Teaching old compounds new tricks: efficient N₂ fixation by simple Fe(N₂)(diphosphine)₂ complexes

Laurence R. Doyle,^a Peter J. Hill,^a Gregory G. Wildgoose,^b and Andrew. E. Ashley^{*a}

 ^a Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK. E-mail: a.ashley@imperial.ac.uk Tel: +44 0(20) 75945810.
 ^b School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK

Electronic Supplementary Information

Contents:

1.	Experimental details	1
2.	NMR spectra	9
3.	IR spectra	13
4.	Raman spectra	13
5.	UV-vis spectra	14
6.	Cyclic voltammograms	15
7.	X-ray diffraction data for 3	17
8.	References	18

1. Experimental details

General considerations

All chemical manipulations were performed under a N₂ or Ar atmosphere either using standard Schlenk-line techniques or a MBraun Labmaster DP glovebox, unless stated otherwise. Solvents were purchased from VWR: pentane and hexane were dried using an Innovative Technology Pure SolvTM SPS-400; THF and Et₂O were distilled from dark green Na/fluorenone indicator. Solvents were degassed by thorough sparging with N₂ or Ar gas and stored in gas-tight ampoules; pentane, hexane and Et₂O were stored over a K mirror. Deuterated solvents were freeze-pump-thaw degassed, dried, and stored in gas-tight ampoules over 4 Å molecular sieves: THF-d₈ (Sigma-Aldrich, 99.5 atom % D); DMSO-d₆ (VWR, 99.5 atom % D). ¹⁵N₂ (Cambridge Isotope Laboratories, 98% ¹⁵N) was transferred from a breakseal flask using a Toepler pump. FeCp₂ was purchased from Sigma-Aldrich and purified by sublimation and recrystalisation from cold pentane. *Para*-dimethylaminobenzaldehyde (pdmab) was purchased from Sigma-Aldrich and purified by recrystalisation from cold EtOH. NH₄Cl and N₂H₄·2HCl were purchased from Sigma-Aldrich. KC₈,¹ [ⁿBu₄N][BArF₂₄],² trans-Fe(Cl)₂(dmpe)₂,³ [trans-Fe(H)(N₂)(dmpe)₂][BPh₄],³ z,6,-

dimethylpyridinium (lutidinium) triflate $[(LutH)OTf]^4$ and $H(OEt_2)_2(BArF_{24})$ [BArF₂₄ = B(3,5-(CF_3)_2C_6H_3)_4]⁵ were prepared according to literature procedures.

NMR spectra were recorded using Bruker AV-400 (400.4 MHz) spectrometers. Chemical shifts, δ , are reported in parts per million (ppm). ¹H chemical shifts are given relative to Me₄Si and referenced internally to the residual proton shift of the deuterated solvent employed. ³¹P and ¹⁵N chemical shifts were referenced ($\delta = 0$) externally to 85% H₃PO₄ (aq) and neat CH₃NO₂, respectively. ¹H and ³¹P NMR spectra of solutions prepared in non-deuterated solvents incorporate an internal reference capillary containing a solution of ca. 0.1 M PPh₃ in C₆D₆ and are referenced to residual C₆D₅H and PPh₃ ($\delta = -5.3$) resonances, respectively. Air or moisture sensitive samples were prepared inside the glovebox using NMR tubes fitted with J. Young valves.

Infrared (IR) spectra were recorded using a Perkin Elmer FT-IR Spectrum GX spectrometer. Samples were measured as KBr pellets, which were prepared by grinding the sample with KBr (Sigma, FT-IR grade), and pressing in an air-tight Specac[®] die using a Specac[®] manual hydraulic press. Raman spectra were recorded on a LabRAM Infinity instrument (Horiba Jobin-Yvon Ltd., Middlesex, UK) using a He-Ne (red) 633 nm laser, calibrated by reference to the 520.7 nm band of a silicon wafer. Samples were prepared inside an Ar glovebox and deposited as a fine powder on the wall of a sealable quartz cuvette. ¹⁴N₂ stretches were confirmed through comparison with the shifted ¹⁵N₂ stretch of the corresponding ¹⁵N isotopically labelled sample.

Electronic spectra were recorded using a Perkin Elmer Lambda 20 UV-visible spectrophotometer. Samples were prepared inside the glovebox using a quartz cuvette with an optical path length of 1 cm and fitted with a J. Young valve.

