Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

Chiral Linker - Bridged Bis-*N*-Heterocylic Carbenes: Design, Synthesis, Palladium Complexes, and Catalytic Property

Dao Zhang,* Yu He and Junkai Tang

Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433,
People's Republic of China

(R,R)-**1b.** ¹H-NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 8.4 Hz, 2H, CH_{Ar-NO2-o}), 7.27 (d, J = 8.0, Hz, 2H, CH_{Ar-CH3-o}), 6.76 (t, J = 7.2 Hz, 2H), 3.40 (m, 2H, CH), 2.38 (s, 6H, CH₃), 1.98 (m, 2H, CH₂), 1.72 (m, 2H, CH₂), 1.27 (m, 4H, CH₂). ¹³C-NMR (100 MHz, CDCl₃): δ 144.5 (C_{Ar-NH}), 139.2 (CH_{Ar-CH3-o}), 138.2 (C_{Ar-NO2}), 130.2 (C_{Ar-CH3}), 124.3 (CH_{Ar-NO2-o}), 119.0 (CH_{Ar-NO2-m}), 61.6 (CH), 33.5 (CH₂), 24.5 (CH₂), 20.9 (CH₃).

(R,R)-1c. ¹H-NMR (400 MHz, CDCl₃): δ 8.05 (dd, J = 8.8, 1.6 Hz, 1H, CH_{Ar-NO2-o}), 7.93 (d, J = 7.6 Hz, 1H, CH_{Ar-NO2-o}), 7.70 (dd, J = 8.4, 1.2 Hz, 1H, CH_{Ar-Me-o}), 7.38 (m, 1H, CH), 7.31 (d, J = 7.6 Hz, 1H, CH), 6.79 (m, 2H), 6.63 (m,1H), 3.50 (m, 1H, CH), 3.39 (m, 1H, CH), 2.44 (s, 3H, CH₃), 2.19 (m, 2H, CH₂), 1.84 (m, 2H, CH₂), 1.51-1.30 (m, 4H, CH₂). ¹³C-NMR (100 MHz, CDCl₃): δ 144.6, 140.0 (C _{Ar-NH}), 138.0, 136.4 (CH_{Ar-NO2-p}), 131.7,131.1 (C _{Ar-NO2}), 127.0 (C _{Ar-CH3}), 123.8, 119.7 (CH_{Ar-NO2-o}), 115.4, 113.2 (CH_{Ar-NO2-m}), 60.2, 58.7 (CH), 33.5, 32.5 (CH₂), 24.9, 24.4 (CH₂), 20.6 (CH₃).

(R,R)-1d. ¹H-NMR (400 MHz, CDCl₃): δ 8.02 (dd, J = 8.4, 1.6 Hz, 2H, CH_{Ar-NO2-o}), 7.73 (dd, J = 8.0, 1.6 Hz, 2H, CH_{Ar-CF3-o}), 6.98 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.0 Hz, 2H, NH), 3.42 (m, 2H, CH), 2.08 (m, 2H, CH₂), 1.76 (m, 2H, CH₂), 1.30 (m, 4H, CH₂). ¹³C-NMR (100 MHz, CDCl₃): δ 142.5 (C_{Ar-NH}), 138.9 (C_{Ar-NO2}), 134.6 (CH_{Ar-CF3-o}), 130.34 (CH_{Ar-NO2-o}), 125.2 (CF₃), 122.5 (CH_{Ar-NO2-o}), 117.1 (C_{Ar-CF3}), 62.4 (CH), 33.3 (CH₂), 24.5 (CH₂).

(R,R)-**5a**. ¹H-NMR (400 MHz, CDCl₃): δ 8.85 (dd, J = 4.0 Hz, 2H, CH_{Ar-NO2-o}), 8.17 (dd, J = 7.4, 1.2 Hz, 2H, CH_{Ar-NO2-p}), 7.33 – 7.30 (m, 6H), 7.19 – 7.16 (m, 4H), 6.68 - 6.63 (m, 4H), 5.03 (t, J = 10.0, 4.4 Hz, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 143.9 (C_{Ar-NH}), 137.0 (C_{Ar}), 136.1 (CH_{Ar-NO2-p}), 132.9 (C_{Ar-NO2}), 128.9, 128.6, 127.7 (CH_{Ar}), 126.8 (CH_{Ar-NO2-o}), 116.5 (CH_{Ar-NH-o}), 115.1 (CH_{Ar-NH-o}), 62.3 (CH).

(R,R)-**5b.** HRMS (positive ions): m/z 591.1467 (calcd for [M+H]⁺ 591.1448), 385.1150 (calcd for [M-[2-NO₂-6-CF₃(C₆H₃)NH⁻])⁺ 385.1158). ¹H-NMR (400 MHz, CDCl₃): δ 7.91 (dd, J = 8.0, 1.6 Hz, 2H, CH_{Ar-NO2-o}), 7.73 (dd, J = 7.6, 1.6 Hz, 2H, CH_{Ar-CF3-o}), 7.23 (d, J = 6.4 Hz, 2H), 7.06 (m, 6H), 6.84 (m, 6H), 4.98 (m, 2H, CH). ¹³C-NMR (100 MHz, CDCl₃): δ 141.3 (C_{Ph}), 140.7 (C_{Ar-NH}), 136.9 (C_{Ar-NO2}), 133.3 (CH_{Ar-CF3-o}), 130.3 (CH_{Ar-NO2-o}), 128.5, 128.1, 127.9, 127.7 (CH_{Ar}), 125.2 (CF₃), 122.5, 121.5, 121.1 (CH_{Ar}), 118.3 (C_{Ar-CF3}), 66.7 (CH).

(R,R)-3d. ¹H-NMR (400 MHz, CDCl₃): δ 6.98-6.92 (m, 4H, CH_{Ar-NO2-o} + CH_{Ar-CF3-o}), 6.86 (m, 2H, CH_{Ar-NH-p}), 4.65 (br, 6H, NH + NH₂), 3.19 (m, 2H, CH), 2.09 (m, 2H, CH₂), 1.71 (m, 2H, CH₂), 1.30 (m, 2H, CH₂), 1.17 (m, 2H, CH₂). ¹³C-NMR (100 MHz, CDCl₃): δ 142.6 (C_{Ar-NH2}), 131.3 (C_{Ar-NH}), 125.4 (CF₃), 123.1 (CH_{Ar-NH2-o}+CH_{Ar-NH2-m}), 119.0 (CH_{Ar-CF3-o}), 115.6 (C_{Ar-CF3}), 60.0 (CH), 33.7 (CH₂), 25.2 (CH₂).

(R,R)-**6**. ¹H-NMR (400MHz, CDCl₃): δ 7.28-7.12(m, 10H, ArH), 6.75-6.62(m, 6H, ArH), 6.44-6.41 (m, 2H, ArH), 4.59(s, 2H, CH), 3.48(s, 6H, NH). ¹³C-NMR (100MHz, CDCl₃): δ 140.07, 136.55, 134.75, 128.29, 127.41, 120.54, 119.07, 116.64, 113.71, 64.48.

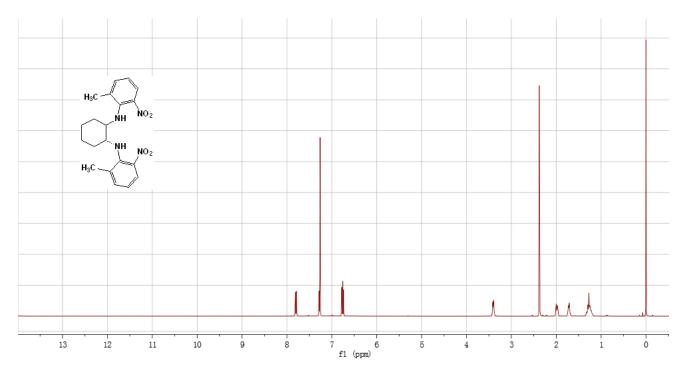
7a. (1.6 g) HRMS (positive ions): m/z 177.0654 (calcd for [M+H]⁺ 177.0640). ¹H-NMR (400 MHz, CDCl₃): δ 7.02 (d, J = 8.0 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.72 (t, J = 8.0 Hz, 1H), 3.69 (br, 4H). ¹³C-NMR (100 MHz, CDCl₃): δ 135.1, 133.9, 128.3, 126.4, 123.7, 120.1, 118.5, 117.7.

7b. (0.8 g) ¹H-NMR (400 MHz, CDCl₃): δ 7.33-7.28 (m, 4H, CH_{Ar}), 7.23-7.19 (m, 6H, CH_{Ar}), 2.95 (m, 4H, CH₂).

(*R*)-**7c.** (60 mg) ¹H-NMR (400 MHz, CDCl₃): δ 7.23-7.19 (m, 6H, CH_{Ar}), 7.05-7.03 (m, 4H, CH_{Ar}), 6.95 (d, J = 7.6 Hz, 1H), 6.75 (d, J = 7.6 Hz, 1H), 6.66 (t, J = 8.0 Hz, 1H), 4.73 (s, 1H), 4.35 (d, J = 7.6 Hz, 1H), 4.23 (s,1H), 4.16 (d, J = 7.6 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ 139.4, 139.3, 134.3, 131.8, 128.4, 128.3, 128.1, 127.9, 127.7, 126.7, 123.4, 116.9, 116.1, 116.0, 62.1, 61.2, 29.7.

