Manifestation of helicity in one-dimensional iodobismuthate

Souvik Pandey, Alex P. Andrews and Ajay Venugopal^{*}

Supplementary Information

Experimental Methods

The reactions were performed under ambient conditions. Bi(NO₃)₃(H₂O)₅ and 2,6diisopropylaniline were purchased from Sigma Aldrich and used as received. Elemental analysis was carried out on the vario MICRO cube elemental analyser. The FT-IR spectrum was recorded using KBr pellets in the range of 4000–400 cm^{-1} on a SHIMADZU FT-IR spectrometer. Thermogravimetric analysis (TGA) was performed using a SDT Q600 (Shimadzu) analyser under nitrogen flow and heating rate was maintained at 10 °C per minute. The diffuse reflectance spectra were recorded at room temperature on a computercontrolled Shimadzu UV/Vis/NIR spectrophotometer. A BaSO₄ plate was used as reference, on which the finely ground powders (5 % (w/w)) of the samples were coated. Optical band gaps were calculated from UV-Vis diffuse reflectance spectra using the Kubelka-Munk function where E = Energy, α = absorption coefficient, h = Planck's constant, v = frequency.¹ Single-crystal X-ray crystallography for structural analysis was performed with a Bruker Kappa Apex-II CCD diffractometer at 296 K, 85 K and MoK α irradiation (λ = 0.71073 Å). The structures were solved by direct methods with SIR-92,² SHELXS-97, or SHELX-2013.³ Powder XRD measurement was performed on a X'pert PRO (PANalytics) powder diffractometer equipped with Cu Kα radiation (1.540598 Å). Piezoelectric measurement was performed on D₃₃ meter (APC International, part no. 902030). 1 mm thick pellets of compound 1 were used for the measurements. The cif files of the single crystal XRD measurements can be obtained from www.ccdc.cam.ac.uk/data request/cif. CCDC 1468858 (1 at 85K), CCDC 1468859 (1 at 296 K).

Crystal data and structure refinement for 1.

Identification code		1		
Empirical formula		$C_{12}H_{20}BiI_4N$		
Formula weight		894.87		
Temperature	296(2) I	к		
Wavelength	0.71073	3Å		
Crystal system	Orthorh	nombic		
Space group	C222 ₁			
Unit cell dimens	sions	a = 17.3	63(2) Å	α= 90°.
		b = 24.7	′04(3) Å	β= 90°.
		c = 9.89	42(10) Å	γ = 90°.
Volume 4244.0(9) Å ³			
Z 8				
Density (calcula	ted)	2.801 N	1g/m ³	
Absorption coet	fficient	14.117	mm⁻¹	
F(000) 3152				
Crystal size	0.150 x	0.100 x	0.100 mm ³	
Theta range for data collection 2.638 to 25.000°.			00°.	
Index ranges	-18<=h	<=20, -29	9<=k<=26, -11∙	<=l<=11
Reflections collected		9045		
Independent reflections3730 [R(int) = 0.0276]				
Completeness to theta = 2		= 25.242	° 97.6 9	%
Absorption correction		Semi-er	npirical from e	equivalents
Max. and min. t	ransmis	sion	0.333 and 0.2	26
Refinement method		Full-ma	trix least-squa	res on F ²
Data / restraints / paramet		neters	3730 / 5 / 168	3
Goodness-of-fit on F2		0.890		
Final R indices [I>2o(I)]		R1 = 0.0)286, wR2 = 0.	0570
R indices (all data) R1 :)440, wR2 = 0.	0618
Absolute structure para		meter	0.057(7)	
Largest diff. peak and h		ole	1.347 and -0.0	509 e.Å⁻³

Table T1: Bond lengths [Å] and angles [°] for 1.