Electrochemical experiments were carried out using an AutoLab potentiostat controlled by Nova. Measurements were performed inside an Ar or N₂ glovebox on room temperature Et₂O solutions containing the sample (2 mM) and [ⁿBu₄N][BArF₂₄] electrolyte (50 mM). A three-electrode configuration was employed: a Pt working electrode (PWE) (BASi, Indiana, USA); a Pt wire counter electrode (99.99 %; GoodFellow, Cambridge, UK); and an Ag wire pseudo-reference electrode (99.99 %; GoodFellow, Cambridge, UK); and Ag wire were polished using alumina/H₂O, and all electrodes rinsed with Et₂O and dried in a 100 °C oven prior to each measurement. Measurements were calibrated to the ferrocene/ferrocenium couple in Et₂O at the end of each run, and iR-compensated to within 80 ± 5 % of the solution uncompensated resistance.

Single crystal X-ray diffraction data for **3** was collected with an Oxford Diffraction Xcalibur unit; the crystal was mounted on a glass fibre using perfluoropolyether oil and measured in a stream of N_2 at 173 K. The structure was solved by direct methods using SHELX.⁶

Elemental analyses were performed by Mr. S. Boyer of the London Metropolitan University.

Synthesis and characterisation.

FeN₂(dmpe)₂ (1).^{7, 8} Solutions of 1 can be obtained by dissolving [{Fe(dmpe)₂}₂(μ -N₂)] (3) under N₂. Attempts to grow a single crystal of 1 suitable for X-ray crystallography have yielded only crystals of 3.

³¹P{¹H} NMR (162 MHz, hexane) δ: 63.3 (s).

FeN₂(depe)₂ (2).⁹ (*N.B. this reaction requires a* N_2 *atmosphere.*) To a stirred suspension of Mg powder (564mg, 23.2 mmol) in 15 mL of THF was added 1,2-dibromoethane (0.2 mL, 2.31 mmol). The mixture was heated to 40 °C for 30 min to activate the Mg, evolving C₂H₄ gas. After allowing the mixture to cool to RT, a solution of FeCl₂depe₂ (2.5 g, 4.64 mmol) in 30 mL of THF was slowly added and the mixture subsequently sonicated for 20 min. The reaction is typically complete after 2 days of stirring under N₂ with periodic sonication. The resulting orange solution was filtered before addition of 1,4-dioxane (3.95 mL, 46.3 mmol), precipitating a fine white solid. After stirring for 12h, the mixture was filtered through a pad of Celite[®] on a sintered glass frit and rinsed through with additional THF (3 x 20 mL). THF was subsequently removed *in vacuo* and the remaining solid extracted with pentane (3 x 40 mL). Concentration of the pentane solution and slow cooling to -78 °C yielded orange crystals which were collected by filtration, washed with cold pentane, and then dried in vacuo (2.1 g, 91%).

³¹P{¹H} NMR (162 MHz, hexane) δ: 84.4 (s).

IR (KBr, cm⁻¹): 1956 (¹⁴N₂), 1889 (¹⁵N₂).

CV (vs Cp₂Fe^{+/0}, Et₂O): -2.03 V (Fe¹/Fe⁰).

 $Fe^{15}N_2(depe)_2$ (2-¹⁵N₂). In a Rotaflo[®] ampoule under an Ar atmosphere, Mg powder (113 mg, 4.65 mmol) was activated with 1,2-dibromoethane in THF as above. THF was then removed by decanting and the mixture submerged in a liquid N₂/pentane bath (-131 °C). A solution of FeCl₂depe₂ (500 mg, 0.927 mmol) in 10 mL of THF was added under Ar and the mixture degassed and left under static vacuum. With the mixture still frozen, ¹⁵N₂ (2 eq.) was delivered into the ampoule *via* a Toepler pump. After thawing, the mixture was sonicated for 20 min and subsequently stirred for 2 days with periodic sonication. The reaction was worked up as above, under an Ar atmosphere (350 mg, 76%).

1 and **2** generated *in-situ* by the method of Leigh *et al.*^{7, 10} Following the method of Leigh *et al.*, [*trans*-Fe(H)(N₂)(PP)₂][BPh₄] (PP = dmpe, depe) and KO^tBu (2 eq.) were combined in THF under a N₂ atmosphere, stirred for 3 h (PP = dmpe) or 24 h (PP = depe), and then filtered through Celite[®].