(R,R)-**1b.** ¹H-NMR (400 MHz, CDCl₃): δ 7.96 (s, 2H, CH_{imidazole}), 7.52 (d, J = 8.0 Hz, 2H, CH_{Ar-CH3-o}), 7.12 (d, J = 7.6 Hz, 2H, CH_{Ar-CH3-m}), 7.04 (d, J = 7.2 Hz, 2H, CH_{Ar-CH3-p}), 5.35 (dd, J = 6.4, 4.0 Hz, 2H), 2.84 (s, 6H, CH₃), 2.53 (d, J = 14.0 Hz, 2H, CH₂), 2.07 (m, 2H, CH₂), 1.86 (m, 2H, CH₂), 1.69 (m, 2H, CH₂). ¹³C-NMR (100 MHz, CDCl₃): δ 143.7 (CH _{imidazole}), 139.4 (C_{Ar-CH3-m}), 132.0 (C _{Ar-CH3-o}), 126.5 (C _{Ar-CH3}), 122.6 (CH _{Ar-CH3-o}), 120.0 (CH _{Ar-CH3-m}), 118.7 (CH _{Ar-CH3-p}), 58.7 (CH), 37.0 (CH₂), 24.8 (CH₂), 19.3 (CH₃).

(R,R)-1c. ¹H-NMR (400 MHz, CDCl₃): δ 8.16-8.14 (1H, CH_{imidazole}), 7.89 (s, 1H, CH_{imidazole}), 7.63 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.23 (td, J = 8.0 Hz, 1.2 Hz, 1H), 7.17 (td, J = 8.0, 1.2 Hz, 1H), 7.01 (t, J = 4.4 Hz, 1H), 6.86 (d, J = 7.2 Hz, 2H), 2.60 (s, 3H, CH₃), 2.50-42 (m, 2H, CH₂), 2.21-1.95 (m, 4H, CH₂), 1.72-1.67 (m, 2H, CH₂). ¹³C-NMR (100 MHz, CDCl₃): δ 143.6, 143.5 (CH _{imidazole}), 140.5, 139.5, 132.8, 132.1, 126.3, 123.2, 122.5, 122.3, 12.7, 120.0,


118.6, 109.4, 59.1 (CH), 36.1, 33.6 (CH₂), 25.1, 25.0 (CH₂), 19.3 (CH₃).

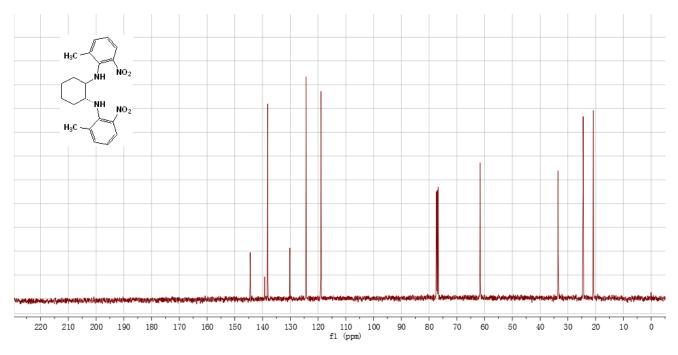
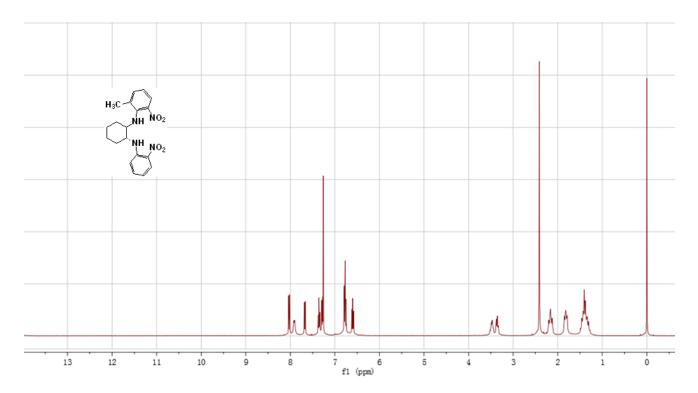
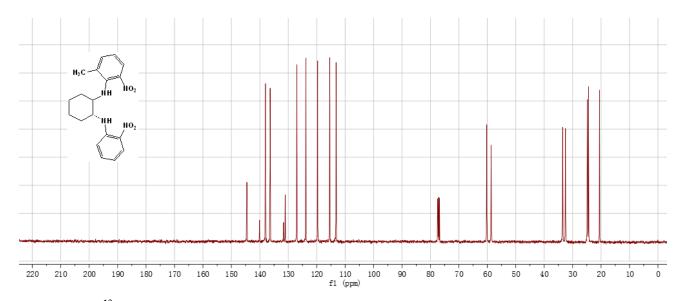
(R,R)-1d. HRMS (positive ions): m/z 453.1504 (calcd for [M+H]⁺ 453.1514). ¹H-NMR (400 MHz, CDCl₃): δ 8.01 (s, 2H, CH_{imidazole}), 7.86 (d, J = 8.0 Hz, 2H, CH_{Ar-CF3-o}), 7.67 (d, J = 7.6 Hz, 2H, CH_{Ar-CF3-p}), 7.30 (t, J = 8.0 Hz, 2H, CH_{Ar-CF3-m}), 5.23 (m, 2H, CH), 2.52 (m, 2H, CH₂), 2.05 (m, 2H, CH₂), 1.82 (m, 2H, CH₂), 1.09 (m, 2H, CH₂). ¹³C-NMR (100 MHz, CDCl₃): δ 145.3 (CH_{imidazole}), 141.3 (C Ar-CF3-m), 129.3 (C Ar-CF3-o), 125.7 (CF₃), 125.5, 123.0, 122.2, 121.8 (CH_{Ar}), 113.2 (C Ar-CF3), 59.1 (CH), 36.6 (CH₂), 25.2 (CH₂).

(R,R)-1d'. HRMS (positive ions): m/z 443.1653 (calcd for [M+H]⁺ 443.1670). ¹H-NMR (400 MHz, CDCl₃): δ 8.39 (d, J = 6.4 Hz, 1H, CH_{imidazole}), 8.01 (d, J = 8.4Hz, 1H, CH_{Ar-CF3-o}), 7.67 (d, J = 7.6 Hz, 1H, CH_{Ar-CF3-p}), 7.34 (t, J = 8.0 Hz, 1H, CH_{Ar-CF3-m}), 6.90 (d, J = 6.8 Hz, 1H, CH_{Ar-NH2-p}), 6.85 (t, J = 8.0 Hz, 1H, CH_{Ar-NH2-m}), 6.76 (d, J = 7.6 Hz, 1H, CH_{Ar-NH2-o}), 4.55 (td, J = 22.2, 3.6 Hz, 1H, CH), 3.84 (d, J = 9.6 Hz, 1H, CH), 3.34 (d, J = 10.4 Hz, 1H), 3.00 (brs, 3H) 2.33 (m, 1H, CH₂), 1.99-1.81 (m, 4H, CH₂), 52-1.32 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 144.9 (CH_{imidazole}), 142.4, 142.2 (C_{Ar-CF3-m}), 130.9 (C Ar-CF3-o), 126.0 (CF₃), 125.6, 125.2, 123.8, 123.5,123.3, 123.1, 122.0, 121.2 (CH_{Ar}), 119.6, 116.6 (C Ar-CF3), 60.4, 58.0 (CH), 34.8,33.6 (CH₂), 25.7, 24.8 (CH₂).

(R,R)-1d". HRMS (positive ions): m/z 471.1612 (calcd for [M+H]⁺ 471.1620). ¹H-NMR (400 MHz, CDCl₃): δ 8.50 (s, 1H, CH_{imidazole}), 8.35 (d, J = 8.0 Hz, 1H, CH_{Ar-CF3- ρ}), 8.05 (d, J = 8.0 Hz, 1H, CH_{Ar-CF3- ρ}), 7.70 (d, J = 7.6 Hz, 1H, CH_{Ar-CF3- ρ}), 7.36 (t, J = 8.0 Hz, 1H, CH_{Ar-CF3-m}), 7.22 (s, 1H), 7.12 (t, J = 8.0 Hz, 1H, CH_{Ar-CF3-m}), 4.61 (m, 1H), 3.75 (br s, 1H, OH), 3.42 (m, 1H), 3.25 (d, J = 8.8 Hz, 1H), 2.35 (d, J = 10.4 Hz, 1H), 1.97-1.75 (m, 6H, CH₂), 1.53-1.32 (m, 2H, CH₂). ¹³C-NMR (100 MHz, CDCl₃): δ 159.3, 144.9, 142.0, 133.6, 125.6, 125.5, 125.3, 125.2, 124.5, 122.9, 122.4, 122.2, 121.6, 62.1, 60.7 (CH), 34.2, 32.6 (CH₂), 25.5, 24.6 (CH₂).

(R,R)-**4.** ¹H-NMR (400 MHz, CDCl₃): δ 7.88 (s, 2H, CH_{Ar}), 6.68-6.66 (m, 2H, CH_{Ar}), 7.25 – 7.13 (m, 16H, CH_{Ar}), 6.37 (s, 2H, CH). ¹³C-NMR (100 MHz, CDCl₃): δ 143.5 (C_{Ar}), 140.1 (CH_{imidazole}), 135.4, 133.1 (C_{Ar}), 129.1, 127.7, 123.6, 122.8, 120.7, 109.5 (CH_{Ar}), 62.5 (CH).

