Electronic Supplementary Information

Lead ion induced chemodosimeter approach of a tripodal hydroxyl-quinoline based phospho-ester through P-O bond cleavage

Dibyendu Sain,^a Chanda Kumari,^a Ashish Kumar,^a Hari Pada Nayek^a and Swapan Dey*^a

Department of Applied Chemistry, Indian School of Mines, Dhanbad, Jharkhand, 826 004, India, <u>dey.s.ac@ismdhanbad.ac.in</u>, Fax: +913262296563

	HQP	NP	$Pb_4(HQ)_6(ClO_4)_2$
CCDC ref. no.	1413010	1413012	1413011
Formula	$C_{27}H_{18}N_3O_4P$	$C_{30}H_{21}O_4P$	$C_{54}H_{36}Cl_2N_6O_{14}Pb_4$
Formula Weight	479.41	476.44	1892.55
Crystal size (mm)	0.16 x 0.14 x 0.10	0.24 x 0.17 x 0.11	0.20 x 0.14 x 0.10
Temperature (K)	293(2)	293(2)	293(2)
Crystal System	Cubic	Monoclinic	Triclinic
Space group	P 213	P 21/c	P -1
a (Å)	13.3936(15)	13.7844(15)	10.247
b (Å)	13.3936(15)	9.8719(11)	11.756
c (Å)	13.3936(15)	21.2839(19)	12.669
α (°)	90.00	90.00	65.39
β (°)	90.00	125.688(5)	75.83
γ (°)	90.00	90.00	82.73
V [Å] ³	2402.7(5)	2352.4(4)	1344.8
Z	4	4	1
D _{calc} [g/cm ³]	1.325	1.345	2.337
μ (Mo-K α) [mm ⁻¹]	0.153	0.153	12.654
F(000)	992	992	876
Radiation [Å]: Mo-Ka	0.71073	0.71073	0.71073
$\theta_{\text{Min-Max}}$ [°]:	5.49, 27.41	0.982, 27.64	0.959, 27.00
Dataset:	$-3 \le h \le 11$	-17≤ h ≤ 17	$-12 \le h \le 13$
	$-3 \le k \le 17$	$-11 \le k \le 12$	$-15 \le k \le 14$
	$-15 \le l \le 17$	$-27 \le l \le 27$	$-15 \le l \le 16$
Total reflections	1636	5372	5615
Unique reflections	1299	3275	3795
Observed data $[I > 2\sigma(I)]$	1299	3275	3795
Refinement: N _{ref} , N _{par}	1636, 106	5372, 316	5615, 361
R (int)	0.0490	0.0487	0.0383
wR2 (all data), S	0.1293, 0.854	0.1083, 1.016	0.0790, 1.050
Max. & Av. Shift/Error	0.045, 0.010	0.000, 0.000	0.000, 0.000
Resd. Dens. [e/ Å ³]	-0.209, 0.196	-0.278, 0.273	-1.989, 1.345

Table S1: Crystallographic data for HQP, NP and Pb₄(HQ)₆(ClO₄)₂:

Short Contacts	Distance (Å)	
Cl1-O6 ··· Pb2	3.000	
Cl1-O6 ··· Pb1	3.153	
Cl1-07 ··· Pb1	3.232	
Cl1-07 ··· H1-C1	2.528	
Cl1-O6 ··· H7-C7	2.637	

Table S2: Short contacts (Å) for the structure of $Pb_4(HQ)_6(ClO_4)_2$.

¹H NMR spectrum of HQP:

¹³C NMR spectrum of HQP:

Mass spectrum of HQP:

IR spectrum of HQP:

¹H NMR spectrum of NP:

¹³C NMR spectrum of NP:

Mass spectrum of NP:

IR spectrum of NP:

Calculation of limit of detection (LOD):

The detection limit of **HQP** for Pb^{2+} was calculated on the basis of fluorescence titration. To determine the standard deviation for the fluorescence intensity, the emission intensity of **HQP** without any anion was measured by 10 times and the standard deviation of blank measurements was calculated.

The limit of detection (LOD) of HQP for sensing Pb^{2+} was determined from the following equation:

 $LOD = K \times SD/S$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor (**HQP**) solution; S is the slope of the calibration curve.

For HQP with Pb²⁺:

From the linear fit graph we get slope = 1.02786×10^7 , and SD value is 0.50284. Thus using the above formula we get the Limit of Detection = 1.467×10^{-7} M i.e. **HQP** can detect **Pb²⁺** up to this very lower concentration by fluorescence techniques.

Calculation of association constant (K):

Association constant of **HQP** with **Pb**²⁺ (K = $1.23 \times 10^5 \text{ M}^{-1}$) from UV titration data using non-linear method [following non-linear curve fitting equation: **Y** = (**I**₀ + **A.K.X**) / (**1**+ **K.X**), where X = [Pb²⁺], Y= intensity of UV Vis absorption, I₀= initial intensity of HQP].

