Electronic Supplementary Information

Cyclometallated iridium complexes inducing natural product like paraptotic cell death: Synthesis, structure and mechanistic aspects

Suman Kumar Tripathy,^{a,†} Umasankar De,^{b, †} Niranjan Dehury,^a Paltan Laha,^a Manas Kumar Panda,^c Hyung Sik Kim^{b,*} and Srikanta Patra^{a,*}

^aSchool of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar-751007, India. Tel: 0674 2576053, E-mail: srikanta@iitbbs.ac.in,

^bDivision of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea. Tel: +82-31-290-7789, E-mail: hkims@skku.edu.

^cNational Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram – 695 019, Kerala, India

Scheme S1. Schematic representation for the preparation of the ligands L_1 and L_2 .

Table TS1. Selected crystallographic data for complex 5. $3C_7H_8$ and 6. C_7H_8 .

	5. 3C ₇ H ₈	6 . C ₇ H ₈		
emperical formula	$C_{113}H_{88}F_{12}Ir_2N_{12}P_2S_4$	C ₄₃ H ₃₇ ClF ₆ IrN ₆ P		
Fw	2416.53	1010.43		
radiation	ΜοΚ _α	ΜοΚ _α		
wavelength (Å)	0.71073	0.71073		
temp./ K	110 (2)	110(2)		
crystal system	Trigonal	Triclinic		
space group	R - 3	P - 1		
a/Å	49.3580(8)	8.7494(7)		
b/Å	49.3580(8)	12.8229(9)		
c/Å	11.9179(19)	18.0175(14)		
a(deg)	90.00	95.984(2)		
β (deg)	90.00	92.269(2)		
γ(deg)	120.00	92.255(2)		
V/ Å ³	25145(9)	2006.9(3)		
crystal size (mm)	0.33 x 0.22 x 0.20	0.10 x 0.08 x 0.06		
Ζ	9	2		
μ / mm ⁻¹	2.554	3.501		
$D_{\rm calcd}$ / g cm ⁻³	1.436	1.672		
F(000)	10854	1000		
θ range	2.18-23.21	2.06-28.44		
data/restraints/parameters	13028/129/622	8693/0/529		
R1,wR2 [I>2σ(I)]	0.0588, 0.1132	0.0693, 01017		
R1,wR2 (all data)	0.1132	0.1017,		
largest diff. peak hole (eÅ-3)	2.322, -1.115	2.279, -2.21		

Bond lengths (Å)							
5. 3C ₇ H ₈			6 . C ₇ H ₈				
Ir1-N1	2.138(5)	Ir1-N1	2.133(7)				
Ir1-N2	2.144(5)	Ir1-N2	2.114(7)				
Ir1-N5	2.048(5)	Ir1-C25	2.172(9)				
Ir1-N6	2.046(5)	Ir1-C26	2.158(9)				
Ir1-C33	2.006(6)	Ir1-C27	2.123(9)				
Ir1-C45	2.010(6)	Ir1-C28	2.171(10)				
		Ir1-C29	2.176(10)				
		Ir1-Cl1	2.401(2)				
		Ir-C _{centroid}	1.790				
	Be	ond angles (°)					
5. 3C ₇ H ₈			6. C ₇ H ₈				
N1-Ir1-N2	77.27(17)	N1-Ir1-Cl1	84.9(2)				
C33-Ir1-N3	80.9(2)	N2-Ir1-Cl1	86.71(19)				
C45-Ir1-N4	80.5(2)	N1-Ir1-N2	77.4(3)				

Table TS3. UV-Vis spectral and electrochemical data^{*a*} for complexes 1 - 6 recorded in CH₃CN at room temperature.