Figure S1. The 1 H NMR spectrum of (R,R)-**2b** in CDCl $_{3}$ at 20 $^{\circ}$ C

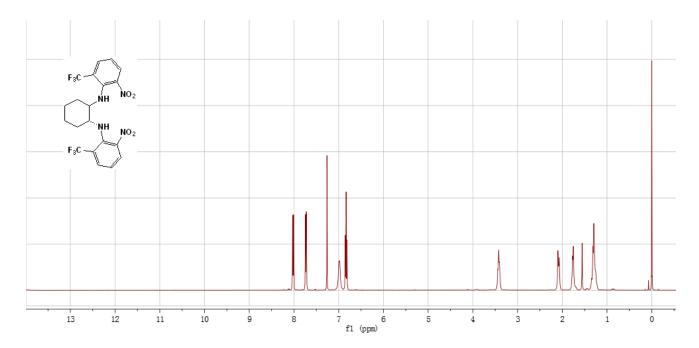
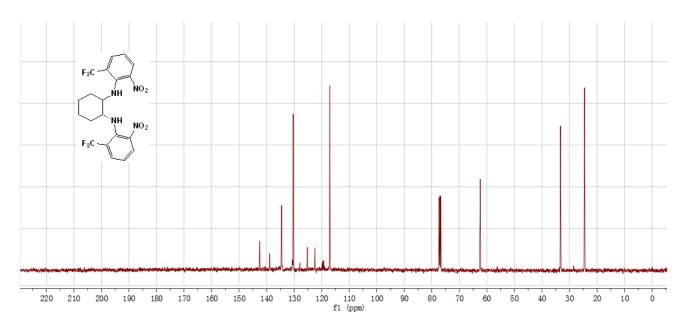
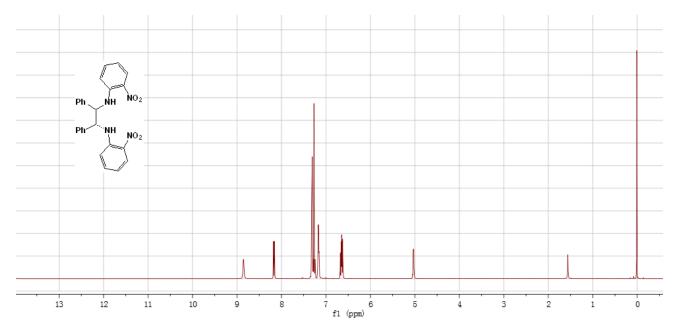
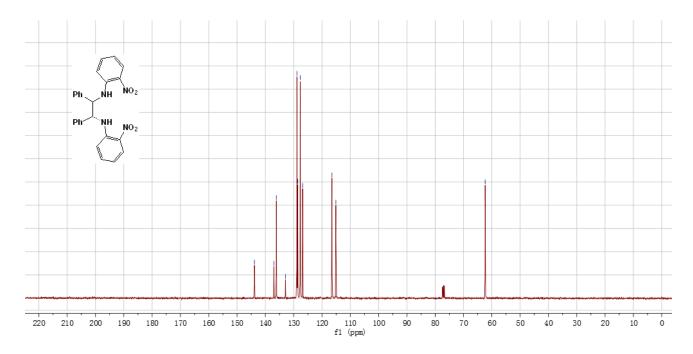
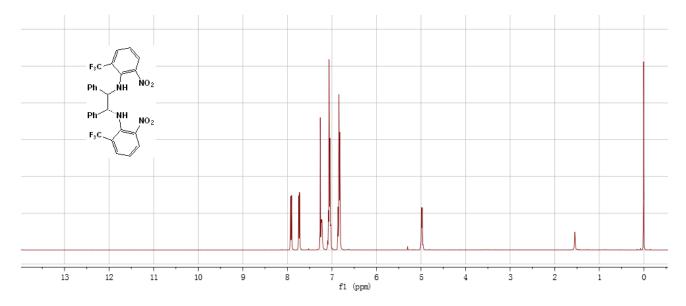

Figure S2. The 13 C NMR spectrum of (*R*,*R*)-2b in CDCl₃ at 20 $^{\circ}$ C

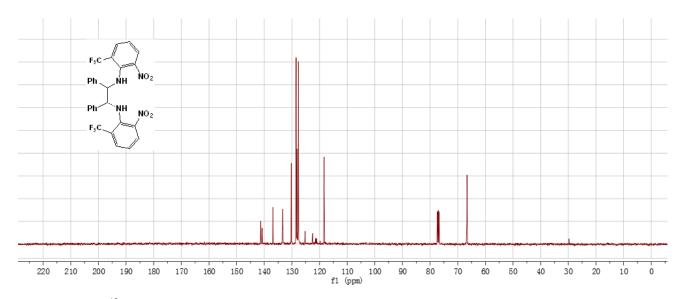
Figure S3. The 1 H NMR spectrum of (R,R)-**2c** in CDCl₃ at 20 $^{\circ}$ C

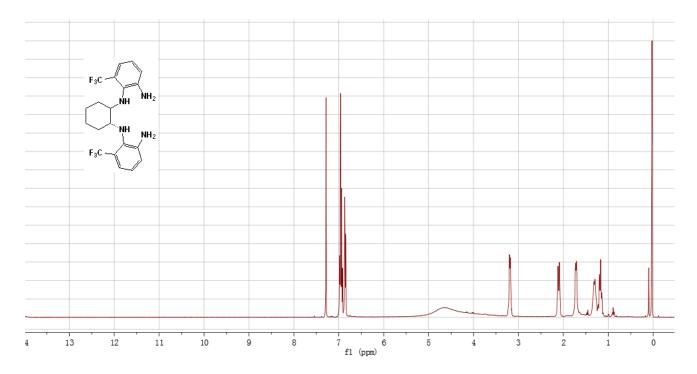
Figure S4. The 13 C NMR spectrum of (*R,R*)-**2c** in CDCl₃ at 20 $^{\circ}$ C

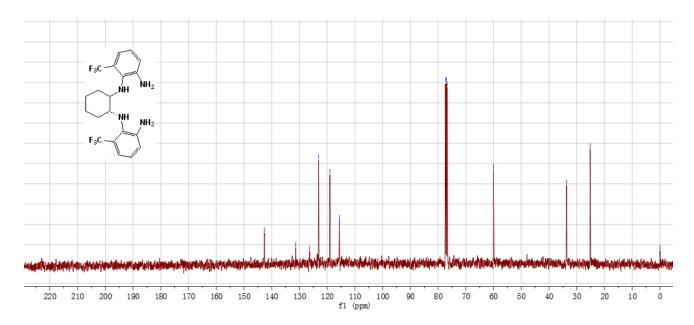
Figure S5. The 1 H NMR spectrum of (R,R)-2d in CDCl $_{3}$ at 20 $^{\circ}$ C