[{Fe(dmpe)₂}₂(μ -N₂)] (3). FeCl₂dmpe₂ (4 g, 9.37 mmol) and KC₈ (5.065 g, 37.5 mmol) were transferred into a Rotaflo[®] ampoule and sealed. With the ampoule submerged in a liquid N₂ bath, 40 mL of hexane was slowly added under a 1 bar N₂ pressure and the ampoule resealed. After removal of the liquid N₂ bath and allowing the ampoule to thaw behind a blast shield, a N₂ pressure of ca. 4 bar was obtained. The mixture was subsequently sonicated for 20 min and left to stir for 3 days with periodic sonication. After carefully releasing the pressure, the mixture was filtered through a pad of Celite[®] on a sintered glass frit and the remaining solids extracted with additional hexane (4 x 40 mL).

The filtrate and extracts were combined and the hexane removed *in vacuo* to yield a red solid consisting of mainly **1** with some **3**. Suspending this solid in 1-2 mL of hexane under an Ar atmosphere with minimal stirring for 5 days results in almost complete conversion to **3**. Minor impurities consisting of **1**, [{Fe(dmpe)₂}₂(μ -dmpe)], and *cis*-Fe(H)₂(dmpe)₂ can be removed by recrystalisation from hexane under Ar to yield red crystals of **3** in >98% purity by ³¹P NMR (3.21 g, 93%).

Anal. Calcd. for C₂₄H₆₄N₂Fe₂P₈: C, 38.94; H, 8.71; N, 3.78. Found: C, 38.93; H, 8.85; N, 3.89.

³¹P{¹H} NMR (162 MHz, hexane) δ : 66.0 (s).

¹⁵N{¹H} NMR (40.55 MHz, hexane) δ: –55.05 (s).

¹H NMR (40.55 MHz, THF-d₈, 253 K) δ : 1.44–1.30 (overlapped, 40H, 'CH₂CH₂' and Me); 1.20–1.14 (br s, 24H, Me'). [*N.B. the proton resonances of the dmpe ligands could not be resolved in other common solvents; assignment of these resonances was confirmed by* ¹H–³¹P HSQC NMR.]

Raman (solid, cm^{-1}): 1933 (¹⁴N₂), 1870 (¹⁵N₂).

UV-vis (pentane, nm {M cm⁻¹}: 275 {29,974}; 365 {42,312}.

CV (vs Cp₂Fe^{+/0}, Et₂O): -2.23 V (Fe¹/Fe⁰).

[{Fe(dmpe)₂}₂(μ -¹⁵N₂)] (3-¹⁵N₂). FeCl₂dmpe₂ (400 mg, 0.937 mmol) and KC₈ (633 mg, 4.68 mmol) were transferred into a Rotaflo[®] ampoule and sealed. With the ampoule submerged in a liquid N₂/pentane (-131 °C) bath, 10 mL of hexane was added under an Ar atmosphere and the mixture degassed and left under static vacuum. With the mixture still frozen, ¹⁵N₂ (1.5 eq.) was delivered into the ampoule *via* a Toepler pump. After thawing, the mixture was sonicated for 20 min and subsequently stirred for 5 days with periodic sonication. The reaction was worked up as above, under an Ar atmosphere (240 mg, 69%).

Acidification experiments

General procedure. Inside a glovebox under either an Ar (for compound **3**) or N₂ (for all other compounds) atmosphere, the chosen compound was carefully weighed (0.016 mmol Fe), dissolved in a minimum of solvent, and then filtered through a Celite[®] frit into bulb A of the distillation apparatus (Figure S1). Additional solvent was used to rinse through any remaining residue on the Celite[®] frit, up to a total volume of 0.5 mL. The apparatus was then sealed under an Ar or N₂ atmosphere before being transferred to a dual vacuum/gas (Ar or N₂) manifold. With the solution stirring at the desired temperature, precooled acid was added either *via* a syringe (HCl, 1 M in Et₂O; TfOH, neat; 10 eq. per Fe) or cannula (TfOH, 0.32 M in pentane or Et₂O; 10 eq. per Fe). The mixture was stirred at the desired temperature for 30 min, then allowed to warm to room temperature for a further 30 min. During this time, additional HCl (1 M in Et₂O; 20 eq. per Fe) was added to the second empty flask