Complexes	$\lambda_{\rm max}/{\rm nm}(\varepsilon/{\rm M}^{-1}{\rm ~cm}^{-1})$	$E_{298^{0}} [\mathbf{V}]^b$					
		E _{ox2}	E _{ox1}	E _{red1}	E _{red2}	E _{red3}	E _{red4}
1	267 (82500), 365 (22500)	_	1.18 V	-0.82	-1.41	-1.96	—
2	272 (75700), 360 (22000), 477 (670)	1.14	0.79 V	-0.81	-1.43	-1.96	_
3	246 (77680), 270 (77670), 348 (23200), 363 (22300), 446 (790)	-	1.44 V	-0.8	-1.07	-1.38	-1.94
4	260 (69100), 392 (26250)	1.12	0.85 V	-0.84	-1.08	-1.94	_
5	253 (61000), 271 (59200), 378 (19300)	_	1.09 V	-0.99	-1.14	-1.72	_
6	213 (27300), 285 (34000), 360 (10800)		1.61 V	-1.09	-1.43	-1.82	-

^{*a*}From cyclic voltammetry in CH₃CN/ 0.1M Et₄NClO₄ at 50 mV s⁻¹. ^{*b*}Potentials in V versus Ag/AgCl, referenced to Fc⁺/Fc ($E_{\frac{1}{2}}$ = + 0.18 V) as internal standard.

Figure S1. Positive ion ESI mass spectra of complexes 1 - 6.

Figure S2. (a) 1 H and (b) 13C NMR spectra of complex 1 in (CD₃)₂SO.

Figure S3. (a) ¹H and (b) ^{13C} NMR spectra of complex **2** in $(CD_3)_2SO$.

Figure S4. (a) ¹H and (b) ^{13C} NMR spectra of complex **3** in $(CD_3)_2SO$.

Figure S5. (a) 1 H and (b) 13C NMR spectra of complex 4 in (CD₃)₂SO.

Figure S6. (a) 1 H and (b) 13C NMR spectra of complex 5 in (CD₃)₂SO.

Figure S7. (a) 1 H and (b) 13C NMR spectra of complex 6 in (CD₃)₂SO.

Figure S8. UV-Vis spectra of the complexes 1 - 6 recorded in CH₃CN at room temperature.

Figure S9. Cyclic voltammograms of the complexes 1 - 6 recorded in $CH_3CN/0.1M$ Et₄NClO₄ versus Ag/AgCl (scan rate 50 mV s⁻¹).

Figure S10. Dose dependent suppression of cell viability of complexes 1 - 6 towards human breast (MCF-7) cancer cell lines.

Figure S11. Flow cytometry results of MCF-7 cells incubated with blank medium and complexes 1 - 6 (5 μ M) at 37 °C for 2 h. (excitation, 530 nm; emission, 585 nm).

Figure S12. Western blot analysis of the expressions of apoptosis related proteins of human breast (MCF-7) cancer cell line with or without treatment of complex 1 (5 μ M), cisplatin (50 μ M), and UV light for 24 h.

Figure S13. Cell cycle analysis of human breast (MCF-7) cancer cell line with or without treatment of complex **1** at indicated concentrations after 24 h.

Figure S14. (a) Flow cytometric analysis and (b) fluorescence microscopic images of ROS production incubated with blank medium, only complex 1 (5 μ M), complex 1 + MnTBAP (100 μ M) and only H₂O₂ (50 μ M) at 37 °C for 12 h. (excitation, 488 nm; emission, 530 nm).

Figure S15. Dose dependent suppression of cell viability of complex **1** towards human breast (MCF-7), prostate (LNCap, PC3, DU145) endometrial (Ishikawa) and Ovarian (SKOV3) cancer cell lines.

Figure S16. Time dependent western blot analysis of p53 protein expression of human breast (MCF-7), endometrial (Ishikawa) and ovarian (SKOV3) cancer cell lines after the treatment of complex 1 (5 μ M).

Figure S17. Florescence microscopic images of human breast (MCF-7) cancer cells in presence of 3, 3^{\prime} -dihexyloxacarbocyanine iodide (DIOC₆) (40 nM), complex **1** (10 μ M) and their overlay image after 12 h incubation.