C(1)-C(2)	1.328(16)
C(1)-C(2)#1	1.328(16)

C(1)-N(1)	1.51(2)
C(2)-C(3)	1.46(2)
C(2)-C(5)	1.606(17)
C(3)-C(4)	1.34(2)
C(3)-H(3)	0.9300
C(4)-C(3)#1	1.34(2)
C(4)-H(4)	0.9300
C(5)-C(6)	1.501(12)
C(5)-C(7)	1.51(2)
C(5)-H(5)	0.9800
C(6)-H(6A)	0.9600
C(6)-H(6B)	0.9600
C(6)-H(6C)	0.9600
C(7)-H(7A)	0.9600
C(7)-H(7B)	0.9600
C(7)-H(7C)	0.9600
C(8)-C(9)	1.370(16)
C(8)-C(9)#2	1.370(16)
C(8)-N(2)	1.51(2)
C(9)-C(10)	1.40(2)
C(9)-C(12)	1.632(19)
C(10)-C(11)	1.357(19)
C(10)-H(10)	0.9300
C(11)-C(10)#2	1.357(19)
C(11)-H(11)	0.9300
C(12)-C(13)	1.513(12)
C(12)-C(14)	1.47(2)
C(12)-H(12)	0.9800
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600
C(14)-H(14A)	0.9600
C(14)-H(14B)	0.9600
C(14)-H(14C)	0.9600
N(1)-H(1A)	0.8900
N(1)-H(1B)	0.8900

N(1)-H(1C)	0.8900
N(2)-H(2A)	0.8900
N(2)-H(2B)	0.8900
N(2)-H(2C)	0.8900
I(1)-Bi(3)	3.0674(10)
I(1)-Bi(3)#3	3.3879(10)
I(2)-Bi(3)	2.8822(11)
I(3)-Bi(3)	2.8969(13)
I(4)-Bi(3)	3.0803(9)
I(4)-Bi(3)#4	3.3819(12)
Bi(3)-I(4)#4	3.3819(12)
Bi(3)-I(1)#3	3.3878(10)

C(2)-C(1)-C(2)#1		129.8(19)	
C(2)-C(1)-N(1) 115.1(9)			
C(2)#1-C(1)-N(1)	115.1(9)	
C(1)-C(2)-C(3)	114.0(1	5)	
C(1)-C(2)-C(5)	128.1(1	5)	
C(3)-C(2)-C(5)	118.0(1	5)	
C(4)-C(3)-C(2)	120(2)		
C(4)-C(3)-H(3)	119.9		
C(2)-C(3)-H(3)	119.9		
C(3)-C(4)-C(3)#1	L	122(3)	
C(3)-C(4)-H(4)		119.1	
C(3)#1-C(4)-H(4)	119.1	
C(6)-C(5)-C(7)		113.3(16)	
C(6)-C(5)-C(2)		107.8(13)	
C(7)-C(5)-C(2)		111.0(13)	
C(6)-C(5)-H(5)		108.2	
C(7)-C(5)-H(5)		108.2	
C(2)-C(5)-H(5)		108.2	
C(5)-C(6)-H(6A)		109.5	
C(5)-C(6)-H(6B)		109.5	
H(6A)-C(6)-H(6E	3)	109.5	
C(5)-C(6)-H(6C)		109.5	
H(6A)-C(6)-H(6C)		109.5	

H(6B)-C(6)-H(6C)	109.5
C(5)-C(7)-H(7A)	109.5
C(5)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(5)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(9)-C(8)-C(9)#2	127.5(19)
C(9)-C(8)-N(2)	116.3(10)
C(9)#2-C(8)-N(2)	116.3(10)
C(8)-C(9)-C(10)	114.6(16)
C(8)-C(9)-C(12)	124.6(14)
C(10)-C(9)-C(12)	120.8(14)
C(11)-C(10)-C(9)	120.4(19)
C(11)-C(10)-H(10)	119.8
C(9)-C(10)-H(10)	119.8
C(10)#2-C(11)-C(10)	122(3)
C(10)#2-C(11)-H(11)	118.9
C(10)-C(11)-H(11)	118.9
C(13)-C(12)-C(14)	115.0(18)
C(13)-C(12)-C(9)	102.7(13)
C(14)-C(12)-C(9)	111.2(16)
C(13)-C(12)-H(12)	109.3
C(14)-C(12)-H(12)	109.3
C(9)-C(12)-H(12)	109.3
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(12)-C(14)-H(14A)	109.5
C(12)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(12)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5

