Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI)

Electrochemical measurements

For activated carbon electrochemical measurements, the working electrode was prepared by mixing the activated carbon, acetylene black and PTFE (polytetrafluoroethylene) in a weight ratio of 80: 15: 5. The slurry was coated on a piece of Ni foam of about 1 cm⁻² and dried at room temperature for 24 h. Then the Ni foam was pressed to a thin foil at a pressure of 5.0 MPa. The typical mass load of the electrode material was 5.0 mg. Electrochemical measurements were performed with a Arbin-BT2000 electrochemical workstation in an aqueous KOH (3.0 M) electrolyte with a three-electrode cell where a Pt foil serves as the counter electrode and a Ag/AgCl electrode as the reference electrode.

The specific capacitance is calculated by the following equation:

$$C = \frac{I\Delta t}{m\Delta V}$$

Where *I* is the charge-discharge current, Δt is the discharge time, ΔV is the voltage range and *m* is the mass of the active material.

Fig. S1 (a) N₂ adsorption-desorption isotherms of the activated carbon; (b) Corresponding pore volume distribution (dV dr⁻¹) against pore diameter curves of the activated carbon; (c) Galvanostatic charge-discharge curves at different current densities for activated carbon; (d) Specific capacitances at controlled current densities for activated carbon.

Fig. S2 Low-magnification FESEM image of Ni-Mn precursor.

Fig. S3 FESEM images of the Ni-Mn precursors prepared under different amounts of Ni(NO₃)₂· $6H_2O$: (a) without adding Ni(NO₃)₂· $6H_2O$; (b) 0.145 g.

Fig. S4 FESEM images of the as-prepared mesoporous hybrid NiO_x -MnO_x (P0) nanoprisms.

Fig. S5 HRTEM image of the as-prepared mesoporous hybrid NiO_x -MnO_x (PO) nanoprisms.

Fig. S6 (a) FESEM image and EDX-elemental mapping images (b-d) of the mesoporous hybrid NiO_x -MnO_x (PO) nanoprisms shown in (a).

Fig. S7 EDX spectrum of the mesoporous hybrid NiO_x -MnO_x (P0) nanoprisms.

Fig. S8 SEM images of the as-prepared Ni-Mn precursors under different amounts of Mn(CH₃COO)₂: (a, b) without adding Mn(CH₃COO)₂; (e, f) 0.05 g; (i, j) 0.25 g and (m, n) 0.30 g, SEM images of the Ni-Mn precursors after calcinations: (c, d) P1; (g, h) P2; (k, l) P3 and (o, h) P4.

Fig. S9 XRD patterns of the P4 sample.

Fig. S10 Cyclic voltammetry (CV) and charge-discharge (CD) curves at different current densities for different samples: (a, b) P1; (c, d) P2 and (e, f) P3.

Fig. S11 Electrochemical impedance spectra of different nanostructured electrodes materials at room temperature in 3.0 M KOH solutions, a) 0-75 Ohm; b) 0-5 Ohm.

Fig. S12 Schematic diagrams of the flexible solid-state NiOx-MnOx //activated carbons hybrid supercapacitors device.

Fig. S13 Specific capacitance over 500 cycles under the curvature of 0°, 30°, 60°,90° and 180° at current density of 3.0 mA cm⁻².