-C6-C7-F1	180.0(6)	C6-C7-C8-C9	3.0(11)
С6С7С8О	178.7(7)	F1-C7-C8-C9	-178.3(6)
F1-C7-C8-O	-2.6(11)	C7-C8-C9-C10	-1.2(11)
C7C8C9F2	178.2(6)	O-C8-C9-C10	-176.9(6)
OC8C9F2	2.4(10)	C8-C9-C10-C11	-2.0(10)
C8-C9-C10-C12	-178.2(6)	F2-C9-C10-C11	178.6(5)
F2-C9-C10-C12	2.5(11)	C9–C10–C11–Ir	-179.0(4)
C9-C10-C11-C6	3.8(9)	C12-C10-C11-Ir	-2.1(7)
C12-C10-C11-C6	-179.4(5)	C5–C6–C11–Ir	1.3(7)
C5-C6-C11-C10	178.6(6)	C7–C6–C11–Ir	-179.4(5)
C7-C6-C11-C10	-2.1(9)	Ir-N2-C12-C10	1.8(6)
Ir-N2-C12-C13	179.1(4)	C16-N2-C12-C10	-175.1(5)
C16-N2-C12-C13	2.2(8)	C9-C10-C12-N2	176.3(6)
C9-C10-C12-C13	-0.9(11)	C11-C10-C12-N2	0.1(7)
C11-C10-C12-C13	-177.1(6)	N2-C12-C13-C14	-2.2(9)
C10-C12-C13-C14	174.8(6)	C12-C13-C14-C15	0.5(9)
C12-C13-C14-C21	-177.2(6)	C13-C14-C15-C16	1.0(9)
C21-C14-C15-C16	178.8(6)	Ir-N2-C16-C15	-177.2(5)
C12-N2-C16-C15	-0.7(9)	C14-C15-C16-N2	-1.0(10)
C2-C3-C17-C18	-119.5(9)	C2-C3-C17-C19	119.1(10)
-------------------	------------	--------------------	------------
C2-C3-C17-C20	-1.2(11)	C4-C3-C17-C18	60.8(10)
C4-C3-C17-C19	-60.6(12)	C4-C3-C17-C20	179.1(7)
C13-C14-C21-C22	126.2(8)	C13-C14-C21-C23	6.4(10)
C13-C14-C21-C24	-118.8(10)	C15-C14-C21-C22	-51.4(9)
C15-C14-C21-C23	-171.2(7)	C15-C14-C21-C24	63.5(12)
С7С8ОС25	92.0(10)	C9–C8–O–C25	-92.4(10)
C8-O-C25-C26	-56.1(14)	O-C25-C26-C27	-175.3(10)
C25-C26-C27-C28	-168.1(13)	C25-C26-C27-C28'	157.2(18)
C26-C27-C28-C29	179.1(14)	C27-C28-C29-C30	59(2)
C26-C27-C28'-C29'	-174.2(19)	C27-C28'-C29'-C30'	-169(3)
Ir-C31-C32-C33	-178.4(5)	C36-C31-C32-C33	0.7(9)
C31–C32–C33–C34	0.5(11)	C31-C32-C33-F3	-179.2(6)
C32–C33–C34–C35	-0.4(11)	F3-C33-C34-C35	179.3(6)
C33-C34-C35-C36	-0.9(10)	C33-C34-C35-F4	177.7(6)
C34-C35-C36-C31	2.1(9)	C34-C35-C36-C37	-177.6(6)
F4-C35-C36-C31	-176.4(5)	F4-C35-C36-C37	3.8(9)
Ir-C31-C36-C35	177.3(4)	Ir-C31-C36-C37	-2.9(6)
C32-C31-C36-C35	-1.9(8)	C32-C31-C36-C37	177.8(5)
Ir-N3-C37-C36	7.3(6)	Ir-N3-C37-C38	-172.5(5)
C39-N3-C37-C36	179.3(6)	C39–N3–C37–C38	-0.6(9)
C31-C36-C37-N3	-3.2(7)	C31-C36-C37-C38	176.6(6)
C35-C36-C37-N3	176.5(5)	C35-C36-C37-C38	-3.6(10)
N3-C37-C38-C37a	1.5(11)	C36–C37–C38–C37a	-178.4(4)
Ir-N3-C39-N3a	170.4(4)	C37–N3–C39–N3a	-0.4(11)

Symmetry operations for equivalent atoms: a x,y,-z+3/2

Table S13	Anisotropic displacement parameters $(Å^2)$ for A3.	The anisotropic displacement
	factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + .$	$+ 2hka*b*U^{12}$]