(bulb B). The volatiles in bulb A were subsequently removed *in vacuo*, and both bulbs were submerged in liquid N₂ baths. To the frozen acidified mixture in bulb A, aqueous KOH (40%, 1.5 mL) was added *via* a syringe (*caution: this should be performed under a* N₂ *flow rather than Ar, which freezes at the temperature of liquid* N₂). With the contents of both bulbs frozen, the entire apparatus was evacuated to ca. 10^{-2} mbar and sealed under a static vacuum by closing all three J. Young valves. Bulb A was removed from the liquid N₂ bath and its contents allowed to thaw, then left to stir at room temperature for 30 min. With bulb B still submerged in liquid N₂, the J. Young valves to both bulbs A and B were carefully opened to allow volatiles from bulb A to distil into bulb B until approximately 50% of the initial volume remained. Bulb B was then sealed, thawed to room temperature, and stirred for a further 5 min. All volatiles in bulb B were subsequently removed *in vacuo* and the remaining residue was dissolved in aqueous HCI (1 M, 0.5 mL) from which a 50 µL aliquot was removed for hydrazine analysis (*vide infra*). The remaining 0.9 fraction was once more dried *in vacuo* and subsequently redissolved in DMSO-d₆ (0.45 mL) for ammonia analysis (*vide infra*).

In control experiments it was found that N_2H_4 (b.p. 114 °C; N_2H_4 · H_2O , b.p. 120 °C) does not entirely transfer across during the base distillation, which must be carried out at room temperature due to the known decomposition of N_2H_4 to NH_3 , N_2 , and H_2 .¹¹ In order to quantify any N_2H_4 in the remaining residue, aq. HCl (12 M, 1.26 mL; 1 M, 1 mL) was added at 0 °C (*caution: exothermic*), and the mixture subsequently filtered through a Celite[®] frit, and rinsed with additional aq. HCl (1 M) up to a total volume of 5 mL. In a 5 mL volumetric flask, this solution was rinsed with BuOH (3 X 1 mL) to extract residual Fe-species/contaminants, yielding a clear solution, which was remade up to 5 mL with further aq. HCl (1 M). A fraction of this 5 mL solution was subsequently analysed for hydrazine (*vide infra*).

Quantification of NH₃

After treatment with base (*vide supra*), NH₃ was distilled from the reaction mixture onto HCl, thus chemically trapping it as NH₄Cl, which could then be quantified by ¹H NMR spectroscopy, as reported by others.¹² NH₄⁺ ($\delta \approx 7.3$, 1:1:1 triplet, ¹J_{NH} = 51 Hz, DMSO-d₆; Figure S2) was integrated relative to the vinylic protons of 2,5-dimethylfuran,¹³ contained within a DMSO-d₆ capillary insert ($\delta = 5.83$, s, 2H, T₁ ≈ 20.5 s), which was calibrated using a standard 0.032 M solution of NH₄Cl in DMSO-d₆. To establish whether the N in NH₄⁺ produced in the acidification experiments is sourced from the N₂ ligand in the Fe complex, a THF solution of ¹⁵N₂ isotopically labelled **2** (**2**-¹⁵N₂) was acidified with TfOH inside an Ar glovebox (in the absence of N₂); subsequent analysis by ¹H NMR spectroscopy (as above), resolved a characteristic 1:1 double corresponding to ¹⁵NH₄⁺ ($\delta \approx 7.4$, d, ¹J_{NH} = 71 Hz, DMSO-d₆; Figure S2).

Quantification of N₂H₄

Both the volatile (distilled) and the BuOH washed, non-volatile fractions were analysed separately for N_2H_4 by a standard spectrophotometric method, which employs an acidic pdmab indicator solution to generate a yellow azine dye with a characteristic electronic absorption feature at 458 nm.¹⁴ Accordingly, aliquots taken from these two fractions were diluted to a suitable concentration and the N_2H_4 was quantified by comparison to the calibration curve in Figure S1. Importantly, it was determined through control experiments (Table S1, entries 20-30) that the presence of NH₃ and/or dmpe and depe does not interfere with this method. Likewise, the BuOH washed, non-volatile fraction does not absorb within the range of the UV-vis spectrum measured and thus interference from any residual Fe-species/contaminants may also be ruled out (Figure S3).

Figure S1. Left: distillation apparatus for the acidification reactions; compounds were acidified in the smaller bulb (A), and base-distilled onto additional acid within the larger bulb (B). Right: UV-vis calibration curve ($\lambda_{max} = 458$ nm) for the pdmab hydrazine test.