H(14B)-C(14)-H(14C)	109.5
C(1)-N(1)-H(1A)	109.5
C(1)-N(1)-H(1B)	109.5
H(1A)-N(1)-H(1B)	109.5
C(1)-N(1)-H(1C)	109.5
H(1A)-N(1)-H(1C)	109.5
H(1B)-N(1)-H(1C)	109.5
C(8)-N(2)-H(2A)	109.5
C(8)-N(2)-H(2B)	109.5
H(2A)-N(2)-H(2B)	109.5
C(8)-N(2)-H(2C)	109.5
H(2A)-N(2)-H(2C)	109.5
H(2B)-N(2)-H(2C)	109.5
Bi(3)-I(1)-Bi(3)#3	90.50(2)
Bi(3)-I(4)-Bi(3)#4	91.43(3)
I(2)-Bi(3)-I(3)	95.44(4)
I(2)-Bi(3)-I(1)	91.22(3)
I(3)-Bi(3)-I(1)	96.44(4)
I(2)-Bi(3)-I(4)	96.65(3)
I(3)-Bi(3)-I(4)	91.04(3)
I(1)-Bi(3)-I(4)	168.59(3)
I(2)-Bi(3)-I(4)#4	84.95(3)
I(3)-Bi(3)-I(4)#4	179.34(3)
I(1)-Bi(3)-I(4)#4	84.08(3)
I(4)-Bi(3)-I(4)#4	88.39(3)
I(2)-Bi(3)-I(1)#3	179.28(3)
I(3)-Bi(3)-I(1)#3	84.07(3)
I(1)-Bi(3)-I(1)#3	89.36(2)
I(4)-Bi(3)-I(1)#3	82.84(3)
I(4)#4-Bi(3)-I(1)#3	95.53(3)

Symmetry transformations used to generate equivalent atoms:

#1 x,-y,-z+1 #2 -x+1,y,-z+1/2 #3 x,-y,-z+2 #4 -x,y,-z+5/2

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)I(1)	0.89	3.35	4.182(9)	157.2
N(1)-H(1B)I(4)#3	0.89	3.07	3.747(13)	133.8
N(1)-H(1C)I(3)#5	0.89	2.98	3.765(2)	147.4
N(1)-H(1C)I(4)#5	0.89	3.24	3.747(13)	118.8
N(2)-H(2B)I(2)#6	0.89	3.01	3.7297(18)	139.5
N(2)-H(2C)I(1)#7	0.89	3.07	3.752(12)	135.0
N(2)-H(2C)I(2)#7	0.89	3.18	3.7297(18)	121.9
N(1)-H(1A)I(1)	0.89	3.35	4.182(9)	157.2
N(1)-H(1B)I(4)#3	0.89	3.07	3.747(13)	133.8
N(1)-H(1C)I(3)#5	0.89	2.98	3.765(2)	147.4
N(1)-H(1C)I(4)#5	0.89	3.24	3.747(13)	118.8
N(2)-H(2B)I(2)#6	0.89	3.01	3.7297(18)	139.5
N(2)-H(2C)I(1)#7	0.89	3.07	3.752(12)	135.0
N(2)-H(2C)I(2)#7	0.89	3.18	3.7297(18)	121.9

Table T2. Hydrogen bonds for 1 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x,-y,-z+1 #2 -x+1,y,-z+1/2 #3 x,-y,-z+2 #4 -x,y,-z+5/2 #5 x,y,z-1 #6 x+1/2,-y+1/2,-z+1 #7 -x+1/2,-y+1/2,z-1/2

Solid state structure and experimental details of 2

Figure S1: molecular structure of compound [2,6-diisopropylanilinium]₄[Bil₆][I] (**2**). Discrete [Bil₆] units have been presented as octahedrons.

Experimental details of compound 2: Compound **2** was obtained by following the same reaction procedure as **1**. An excess of HI (1.8 mmol) was added and the red coloured crystals were obtained from the methanol solution.

Yield 85% (according to bismuth). Elemental analysis calculated for C₄₈H₈₀N₄Bil₇ C 31.84, H 4.45, N 3.09 and found C = 31.46, H = 4.21, N= 3.15. IR analysis: 3062(m), 2960(s), 2872(s), 2507(w), 1562(m), 1467(s), 1342(w), 1012(w), 794(m), 720(w).

Crystal data and structure refinement for 2.