	U^{11}	U ²²	U ³³	U^{23}	U ¹³	U^{12}
Ir	0.03063(11)	0.02389(10)	0.05143(13)	-0.00175(9)	0.00398(9)	0.00903(8)
Cl	0.0537(8)	0.0362(7)	0.0589(9)	-0.0006(6)	0.0023(7)	0.0265(7)
N1	0.029(2)	0.035(2)	0.064(3)	-0.002(2)	0.002(2)	0.0136(19)
N2	0.032(2)	0.024(2)	0.065(3)	-0.004(2)	0.009(2)	0.0082(18)
C1	0.039(3)	0.041(3)	0.071(4)	0.002(3)	0.007(3)	0.016(3)
C2	0.034(3)	0.044(4)	0.096(6)	0.002(4)	0.012(4)	0.005(3)
C3	0.029(3)	0.038(3)	0.117(7)	-0.008(4)	-0.003(4)	0.013(3)
C4	0.037(3)	0.048(4)	0.096(6)	-0.013(4)	-0.011(4)	0.021(3)
C5	0.040(3)	0.039(3)	0.072(5)	-0.009(3)	-0.007(3)	0.016(3)
C6	0.053(4)	0.036(3)	0.062(4)	-0.007(3)	-0.006(3)	0.021(3)
C7	0.064(5)	0.048(4)	0.065(5)	-0.011(3)	-0.013(4)	0.025(4)
C8	0.092(6)	0.060(5)	0.057(4)	-0.018(4)	-0.014(4)	0.045(5)
C9	0.080(5)	0.040(3)	0.057(4)	0.004(3)	0.019(4)	0.030(4)
C10	0.052(4)	0.031(3)	0.055(4)	-0.003(3)	0.009(3)	0.018(3)
C11	0.048(3)	0.025(2)	0.055(4)	-0.007(2)	0.003(3)	0.017(2)

C12	0.057(4)	0.025(3)	0.065(4)	0.002(3)	0.020(3)	0.019(3)
C13	0.053(4)	0.028(3)	0.080(5)	0.006(3)	0.025(3)	0.019(3)
C14	0.041(3)	0.024(3)	0.100(6)	0.006(3)	0.028(4)	0.012(2)
C15	0.034(3)	0.029(3)	0.101(6)	-0.008(3)	0.007(3)	0.006(2)
C16	0.039(3)	0.032(3)	0.069(4)	-0.006(3)	0.004(3)	0.010(2)
C17	0.029(3)	0.063(5)	0.151(9)	-0.006(5)	-0.005(4)	0.020(3)
C18	0.037(4)	0.067(5)	0.129(8)	-0.003(5)	-0.017(4)	0.012(4)
C19	0.042(5)	0.083(7)	0.258(17)	-0.018(9)	-0.030(7)	0.032(5)
C20	0.046(5)	0.068(6)	0.177(12)	-0.011(7)	0.020(6)	0.004(4)
C21	0.049(4)	0.035(3)	0.151(9)	0.026(4)	0.044(5)	0.019(3)
C22	0.047(4)	0.036(4)	0.191(12)	0.018(6)	0.011(6)	-0.003(3)
C23	0.082(7)	0.065(6)	0.147(10)	0.030(6)	0.060(7)	0.014(5)
C24	0.090(7)	0.080(7)	0.33(2)	0.085(10)	0.124(11)	0.053(6)
F1	0.082(3)	0.071(3)	0.080(3)	-0.020(2)	-0.032(3)	0.034(3)
F2	0.100(4)	0.057(3)	0.062(3)	0.008(2)	0.024(2)	0.040(3)
0	0.145(6)	0.087(4)	0.056(3)	-0.014(3)	-0.006(4)	0.068(5)
C25	0.106(7)	0.098(7)	0.088(7)	0.036(6)	0.016(5)	0.056(6)
C26	0.118(7)	0.109(7)	0.081(6)	0.012(5)	-0.002(5)	0.070(6)
C27	0.089(6)	0.094(6)	0.087(6)	0.036(5)	0.006(5)	0.044(5)
C28	0.082(9)	0.089(10)	0.091(9)	0.002(7)	-0.012(7)	0.042(8)
C29	0.069(8)	0.092(10)	0.084(9)	0.006(7)	-0.007(7)	0.042(8)
C30	0.075(10)	0.092(12)	0.096(10)	0.002(8)	-0.010(8)	0.043(9)
C28'	0.091(9)	0.110(13)	0.117(16)	0.024(11)	0.005(9)	0.045(9)
C29'	0.086(10)	0.098(13)	0.125(16)	0.003(11)	-0.034(10)	0.037(9)
C30'	0.097(12)	0.14(2)	0.16(2)	-0.004(17)	-0.015(13)	0.054(13)
N3	0.029(2)	0.024(2)	0.060(3)	0.0005(19)	0.005(2)	0.0120(17)
C31	0.029(2)	0.021(2)	0.070(4)	0.000(2)	0.009(2)	0.0091(19)
C32	0.044(3)	0.030(3)	0.066(4)	-0.006(3)	0.011(3)	0.009(2)
C33	0.057(4)	0.036(3)	0.076(5)	-0.012(3)	0.019(4)	0.012(3)
C34	0.051(4)	0.039(3)	0.097(6)	-0.003(4)	0.022(4)	0.022(3)
C35	0.039(3)	0.026(3)	0.093(5)	-0.002(3)	0.014(3)	0.015(2)
C36	0.035(3)	0.021(2)	0.085(5)	-0.004(3)	0.009(3)	0.015(2)
C37	0.024(2)	0.022(2)	0.070(4)	0.001(2)	0.006(2)	0.0095(19)
C38	0.033(4)	0.025(3)	0.079(6)	0.000	0.000	0.014(3)
C39	0.038(4)	0.028(4)	0.062(5)	0.000	0.000	0.017(3)
F3	0.103(4)	0.058(3)	0.089(3)	-0.018(2)	0.026(3)	0.037(3)
F4	0.066(3)	0.0367(19)	0.100(3)	0.005(2)	0.022(2)	0.0334(19)

