Dual mode Soumen et al.

Supporting Information

Dual mode selective chemosensor for copper and fluoride ions: A fluorimetric, colorimetric and theoretical investigation

Soumen Ghosh^a, Aniruddha Ganguly^a, Md. Raihan Uddin^b, Sukhendu Mandal^b, Md.

Akhtarul Alam^{c*}, and Nikhil Guchhait^{a*}

^aDepartment of Chemistry

University of Calcutta

92, A.P.C. Road, Kolkata 700 009, India

Telephone 91-33-23508386

Fax: 91-33-23519755

^bDepartment of Microbiology University of Calcutta
35, B. C. Road, Ballygunge Kolkata- 700019

^cDepartment of Chemistry

Aliah University

IIA/27, New Town, Kolkata-700 156, West Bengal, India

*Corresponding author, E-mail: alam_iitg@yahoo.com (M. A. A.)

and

nguchhait@yahoo.com (N.G.)

Table of Contents

1.	Characterization	S4
2.	X-ray Crystallographic Structures	S6
3.	UV–vis Spectra	S9
4.	Emission spectra	S10
5.	Theoretically optimized structure	S15
6.	UV–vis Spectral data of 1 with F ⁻	S16
7.	¹ H NMR titration	S17

Dual mode Soumen et al.

1. Characterization:

1.1 ¹H NMR Spectra

Fig. S1. ¹H NMR (300 MHz) spectrum of 1 in d_6 -DMSO at 20 °C

1.2 Mass (TOF-MS ES+) Spectra

Fig. S2. Mass spectra (TOF-MS ES+) of 1

Dual mode Soumen et al.

2. X-ray Crystallographic Structures

Fig. S3 ORTEP diagram of 1 (thermal ellipsoids set to 30% probability).

Fig. S4 1D polymer through CH... π interaction

Fig. S5 1D polymer through intermolecular H-bonding interaction

Fig. S6 Different type of $\pi \dots \pi$ interaction

Fig. S7 2D polymeric structure of 1

3. UV–Vis Spectra

Fig. S8 UV-vis spectral changes of **1** (1.0 x 10^{-6} M) upon addition of (0–2 equiv.) Cu (ClO₄)₂ in methanol water mixture (7:3, v/v) (left) and UV-vis spectral changes of sensor **1** (1x10⁻⁶ M) in presence of various metal ions and anions (2 equiv.) in methanol water mixture (7:3, v/v) (right).

4. Emission Spectra

Fig. S9 Emission spectral changes of Sensor 1 ($1x10^{-7}$ M) with dilution in methanol water mixture (7:3, v/v).

Fig. S10 Emission spectral changes of sensor $1(1 \times 10^{-7} \text{ M})$ in presence of various metal ions (2 equiv.) in methanol water mixture (7:3, v/v)

Fig. S11 B-H plot from fluorescence titration spectra at 466 nm (left) and Job's plot from Uv-vis titration at 490 nm (right) of receptor 1 with Cu^{2+} showing 1:1 binding stoichiometry.

Fig. S12 Mass spectra (TOF-MS ES+) of 1-Cu²⁺ complex

Fig. S13 Fluorescence decay profile of 1 and 1 in presence of 2 equivalents of Cu²⁺, λ_{ex} = 375 nm, $\lambda_{em (max)}$ = 570 nm

5. Theoretically optimized structure

Fig. S14 Theoretically optimized structure of 1 and $1-Cu^{2+}$

6. UV–Vis Spectral data of 1 with F⁻

Fig. S15 UV-Vis spectral changes of sensor 1 ($1x10^{-6}$ M) in presence of various anions (2 equiv.) in DMSO-water mixture (7:3, v/v)

7. ¹H NMR titration

Fig. S16 ¹H NMR titration of 1with tetrabutyl ammonium fluoride in DMSO-*d*₆

Fig. S17 Visual fluorescence change of $1(1 \times 10^{-5} \text{ M})$ (left) and fluorescence spectra of $1(1 \times 10^{-7} \text{ M})$ (right) in bare copper ion and in mixture of ions (Cu²⁺, Ni²⁺, Co²⁺, Mn²⁺, Fe²⁺, Cd²⁺, Hg²⁺, Al³⁺, Cr³⁺, F⁻, OAc⁻, H₂PO₄⁻, Cl⁻, Br⁻, I⁻, NO₂⁻ and HSO₄⁻) in methanol water mixture (7:3, v/v)

Fig. S18 Naked-eye color change of $1(1 \times 10^{-4} \text{ M})$ (left) and Uv-vis spectra of $1 (1 \times 10^{-6} \text{ M})$ (right) in bare fluoride and in mixture of ions (Cu²⁺, Ni²⁺, Co²⁺, Mn²⁺, Fe²⁺, Cd²⁺, Hg²⁺, Al³⁺, Cr³⁺, F⁻, Oac⁻, H₂PO₄⁻, Cl⁻, Br⁻, I⁻, NO₂⁻ and HSO₄⁻) in DMSO water mixture (7:3, v/v)

Fig.S19 Determination of detection limit of Cu²⁺ by $\mathbf{1}(1 \times 10^{-7})$ in methanol water mixture (7:3, v/v) at $\lambda_{em} = 466$ nm.

Fig. S20 Determination of detection limit of F⁻ by $1(1 \times 10^{-6})$ in DMSO water mixture (7:3, v/v) at $\lambda_{abs} = 503$ nm.

Fig. S21 Uv-vis spectra of 1 (1×10^{-5} M) and 1 in presence of toothpaste in aqueous DMSO solution and Naked-eye color change (inset).

Scheme S1. The plausible representation of the complexation of 1 with Cu^{2+}

Scheme S2. The plausible representation of the H-bonded form and the deprotonated form of receptor 1.