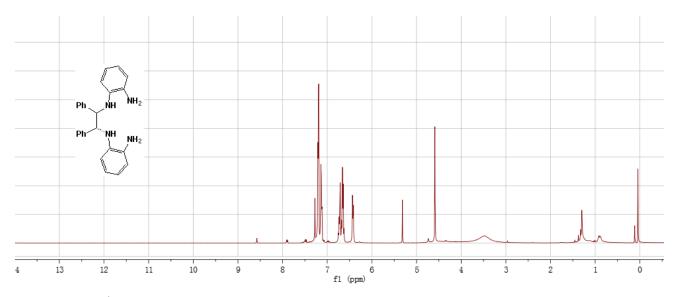





Figure S6. The 13 C NMR spectrum of (*R*,*R*)-2d in CDCl₃ at 20 $^{\circ}$ C


Figure S7. The 1 H NMR spectrum of (R,R)-**5a** in CDCl₃ at 20 $^{\circ}$ C


Figure S8. The 13 C NMR spectrum of (*R,R*)-**5a** in CDCl₃ at 20 $^{\circ}$ C


Figure S9. The 1 H NMR spectrum of (R,R)-**5b** in CDCl₃ at 20 $^{\circ}$ C


Figure S10. The 13 C NMR spectrum of (*R,R*)-**5b** in CDCl₃ at 20 $^{\circ}$ C

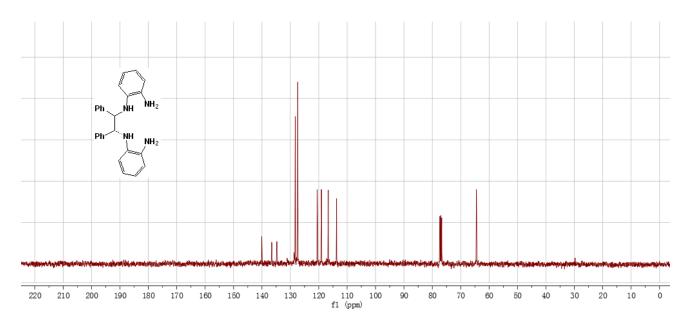

Figure S11. The 1 H NMR spectrum of (*R*,*R*)-**3d** in CDCl₃ at 20 $^{\circ}$ C

Figure S12. The 13 C NMR spectrum of (*R,R*)-3d in CDCl₃ at 20 $^{\circ}$ C

Figure S13. The 1 H NMR spectrum of (R,R)-**6** in CDCl₃ at 20 $^{\circ}$ C

Figure S14. The 13 C NMR spectrum of (*R,R*)-**6** in CDCl₃ at 20 $^{\circ}$ C

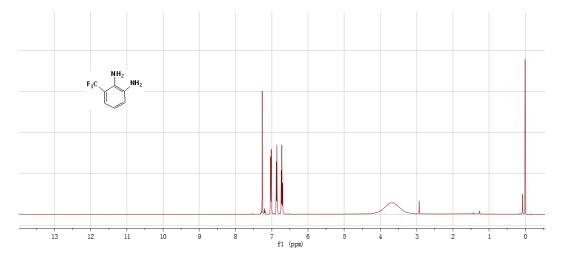


Figure S15. The ^1H NMR spectrum of **7a** in CDCl₃ at 20 $^{\circ}\text{C}$

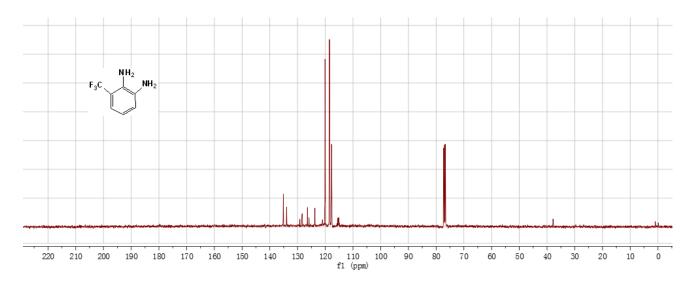


Figure S16. The 13 C NMR spectrum of **7a** in CDCl $_3$ at 20 $^{\circ}$ C

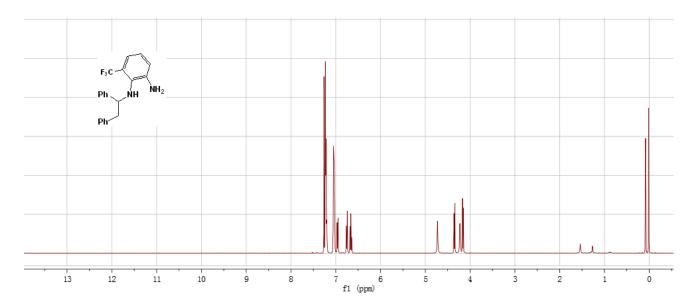
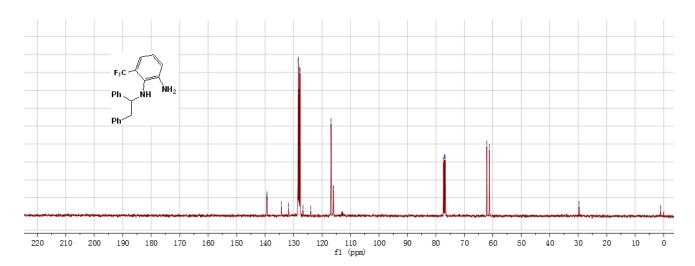



Figure S17. The 1 H NMR spectrum of (R)-7c in CDCl $_3$ at 20 $^{\circ}$ C

Figure S18. The 13 C NMR spectrum of (*R*)-**7c** in CDCl₃ at 20 $^{\circ}$ C

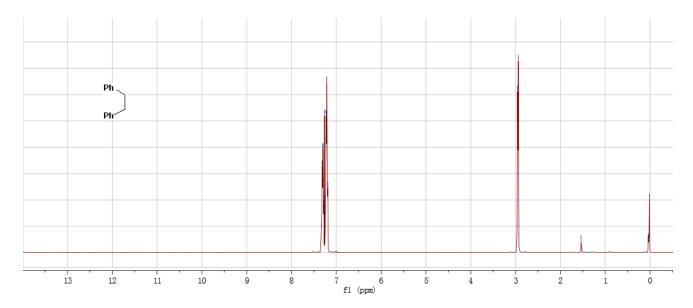
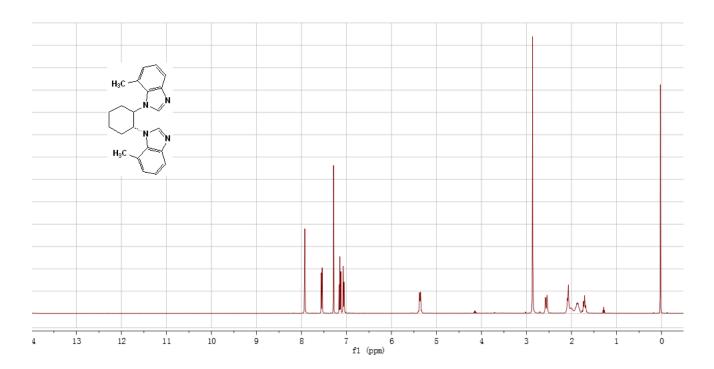
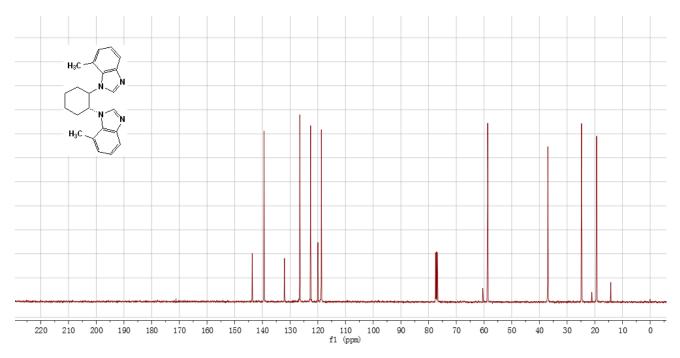




Figure S19. The 1 H NMR spectrum of **7b** in CDCl $_{3}$ at 20 $^{\circ}$ C

Figure S20. The 1 H NMR spectrum of (*R,R*)-**1b** in CDCl₃ at 20 $^{\circ}$ C

Figure S21. The 13 C NMR spectrum of (*R,R*)-**1b** in CDCl₃ at 20 $^{\circ}$ C

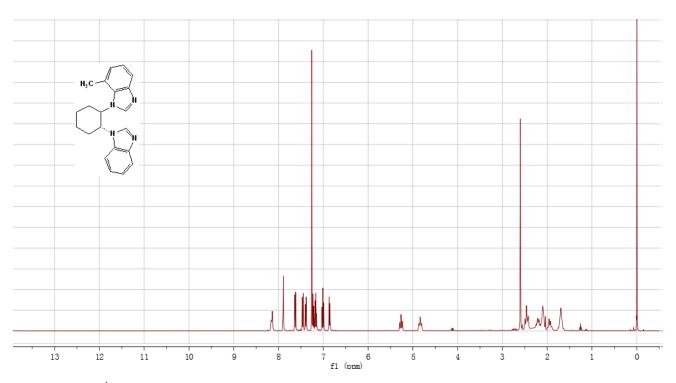
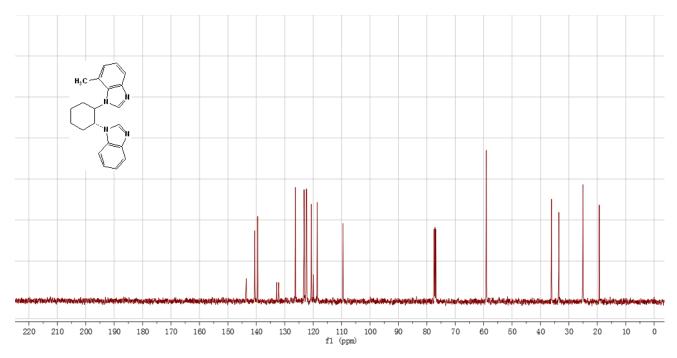
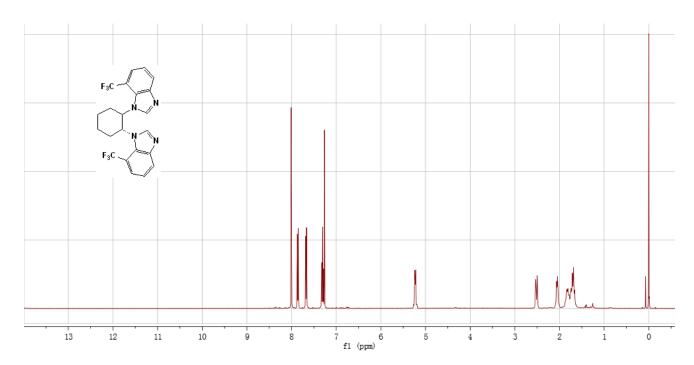
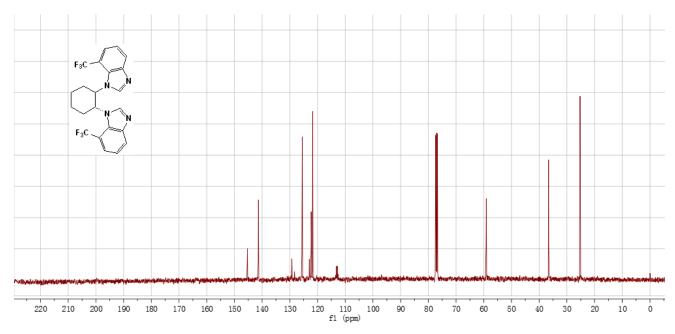


Figure S22. The 1 H NMR spectrum of (*R,R*)-1c in CDCl $_{3}$ at 20 $^{\circ}$ C

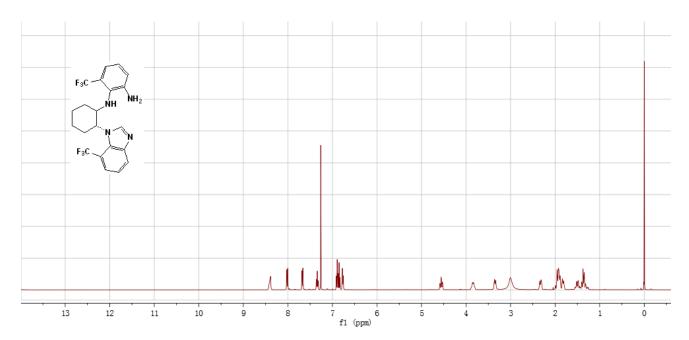

Figure S23. The $^{13}\mathrm{C}$ NMR spectrum of (*R,R*)-1c in CDCl₃ at 20 $^{\circ}\mathrm{C}$

Figure S24. The 1 H NMR spectrum of (*R,R*)-**1d** in CDCl $_3$ at 20 $^{\circ}$ C