Figure S2. ¹H NMR spectra (DMSO-d₆) of ¹⁴NH₄⁺ and ¹⁵NH₄⁺ generated from the addition of TfOH, inside an Ar glovebox, to THF solutions of **2** and **2**-¹⁵N₂, respectively, and subsequent base distillation onto HCI.

Figure S3. Exemplar UV-vis spectra used for the spectrophotometric determination of N_2H_4 produced in an acidification reaction (**2**, TfOH, Et₂O, rt). Aliquots taken from the distillate and the BuOH washed, non-volatile remainder were analysed both with and without pdmab indicator.

Entry	Compound	Acid	Solvent	T (°C)	No. of runs	N₂H₄ (% per Fe) ^ª	NH₃ (% per Fe) ^ª	Electrons transferred (per Fe) ^b	Yield (%) ^c
1	1	TfOH	THF	rt	2	0, 0	0, 0	0.00	0
2	1	TfOH	Et ₂ O	rt	1	9	0	0.36	18
3	1	TfOH	pentane	rt	2	10, 8	0, 0	0.36	18
4	1	TfOH	pentane	-78	3	4, 3, 4	0, 0, 0	0.15	8
5	2	TfOH	THF	rt	1	4	3	0.22	11
6	2	TfOH	Et ₂ O	rt	2	9, 13	6, 6	0.63	32
7	2	TfOH	Et ₂ O	-78	2	7, 5	11, 10	0.57	28
8	2	TfOH	pentane	rt	2	22, 20	8, 8	1.07	54
9	2	TfOH	pentane	-78	1	24	5	1.10	55
10	3	TfOH	pentane	rt	2	4, 4	2, 1	0.22	11
11	3	TfOH	pentane	-78	3	2, 2, 2	0, 0, 0	0.08	4
12	1	HCI	THF	20	1	0	0	0.00	0
13	1	HCI	THF	-40	1	0	0	0.00	0
14	1 (Leigh method)	HCI	THF	20	1	0	0	0.00	0
17	2	HCI	THF	20	2	0, 0	0, 0	0.00	0
18	2	HCI	THF	-78	1	0	0	0.00	0
19	2 (Leigh method)	HCI	THF	20	1	0	0	0.00	0
15	3	HCI	THF	20	3	0, 0, 0	0, 0, 0	0.00	0
16	3	HCI	THF	-40	1	0	0	0.00	0
20	FeCl ₂ (dmpe) ₂	TfOH	pentane	20	1	0	0	0.00	0
21	FeCl ₂ (dmpe) ₂	TfOH	pentane	-78	2	0, 0	0, 0	0.00	0
22	FeCl ₂ (dmpe) ₂	HCI	THF	20	1	0	0	0.00	0
23	FeCl ₂ (depe) ₂	TfOH	pentane	20	1	0	0	0.00	0
24	FeCl ₂ (depe) ₂	HCI	THF	20	1	0	0	0.00	0
25	dmpe	HCI	Et ₂ O	20	1	0	0	0.00	0
26	depe	HCI	Et ₂ O	20	1	0	0	0.00	0
27	FeCl ₂ (dmpe) ₂ , NH ₄ Cl, N ₂ H ₄ .2HCl	HCI	THF	20	1	102	97	-	-
28	FeCl ₂ (depe) ₂ , NH ₄ Cl, N ₂ H ₄ .2HCl	HCI	THF	20	1	103	101	-	-
29	FeCl ₂ (dmpe) ₂ , NH ₄ Cl	HCI	THF	20	1	0	92	-	-
30	FeCl ₂ (depe) ₂ , NH ₄ Cl	HCI	THF	20	1	0	98	-	-

Table S1. Reduced N_2 yields for the acidification of **1-3**.

^a Yield per Fe; ^b averaged over all runs; ^c yield assuming each Fe supplies a max. of two electrons, averaged over all runs.

2. NMR spectra

Figure S4. ³¹P NMR spectra of $Fe(^{15}N_2)(dmpe)_2$ ($1-^{15}N_2$) and [{ $Fe(dmpe)_2$ }₂($\mu-^{15}N_2$)] ($3-^{15}N_2$) generated from the reduction of *trans*- $Fe(CI)_2(dmpe)_2$ under $^{15}N_2$ with KC₈ (4 eq.) in hexane: (i) reaction mixture after 3 days; (ii) redissolved in hexane after removal of volatiles and drying *in vacuo*; (iii) recrystalised from hexane under argon; P = PMe_2.

