Supplementary Information

Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells Weidong Zhu,^a Chunxiong Bao,^a Yangrunqian Wang,^a Faming Li,^a Xiaoxin Zhou,^a Jie Yang,^a Bihu Lv,^b Xiaoyong Wang,^b Tao Yu,^{*abc} and Zhigang Zou ^{abc} ^aNational Laboratory of Solid State Microstructures & Eco-Materials and Renewable Energy Research Center (ERERC) at Department of Physics, Nanjing University, Nanjing 210093, P. R. China. E-mail: yutao@nju.edu.cn ^bCollaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.

Fig. S1 (a) The low resolution XPS survey spectra of pristine OTP film (Pristine) and coarsened OTP films with the post-synthesis heating treatment temperatures of 110 $^{\circ}$ C (R110), 130 $^{\circ}$ C (R130), 150 $^{\circ}$ C (R150), and 170 $^{\circ}$ C (R170), respectively. (b) and (c) are the corresponding Pb 4f and I 3d core level XPS spectra.

Fig. S2 The top-view SEM image of the pristine OTP film after deposition of CH₃NH₃I.

Fig. S3 (a) Transmittance spectra of pristine OTP film (Pristine) and coarsened OTP film with the post-synthesis heating treatment temperature and time of 150 °C and 20 min (R150-20). (b) Determination of the Urbach energy (E_u) of pristine OTP film and R150-20 sample using the empirical equation: $\ln \alpha = \frac{1}{E_u}hv + \ln \alpha_0 - \frac{E_g}{E_u}$, where α_0 is constant, hv is the photon energy, E_g is the optical bandgap, E_u is the Urbach energy, and α is the absorption coefficient. The α can be calculated from the Transmittance spectrum using the equation of $\alpha = \frac{-\ln T}{d}$ (d is the film thickness). By fitting the linear part of plots of $\ln \alpha$ versus hv, the Urbach energy can be calculated from the slope of fitted straight line.

Fig. S4 The cross-section SEM images of R150-20 samples with different thicknesses of 270, 440, 520, and 690 nm, respectively. The film thickness was changed by controlling the rotation speed during deposition of pristine OTP films.

Fig. S5 J-V curves measured at forward scan (Forward, from -0.1 V to 1.2 V) and reverse scan (Reverse, 1.2 V to -0.1 V) for the best performing perovskite solar cell employed the R150-20 sample with thickness of 440 nm. It should be noted that there was a kink at 0.95 V in forward J-V curve of cell, which has been frequently observed in the previous works and was difficult to be eliminated by the modification OTP film quality.¹⁻³ The underlying reason

for this phenomenon is mainly consisted in the migration of iodide ions/interstitials driven by an external electrical bias leading to shift in the effective work function at the respective electrodes of the cells.¹

Fig. S6 Photocurrent density as a function of time for best performing perovskite solar cell employed the R150-20 sample with thickness of 440 nm held at a forward bias of 0.01 V. The cell was placed in the dark prior to the start of the measurement.

Thickessness (nm)	J_{sc} (mA cm ⁻²)	$V_{oc}\left(V ight)$	FF	PCE (%)
270	22.15	1.13	0.674	16.87
440	23.18	1.12	0.710	18.43
520	23.80	1.10	0.691	18.09
690	23.85	1.09	0.648	16.85

Table S1 PV parameters for the cells employed R150-20 samples with different thicknesses.

Refercences

- C. Li, S. Tscheuschner, F. Paulus, P. E. Hopkinson, J. Kießling, A. Köhler, Y. Vaynzof and S. Huettner, *Adv. Mater.*, 2016, 28, 2446-2454.
- [2] H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski and W. Zhang, J. Phys. Chem. Lett., 2014, 5, 1511-1515.

[3] R. S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y. S. Kang, I. Mora-Sero and J. Bisquert, J. Phys. Chem. Lett., 2014, 5, 2357-2363.