Figure S25. The 13 C NMR spectrum of (*R,R*)-**1d** in CDCl₃ at 20 $^{\circ}$ C

Figure S26. The 1 H NMR spectrum of (R,R)- $\mathbf{1d'}$ in CDCl $_3$ at 20 $^{\circ}$ C

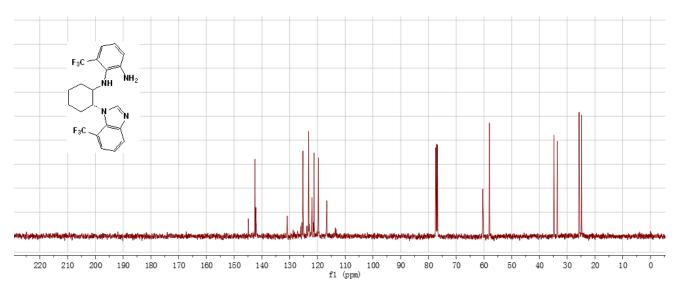
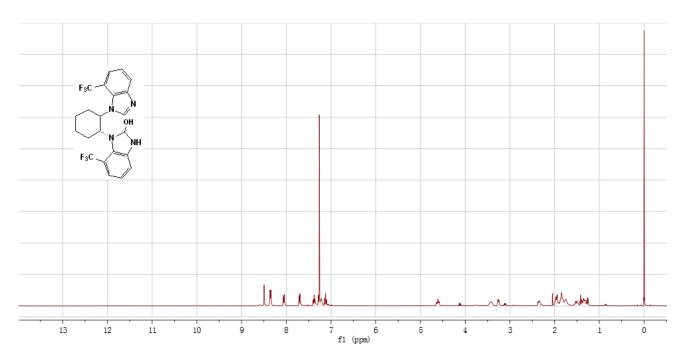
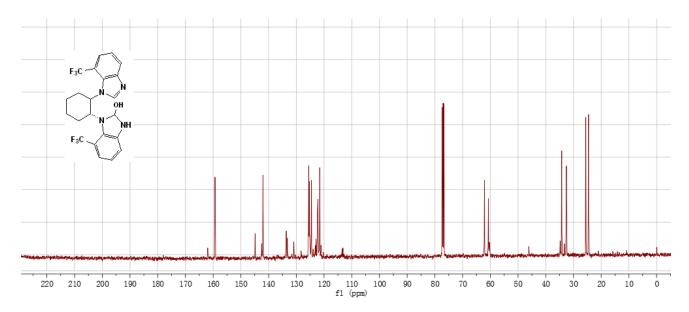
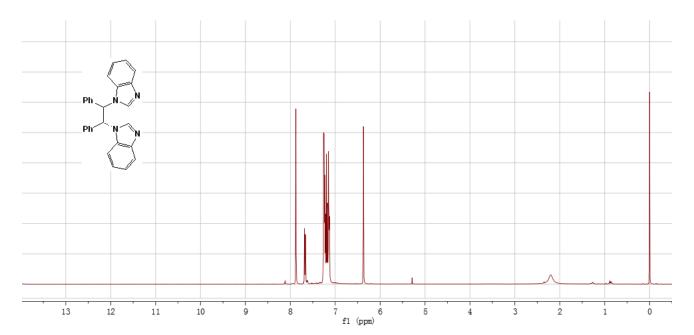
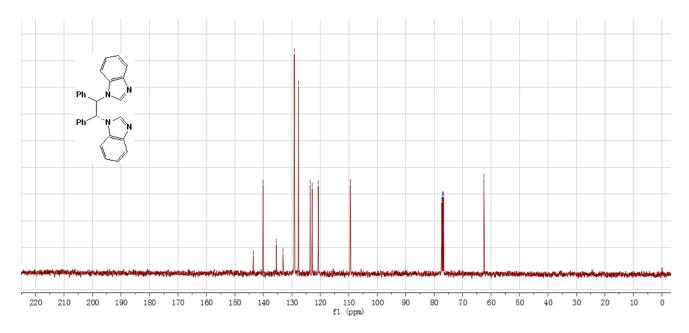



Figure S27. The 13 C NMR spectrum of (R,R)-1d' in CDCl₃ at 20 $^{\circ}$ C

Figure S28. The 1 H NMR spectrum of (*R,R*)-1d" in CDCl₃ at 20 $^{\circ}$ C

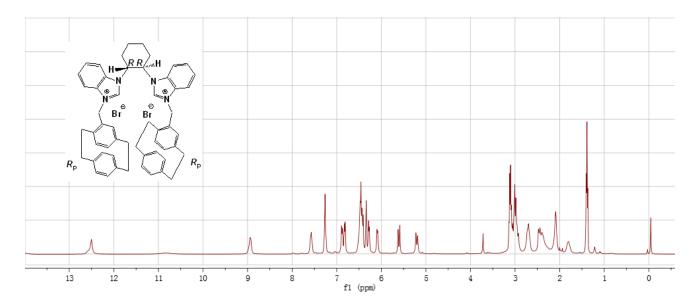
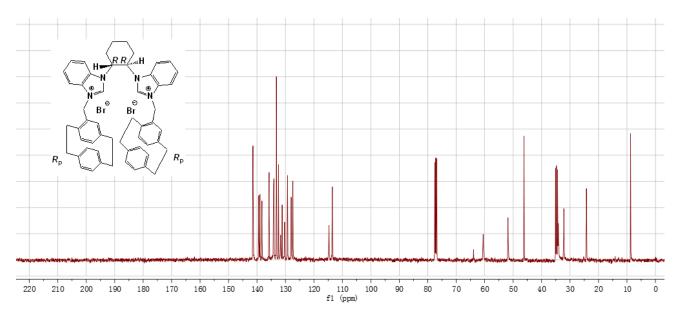
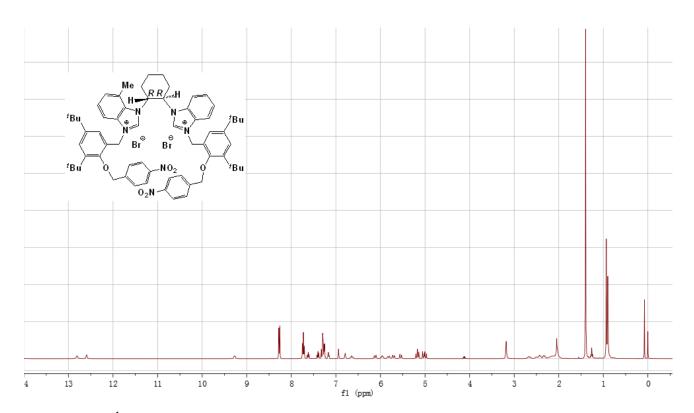
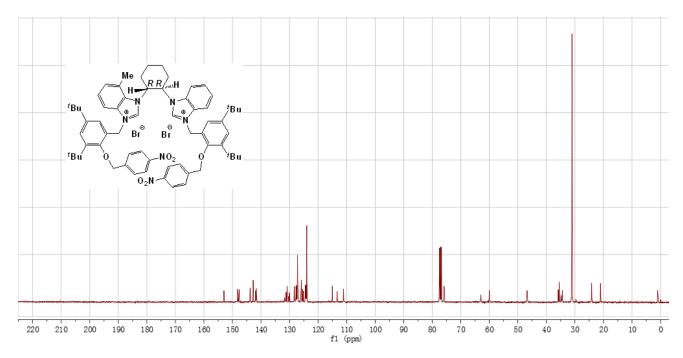

Figure S29. The 13 C NMR spectrum of (R,R)-1d $^{\prime\prime}$ in CDCl $_3$ at 20 $^{\circ}$ C

Figure S30. The ^1H NMR spectrum of (*R,R*)-**4** in CDCl₃ at 20 $^{\circ}\text{C}$

Figure S31. The 13 C NMR spectrum of (*R,R*)-**4** in CDCl₃ at 20 $^{\circ}$ C

Figure S32. The 1 H NMR spectrum of (R,R,R,P)-**11** in CDCl₃ at 20 $^{\circ}$ C

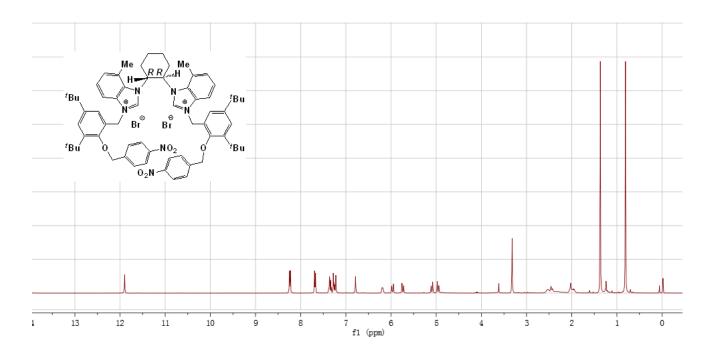

Figure S33. The 13 C NMR spectrum of (R,R,R,P,P)-11 in CDCl $_3$ at 20 $^{\circ}$ C

Figure S34. The 1 H NMR spectrum of (R,R)-12 in CDCl $_3$ at 20 $^{\circ}$ C

Figure S35. The $^{13}\mathrm{C}$ NMR spectrum of (*R,R*)-12 in CDCl₃ at 20 $^{\circ}\mathrm{C}$