Table S14 Hydrogen coordinates and isotropic displacement parameters ($Å^2$) for A3.

	Х	у	Ζ	U
H1	0.6111	0.5213	0.7123	0.062
H2	0.4828	0.4473	0.7076	0.077
H4	0.4957	0.5102	0.5970	0.073
H13	0.9270	0.8028	0.5647	0.065
H15	1.0231	0.8188	0.6681	0.071
H16	0.9087	0.7261	0.6907	0.060
H18A	0.4018	0.3316	0.6214	0.126

H18B	0.3997	0.3871	0.5898	0.126
H18C	0.3239	0.3264	0.6104	0.126
H19A	0.3736	0.4873	0.6092	0.191
H19B	0.3695	0.5048	0.6538	0.191
H19C	0.3007	0.4334	0.6340	0.191
H20A	0.3781	0.3453	0.6901	0.161
H20B	0.3005	0.3403	0.6783	0.161
H20C	0.3610	0.4098	0.7031	0.161
H22A	1.1431	0.9890	0.6196	0.153
H22B	1.0935	0.9328	0.6532	0.153
H22C	1.0587	0.9708	0.6262	0.153
H23A	1.1078	0.9485	0.5498	0.162
H23B	1.0246	0.9310	0.5594	0.162
H23C	1.0376	0.8674	0.5407	0.162
H24A	1.1719	0.8983	0.5970	0.241
H24B	1.1099	0.8185	0.5804	0.241
H24C	1.1178	0.8330	0.6259	0.241
H25A	0.6463	0.7455	0.4659	0.114
H25B	0.7029	0.7911	0.4997	0.114
H26A	0.6091	0.7452	0.5426	0.116
H26B	0.5512	0.6933	0.5105	0.116
H27A	0.5527	0.7908	0.4818	0.109
H27B	0.6226	0.8493	0.5066	0.109
H27C	0.5819	0.8127	0.4800	0.109
H27D	0.6106	0.8463	0.5221	0.109
H28A	0.4759	0.7594	0.5363	0.105
H28B	0.5457	0.8167	0.5614	0.105
H29A	0.4681	0.8647	0.5504	0.097
H29B	0.5477	0.9176	0.5309	0.097
H30A	0.4576	0.9081	0.4911	0.131
H30B	0.4158	0.8185	0.4922	0.131
H30C	0.4957	0.8649	0.4716	0.131
H28C	0.4921	0.7708	0.5475	0.130
H28D	0.4621	0.7293	0.5069	0.130
H29C	0.5195	0.8871	0.5153	0.128
H29D	0.4748	0.8372	0.4787	0.128
H30D	0.3995	0.8619	0.5195	0.205
H30E	0.4121	0.8151	0.5525	0.205
H30F	0.3684	0.7740	0.5139	0.205
H32	0.7596	0.5494	0.5867	0.061
H34	0.7875	0.3797	0.6274	0.075
H38	0.7762	0.4585	0.7500	0.055
H39	0.7584	0.6710	0.7500	0.051

MW=1825?
(DCM)/MeCN
C84H104Cl2F4lr2N6O2S2

m/z

m/z

m/z