Figure S5. ${}^{15}N{}^{1}H{}$ NMR spectrum of $[{Fe(dmpe)_2}_2(\mu - {}^{15}N_2)]$ (3- ${}^{15}N_2$) in hexane under an Ar atmosphere.

Figure S6. ¹⁵N{¹H} NMR spectrum of $Fe(^{15}N_2)(dmpe)_2$ ($1^{-15}N_2$) and [{ $Fe(dmpe)_2$ }₂($\mu^{-15}N_2$)] ($3^{-15}N_2$) generated *in situ* from the reduction of *trans*-Fe(Cl)₂(dmpe)₂ under ¹⁵N₂ with KC₈ (4 eq.) in hexane.

Figure S7. ¹⁵N{¹H} NMR spectrum of $Fe(^{15}N_2)(dmpe)_2$ (1-¹⁵N₂) generated *in situ* from the deprotonation of *trans*-Fe(H)(¹⁵N₂)(dmpe)₂][BPh₄] in THF under a ¹⁵N₂ atmosphere.

Figure S8. ¹H NMR spectrum of [{Fe(dmpe)₂}₂(μ -N₂)] (3) recorded in THF-d₈ at 253 K.

Figure S9. ¹H–³¹P HSQC NMR spectrum of [{Fe(dmpe)₂}₂(μ -N₂)] (**3**) recorded in THF-d₈ at 253 K; [{Fe(dmpe)₂}₂(μ -dmpe)] (**4**) denoted by *.

Figure S10. ³¹P NMR determined concentrations of **3** (\bullet) and **1** (\blacksquare) from the *in-situ* decomposition of **3** in pentane (10 mM) under an Ar atmosphere; t¹/₂ (**3**) = 13 days.

3. IR spectra

Figure S11. IR spectra of $Fe(^{14}N_2)(depe)_2$ (**2**) and $Fe(^{15}N_2)(depe)_2$ (**2**- $^{15}N_2$) recorded as KBr pellets; P = PEt₂.

4. Raman spectra

Figure S12. Raman spectra of $[{Fe(dmpe)_2}_2(\mu^{-14}N_2)]$ (**3**, blue) and $[{Fe(dmpe)_2}_2(\mu^{-15}N_2)]$ (**3**⁻¹⁵N₂, green) recorded on powdered samples using a He-Ne (red) 633nm laser; P = PMe₂.

5. UV-vis spectra

Figure S13. UV-vis spectra of $[{Fe(dmpe)_2}_2(\mu-N_2)]$ (3) recorded in pentane under an Ar atmosphere.

Figure S14. UV-vis spectra of $[{Fe(dmpe)_2}_2(\mu-N_2)]$ (3) recorded in Et₂O under either an Ar or N₂ atmosphere.

6. Cyclic voltammograms

Figure S15. Cyclic voltammetry measurements of $Fe(N_2)(depe)_2$ (2); recorded in Et_2O under a N_2 atmosphere; [^{*n*}Bu₄N][BArF₂₄] electrolyte; potential plotted relative to the Cp₂Fe^{+/0} couple; arrow indicates direction of scan.

Figure S16. Cyclic voltammetry measurements of [{Fe(dmpe)₂}₂(μ -N₂)] (**3**); recorded in Et₂O under an Ar atmosphere; [^{*n*}Bu₄N][BArF₂₄] electrolyte; potential plotted relative to the Cp₂Fe^{+/0} couple; arrow indicates direction of scan.

Figure S17. Cyclic voltammetry measurements of $Fe(N_2)(dmpe)_2$ (1); recorded in Et_2O under a N_2 atmosphere; 250 mV s⁻¹ scan rate; [^{*n*}Bu₄N][BArF₂₄] electrolyte; potential plotted relative to the $Cp_2Fe^{+/0}$ couple; arrow indicates direction of scan.

7. X-ray diffraction data for 3

The P(1), P(4) dmpe ligand coordinated to Fe(1) was found to be disordered; two orientations of ca. 61 and 39% occupancy were identified. Similarly, the P(21), P(24) and P(31), P(34) dmpe ligands coordinated to Fe(2) were found to be disordered; two orientations of ca. 64 and 36% occupancy were identified. Only the non-hydrogen atoms of the major occupancy orientations were refined anisotropically.