Figure S36. The 1 H NMR spectrum of (R,R)-13 in CDCl $_3$ at 20 $^{\circ}$ C

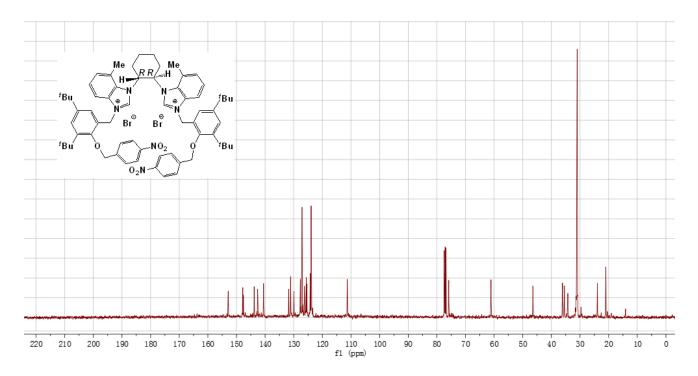
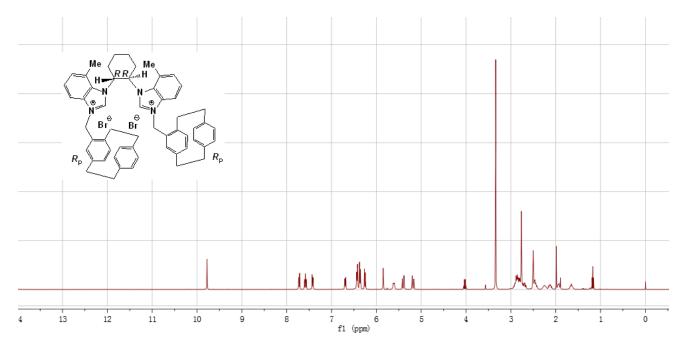
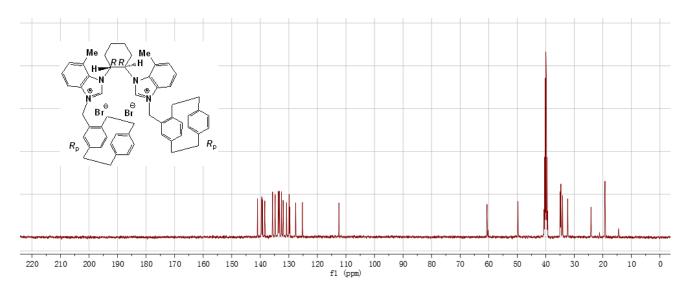
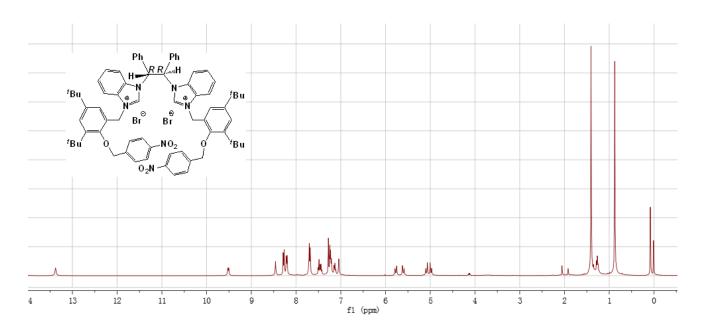
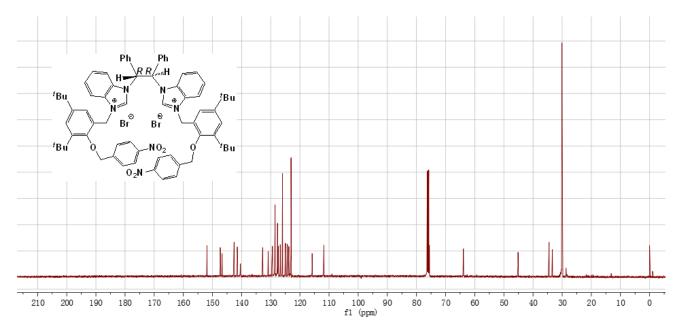



Figure S37. The 13 C NMR spectrum of (R,R)-13 in CDCl $_3$ at 20 $^{\circ}$ C

Figure S38. The 1 H NMR spectrum of (R,R,R_{p},R_{p}) -**14** in $(CD_{3})_{2}SO$ at 20 $^{\circ}C$

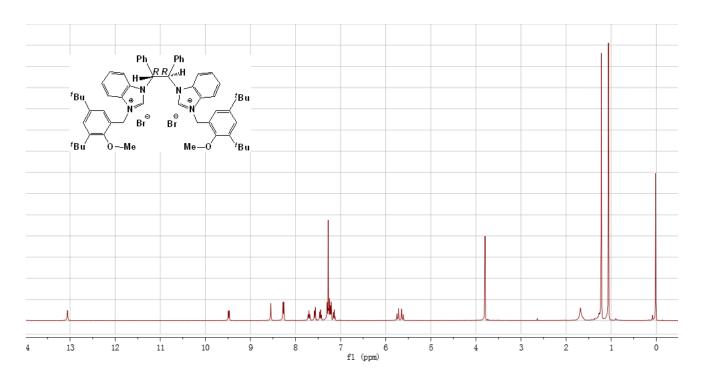

Figure S39. The 13 C NMR spectrum of (R,R,R,P)-14 in (CD_3) $_2$ SO at 20 $^{\circ}$ C

Figure S40. The 1 H NMR spectrum of (*R,R*)-**15** in CDCl₃ at 20 $^{\circ}$ C

Figure S41. The 13 C NMR spectrum of (*R,R*)-**15** in CDCl₃ at 20 $^{\circ}$ C

Figure S42. The 1 H NMR spectrum of (R,R)-**16** in CDCl₃ at 20 $^{\circ}$ C

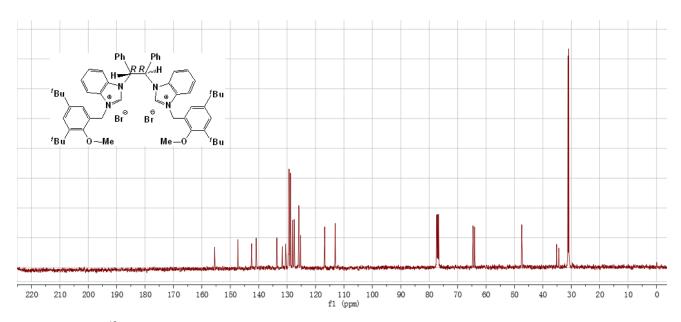
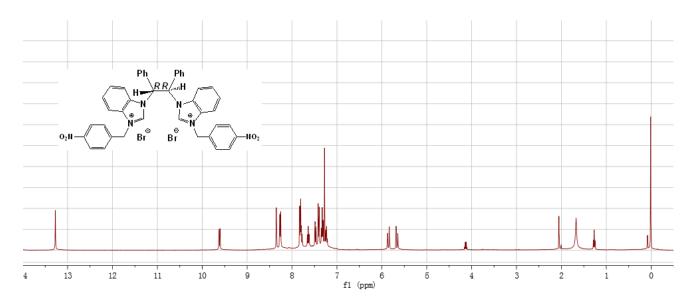



Figure S43. The 13 C NMR spectrum of (R,R)-16 in CDCl $_3$ at 20 $^{\circ}$ C

Figure S44. The 1 H NMR spectrum of (R,R)-17 in CDCl $_3$ at 20 $^{\circ}$ C

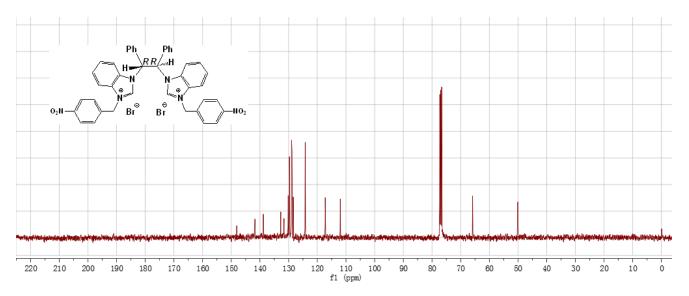
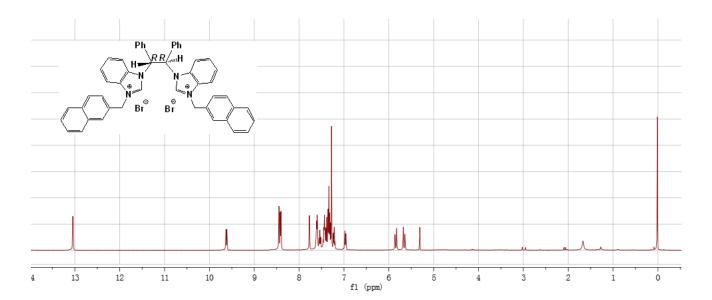
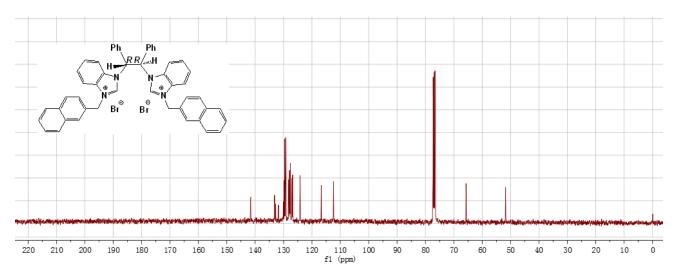
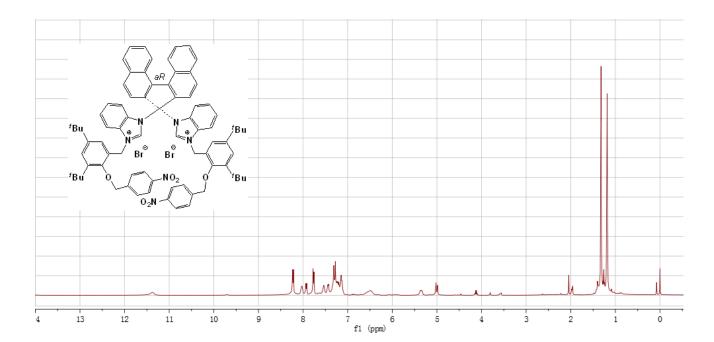
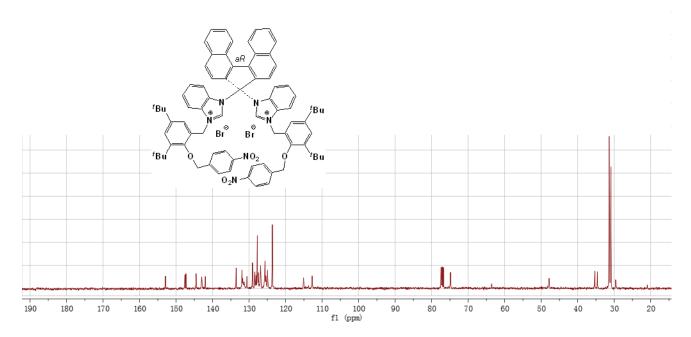
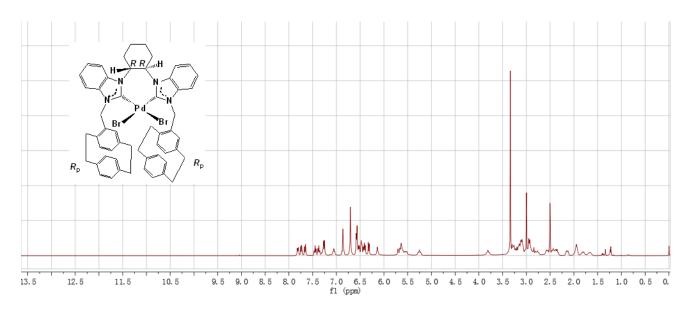



