Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Pd

Supporting Information for

Novel Polyazamacrocyclic Receptor Decorated Core-shell Superparamagnetic Microspheres for Selective Binding and Magnetic Enrichment of Palladium: Synthesis, Adsorptive Behavior and Coordination Mechanism

Fengcheng Wu^a, Gang Ye^{a,b,*}, Rong Yi^a, Taoxiang Sun^a, Chao Xu^{a,b} and Jing Chen^{a,b,*}

^a Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.

^b Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China^{*}Corresponding author, e-mail: yegang@mail.tsinghua.edu.cn; jingxia@tsinghua.edu.cn.

Contents

Experimental	S-2	
Figure S1 Zeta-potential curve of Fe ₃ O ₄ @SiO ₂ @DOTA as a function of pH	S-3	
Figure S2 C 1s high resolution spectra of APTES-modified Fe ₃ O ₄ @SiO ₂	S-4	
Figure S3 FT-IR spectra of DOTA compound, Fe ₃ O ₄ @SiO ₂ @DOTA and Fe ₃ O ₄ @SiO ₂ @DOTA-Pd		
	S-5	
Table S1 Pore structure parameters and specific surface area of $Fe_3O_4@SiO_2$	S-6	
Table S2 Comparison of Pd(II) adsorption ability of Fe ₃ O ₄ @SiO ₂ @DOTA with other sorbents	S-7	
Table S3 Elution of Pd(II) loaded on the Fe ₃ O ₄ @SiO ₂ @DOTA by different eluents	S-8	
Table S4 Composition of APTES-modified Fe ₃ O ₄ @SiO ₂ , Fe ₃ O ₄ @SiO ₂ @DOTA, and Fe ₃ O ₄ @	SiO ₂ @DOTA-	
by VDS	5 0	
UY AFS	3-7	
References	S-10	

Experimental

Sample preparation for XPS survey and FT-IR Spectrophotometry

30 mg Fe₃O₄@SiO₂@DOTA microspheres were dispersed in 1.0 mol/L HNO₃ solution containing 1.0 g/L Pd(II) in a 25 °C constant temperature oscillator. After shaking for 24 h to reach the equilibrium, the resulting Fe₃O₄@SiO₂@DOTA-Pd microspheres were separated and rinsed with water and ethanol, respectively, followed by drying at 45 °C under vacuum for 12 h.

Figure S1. Zeta-potential curve of Fe $_3O_4@SiO_2@DOTA$ as a function of pH

Figure S2. C 1s high resolution spectra of APTES-modified Fe₃O₄@SiO₂

Figure S3. FT-IR spectra of DOTA ligand, Fe₃O₄@SiO₂@DOTA and Fe₃O₄@SiO₂@DOTA-Pd

Sample	BET surface area (m ² /g)	Pore volume (cm ³ /g)	Pore size (nm)
Fe ₃ O ₄ @SiO ₂	34.8	0.039	2.5

Table S1 Pore structure parameters and specific surface area of $Fe_3O_4@SiO_2$ microspheres

Sorbents	Experimental conditions	$q_{\rm max}(\mu { m mol/g})$	Ref.	
Gallic acid resin	T=293 K, 0.01 mol/L HNO ₃	81.9	1	
Anthracite LKAU-4	T=298 K, pH=1.5 HCl	9.3	2	
Sulfur-impregnated CMK-3/S	T=298 K, 1.0 mol/L HCl	900.0	3	
Crown ether decorated silica particles	T=298 K, 1.0 mol/L HNO ₃	771.3	4	
Calixcrown ether decorated silica particles	T=298 K, 1.0 mol/L HNO ₃	1510.1	5	
Fe ₃ O ₄ @SiO ₂ @DOTA	T=298 K,1.0 mol/L HNO ₃	105.3	This work	

Table S2. Comparison of Pd(II) adsorption ability of Fe₃O₄@SiO₂@DOTA with other sorbents

Eluents	Recovery rate of Pd (II) (%) ^{a,b}
H ₂ O	0.5 ± 0.3
Acetic acid	1.2 ± 0.6
0.1 mol/L HCl	2.3 ± 0.5
Oxalic acid	4.6 ± 0.3
1 mol/L HNO ₃	5.1 ± 0.6
3 mol/L HNO ₃	6.4 ± 0.8
5% thiourea	83.2 ± 0.6
1% thiourea + 0.5 mol/L HNO ₃	93.2 ± 0.9

Table S3. Elution of Pd(II) loaded on the Fe₃O₄@SiO₂@DOTA by different eluents

^a Adsorption condition:[Pd]= 50 mg/L, [HNO₃]= 1.0 mol/L, m/v=0.01 g/mL, contact time=15 h, T=298 K

^b Elution condition: m/v= 0.01 g/mL, contact time=15 h, T=298 K

			XPS analysis (wt.	%)	
Samples	С	Ν	0	Pd	
	APTES-modified Fe ₃ O ₄ @SiO ₂	35.39	9.05	55.36	Null
	Fe ₃ O ₄ @SiO ₂ @DOTA	41.15	14.04	44.81	Null
	Fe ₃ O ₄ @SiO ₂ @DOTA-Pd	43.15	12.38	43.09	1.38

References

- 1. M. Can, E. Bulut, and M. Ozacar, Ind. Eng. Chem. Res., 2012, 51, 6052-6053.
- O. N. Kononova, N. G. Goryaeva, N. B. Dostovalova, S. V. Kachin, and A. G. Kholmogorov, *Solid. Fuel. Chem.*, 2007, 41, 252-255.
- 3. P.R. Zalupski, R. McDowell, and G. Dutech, Solvent. Extr. Ion. Exc., 2014, 32, 737-748.
- 4. F. F. Bai, G. Ye, G. J. Chen, J. C. Wei, J. C. Wang and J. Chen, Sep. Purif. Technol., 2013, 106, 38-46.
- 5. Y. X. Leng, J. Xu, J. C. Wei and G. Ye, Chem. Eng. J., 2013, 232, 319-326.