Formula	$C_{24}H_{64}Fe_2N_2P_8$					
Formula weight	740.23					
Temperature	173 K					
Diffractometer, wavelength	OD Xcalibur 3, 0.71073 Å					
Crystal system, space group	Triclinic, P-1					
Unit cell dimensions	a = 9.3450(4) Å	$\alpha=90.674(3)^\circ$				
	b = 9.6733(3) Å	$\beta=90.671(4)^\circ$				
	c = 23.4652(10) Å	$\gamma=115.639(3)^\circ$				
Volume, Z	1911.86(14) Å ³ , 2					
Density (calculated)	1.286 mg/m ³					
Absorption coefficient	1.110 mm ⁻¹					
F(000)	788					
Crystal colour / morphology	Red tabular needles					
Crystal size	0.41 x 0.35 x 0.06 mm ³					
θ range for data collection	2.94 to 29.32°					
Index ranges	-11<=h<=12, -13<=k<=13, -15<=l<=31					
Reflections collected / unique	15856 / 8760 [R(int) = 0.0202]					
Reflections observed [F>4 σ (F)]	7245					
Absorption correction	Analytical					
Max. and min. transmission	0.937 and 0.728					
Refinement method	Full-matrix least-squares on F^2					
Data / restraints / parameters	8760 / 452 / 407					
Goodness-of-fit on F ²	1.024					
Final R indices [F>4σ(F)]	R1 = 0.0431, wR2 = 0.0900					
R indices (all data)	R1 = 0.0556, wR2 = 0.0984					
Largest diff. peak, hole	0.774, -0.637 eÅ ⁻³					
Mean and maximum shift/error	0.000 and 0.001					

8. References

- 1. Weitz, I. S.; Rabinovitz, M., J. Chem. Soc., Perkin Trans. 1, 1993, (1), 117-120.
- 2. LeSuer, R. J.; Buttolph, C.; Geiger, W. E., Anal. Chem., 2004, 76 (21), 6395-6401.
- 3. Hills, A.; Hughes, D. L.; Jimenez-Tenorio, M.; Leigh, G. J.; Rowley, A. T., *J. Chem. Soc., Dalton Trans.* **1993**, (20), 3041-3049.
- 4. Arashiba, K.; Miyake, Y.; Nishibayashi, Y., *Nat. Chem.*, 2011, **3**, 120.
- 5. Brookhart, M.; Grant, B.; Volpe, A. F., Organometallics 1992, 11 (11), 3920.
- 6. Sheldrick, G., Acta Crystallogr., Sect. A, 2008, 64 (1), 112-122.
- 7. Leigh, G. J.; Jimenez-Tenorio, M., J. Am. Chem. Soc., 1991, 113 (15), 5862-5863.
- 8. Field, L. D.; Li, H. L.; Magill, A. M., Inorg. Chem., 2009, 48 (1), 5-7.
- 9. Komiya, S.; Akita, M.; Yoza, A.; Kasuga, N.; Fukuoka, A.; Kai, Y., *J. Chem. Soc., Chem. Commun.*, **1993**, (9), 787-788.
- 10. Hall, D. A.; Leigh, G. J., J. Chem. Soc., Dalton Trans. 1996, (17), 3539-3541.
- Block, E.; Ofori-Okai, G.; Kang, H.; Zubieta, J., *J. Am. Chem. Soc.* **1992**, *114* (2), 758-759;
 Takei, I.; Dohki, K.; Kobayashi, K.; Suzuki, T.; Hidai, M., *Inorg. Chem.* **2005**, *44* (11), 3768-3770;
 B. Hitchcock, P.; L. Hughes, D.; J. Maguire, M.; Marjani, K.; L. Richards, R., *J. Chem. Soc., Dalton Trans.* **1997**, (24), 4747-4752; Crossland, J. L.; Zakharov, L. N.; Tyler, D. R., *Inorg. Chem.* **2007**, *46* (25), 10476-10478.
- 12. Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R., *J. Am. Chem. Soc.* **2005**, *1*27 (29), 10184-10185; Field, L. D.; Hazari, N.; Li, H. L., *Inorg. Chem.* **2015**, *54* (10), 4768-4776.
- 13. Gerritz, S. W.; Sefler, A. M., J. Comb. Chem., 2000, 2 (1), 39-41.
- 14. Watt, G. W.; Chrisp, J. D., Anal. Chem., 1952, 24 (12), 2006-2008.