Figure S45. The 13 C NMR spectrum of (R,R)-17 in CDCl $_3$ at 20 $^{\circ}$ C

Figure S46. The 1 H NMR spectrum of (R,R)-18 in CDCl $_3$ at 20 $^{\circ}$ C


Figure S47. The 13 C NMR spectrum of (R,R)-18 in CDCl $_3$ at 20 $^{\circ}$ C

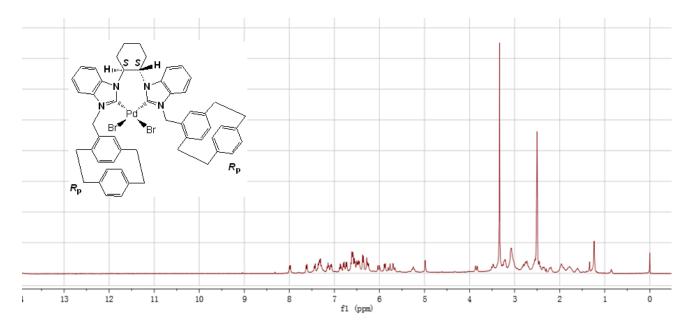

Figure S48. The 1 H NMR spectrum of (aR)-19 in CDCl₃ at 20 $^{\circ}$ C

Figure S49. The 13 C NMR spectrum of (aR)-19 in CDCl $_3$ at 20 $^{\circ}$ C

Figure S50. The 1 H NMR spectrum of (R,R,R,P,P)-**21** in (CD_{3})₂SO at 20 $^{\circ}C$

Figure S51. The 1 H NMR spectrum of (R,R,R,P,P)-**21** in (CD_{3}) $_{2}$ SO at 20 $^{\circ}$ C

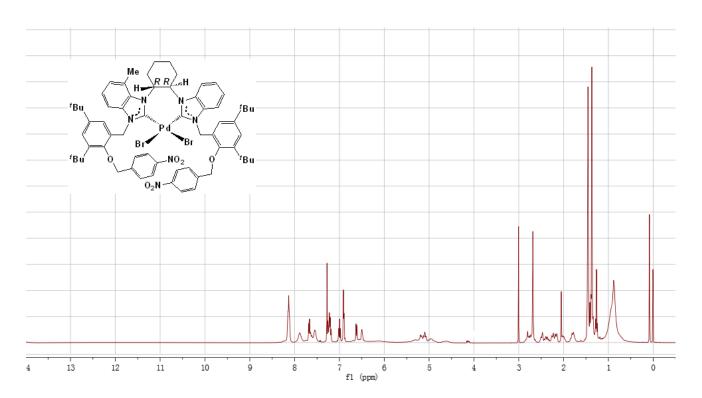


Figure S52. The 1 H NMR spectrum of (R,R)-22 in CDCl $_3$ at 20 $^\circ$ C

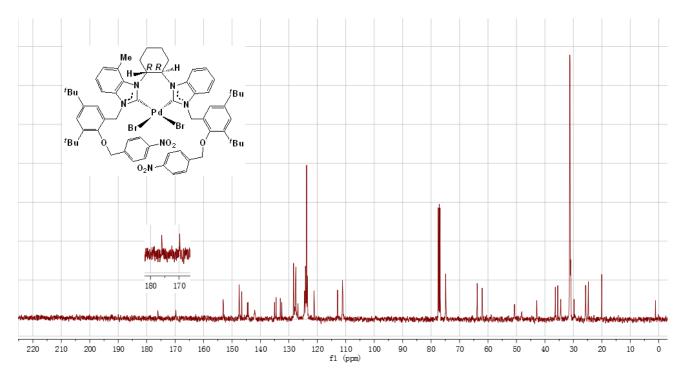
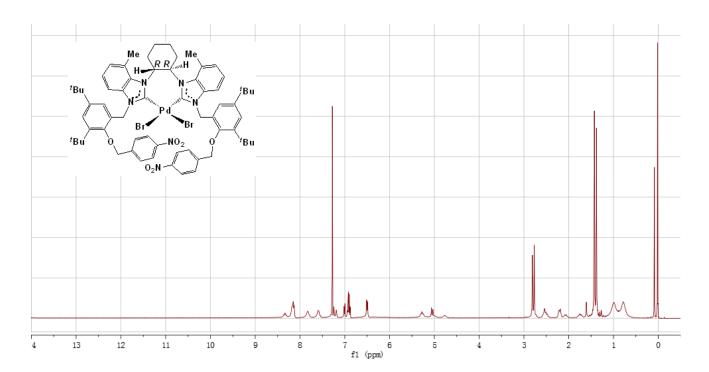
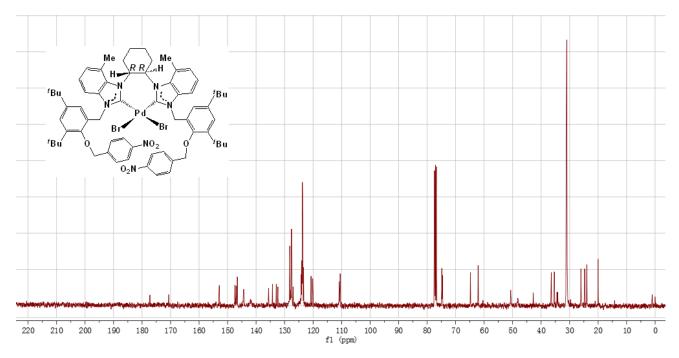
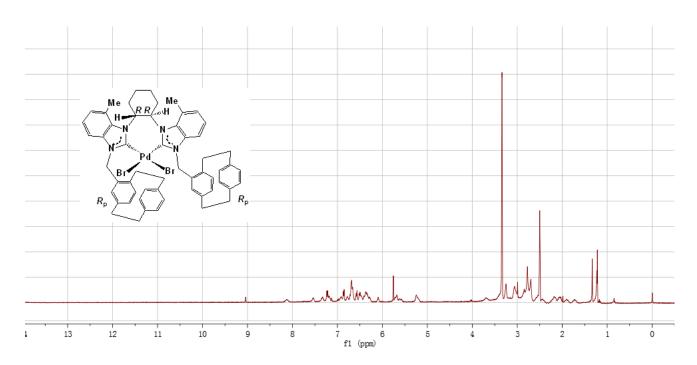
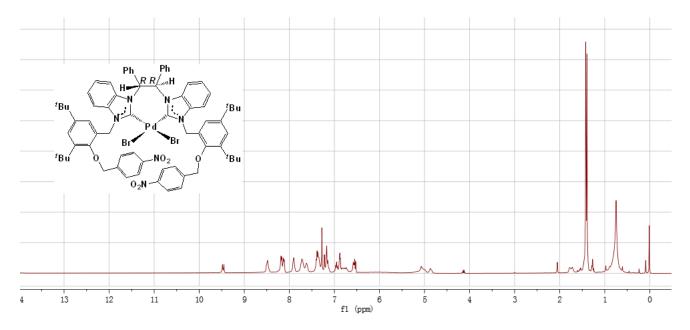
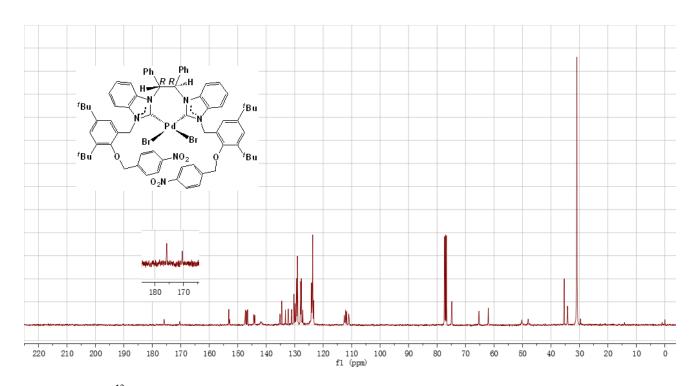



Figure S53. The 13 C NMR spectrum of (R,R)-22 in CDCl $_3$ at 20 $^{\circ}$ C

Figure S54. The 1 H NMR spectrum of (*R,R*)-23 in CDCl $_3$ at 20 $^{\circ}$ C


Figure S55. The $^{13}\mathrm{C}$ NMR spectrum of (*R,R*)-23 in CDCl₃ at 20 $^{\circ}\mathrm{C}$

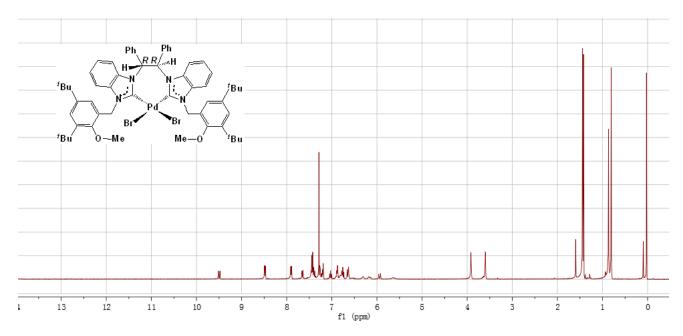

Figure S56. The 1 H NMR spectrum of (R,R,R_{p},R_{p}) -24 in $(CD_{3})_{2}$ SO at 20 $^{\circ}$ C

Figure S57. The 1 H NMR spectrum of (R,R,R,P)-25 in CDCl $_{3}$ at 20 $^{\circ}$ C

Figure S58. The 13 C NMR spectrum of (*R,R*)-**25** in CDCl₃ at 20 $^{\circ}$ C

Figure S59. The 1 H NMR spectrum of (*R,R*)-**26** in CDCl₃ at 20 $^{\circ}$ C

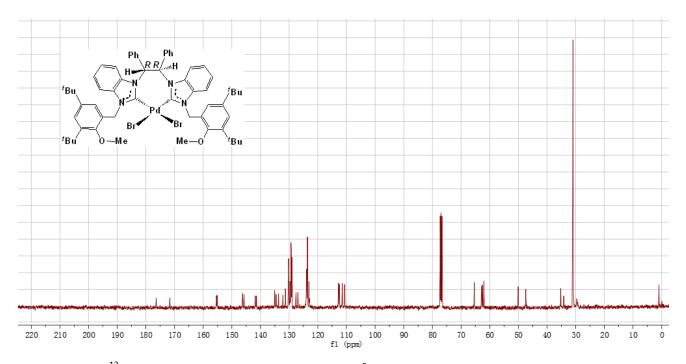
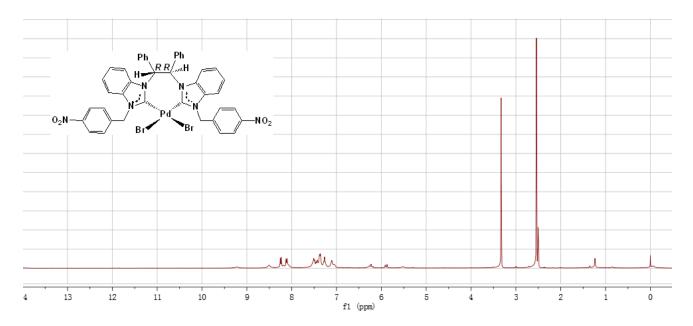
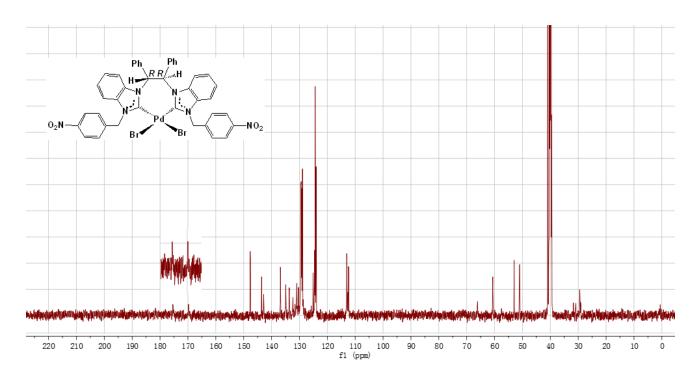
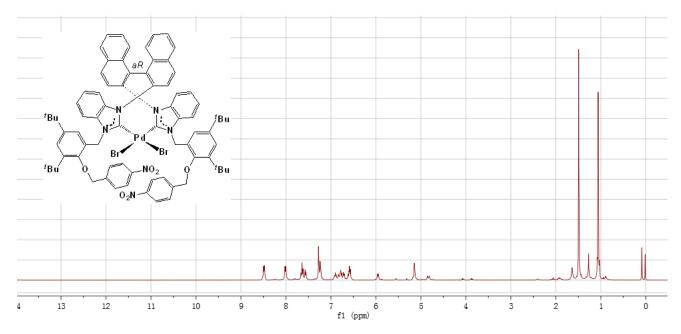
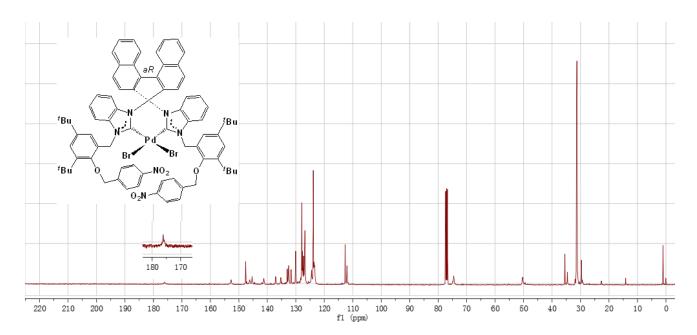
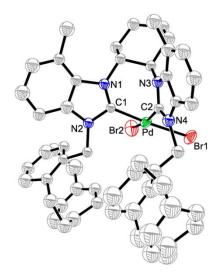



Figure S60. The 13 C NMR spectrum of (R,R)-26 in CDCl $_3$ at 20 $^{\circ}$ C

Figure S61. The 1 H NMR spectrum of (R,R)-27 in (CD₃) $_{2}$ SO at 20 $^{\circ}$ C


Figure S62. The 13 C NMR spectrum of (R,R)-27 in (CD_3) $_2$ SO at 20 $^{\circ}$ C

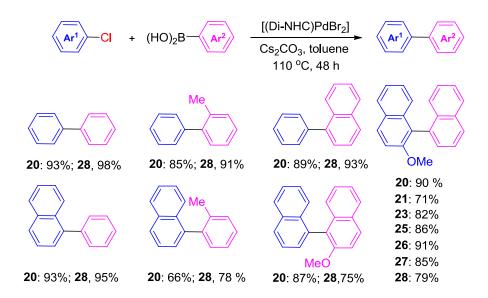

Figure S63. The 1 H NMR spectrum of (aR)-28 in CDCl $_{3}$ at 20 $^{\circ}$ C

Figure S64. The 13 C NMR spectrum of (aR)-28 in CDCl₃ at 20 $^{\circ}$ C

Figure S65. Molecular structure of (R,R,R_p,R_p) -**24** with ellipsoids drawn at the 50% probability level. All hydrogen atoms and *tert*-butyl groups are omitted for clarity. Selected bond distances (Å) and bond angles (deg): Pd–C(1) = 1.97(2), Pd–C(2) = 1.99(2), Pd–Br(2) = 2.448(4), Pd–Br(1) = 2.452(4), C(1)–Pd–C(2) = 85.8(10) C(2)–Pd–Br(1) = 90.8(7), C(1)–Pd–Br(2) = 90.2(7), Br(1)–Pd–Br(2) = 92.66(14), C(1)–Pd–Br(1) = 168.2(6), C(2)–Pd–Br(2) = 175.5(7).

Figure S66. Cross Coupling Reactions of Aryl Chlorides and Boronic Acids. Conditions: Aryl chlorides (0.5 mmol), boronic (0.75 mmol), catalyst [Pd] (3 mol %), Cs₂CO₃ (1.2 mmol), 110 °C for 24 h. The reaction condition has not been optimized. Isolated yields are given after by chromatography on silica gel, as an average of two runs.

Table S1. Crystal data and structure refinement for complex (R,R,R_{D},R_{D}) -24

Identification code a50928b

Empirical formula C20 H20 Br2 N4 Pd

Formula weight 582.62
Temperature 293(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic

Space group P 21

Unit cell dimensions a = 10.948(7) Å $\alpha = 90^{\circ}$.

b = 25.212(15) Å β = 104.246(8)°.

c = 20.031(12) Å γ = 90°.

Volume 5359(6) Å³

Z 8

Density (calculated) 1.444 Mg/m³

Absorption coefficient 3.684 mm⁻¹

F(000) 2272

Crystal size $0.540 \times 0.060 \times 0.060 \text{ mm}^3$

Theta range for data collection 1.324 to 25.099°.

Index ranges -12<=h<=13, -30<=k<=21, -23<=l<=22

Reflections collected 23100

Independent reflections 12266 [R(int) = 0.1035]

Completeness to theta = 25.242° 96.1 %
Absorption correction None

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 12266 / 1 / 619

Goodness-of-fit on F² 0.994

Final R indices [I>2sigma(I)] R1 = 0.1072, wR2 = 0.2664 R indices (all data) R1 = 0.2039, wR2 = 0.3261

Absolute structure parameter 0.14(2) Extinction coefficient n/a

Largest diff. peak and hole 1.118 and -1.178 e.Å-3