Identification code	2
Empirical formula	$C_{48}H_{80}Bil_7N_4$
Formula weight	1810.44

Temperature 296(2) K 0.71073 Å Wavelength Crystal system Monoclinic Space group C2/c Unit cell dimensions a = 18.372(3) Å α= 90°. b = 18.431(2) Å β= 101.319(9)°. c = 19.530(3) Å $\gamma = 90^{\circ}$. Volume 6484.4(15) Å³ Ζ 4 Density (calculated) 1.854 Mg/m^{3} Absorption coefficient 6.082 mm⁻¹ F(000) 3400 Crystal size 0.150 x 0.150 x 0.100 mm³ Theta range for data collection 2.823 to 25.999°. Index ranges -22<=h<=22, -22<=k<=22, -23<=l<=24 Reflections collected 24638 Independent reflections6234 [R(int) = 0.0489] Completeness to theta = 25.242° 97.8 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.581 and 0.462 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 6234 / 1 / 283 Goodness-of-fit on F² 1.030 Final R indices $[I>2\sigma(I)]$ R1 = 0.0418, wR2 = 0.0864 R indices (all data) R1 = 0.0922, wR2 = 0.1062 Extinction coefficient n/a 1.063 and -1.163 e.Å⁻³ Largest diff. peak and hole

C(1)-C(6)	1.382(10)
C(1)-C(2)	1.386(11)
C(1)-N(1)	1.476(9)
C(2)-C(3)	1.379(11)
C(2)-C(7)	1.524(11)
C(3)-C(4)	1.377(13)
C(3)-H(3)	0.9300
C(4)-C(5)	1.353(13)
C(4)-H(4)	0.9300
C(5)-C(6)	1.394(11)
C(5)-H(5)	0.9300
C(6)-C(10)	1.532(13)
C(7)-C(8)	1.513(12)
C(7)-C(9)	1.539(13)
C(7)-H(7)	0.9800
C(8)-H(8A)	0.9600
C(8)-H(8B)	0.9600
C(8)-H(8C)	0.9600
C(9)-H(9A)	0.9600
C(9)-H(9B)	0.9600
C(9)-H(9C)	0.9600
C(10)-C(12)	1.454(16)
C(10)-C(11)	1.463(15)
C(10)-H(10)	0.9800
C(11)-H(11A)	0.9600
C(11)-H(11B)	0.9600
C(11)-H(11C)	0.9600
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600
C(13)-C(18)	1.366(11)
C(13)-C(14)	1.419(11)
C(13)-N(2)	1.500(9)

Table T3: Bond lengths	[Å] and angles	[°] for 2.
------------------------	----------------	------------

C(14)-C(15)	1.390(12)
C(14)-C(19)	1.493(13)
C(15)-C(16)	1.365(13)
C(15)-H(15)	0.9300
C(16)-C(17)	1.360(12)
C(16)-H(16)	0.9300
C(17)-C(18)	1.371(11)
C(17)-H(17)	0.9300
C(18)-C(22)	1.514(11)
C(19)-C(20)	1.467(17)
C(19)-C(21)	1.550(19)
C(19)-H(19)	0.9800
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
C(21)-H(21A)	0.9600
C(21)-H(21B)	0.9600
C(21)-H(21C)	0.9600
C(22)-C(23)	1.521(13)
C(22)-C(24)	1.531(13)
C(22)-H(22)	0.9800
C(23)-H(23A)	0.9600
C(23)-H(23B)	0.9600
C(23)-H(23C)	0.9600
C(24)-H(24A)	0.9600
C(24)-H(24B)	0.9600
C(24)-H(24C)	0.9600
N(1)-H(1A)	0.8900
N(1)-H(1B)	0.8900
N(1)-H(1C)	0.8900
N(2)-H(2A)	0.8900
N(2)-H(2B)	0.8900
N(2)-H(2C)	0.8900
I(1)-Bi(1)	3.0913(6)
I(2)-Bi(1)	3.0700(6)
I(3)-Bi(1)	3.0798(6)

Bi(1)-I(2)#1	3.0701(6)
Bi(1)-I(3)#1	3.0798(6)
Bi(1)-I(1)#1	3.0913(6)
C(6)-C(1)-C(2)	124.6(7)
C(6)-C(1)-N(1)	117.7(7)
C(2)-C(1)-N(1)	117.6(7)
C(3)-C(2)-C(1)	116.2(8)
C(3)-C(2)-C(7)	120.4(8)
C(1)-C(2)-C(7)	123.4(7)
C(4)-C(3)-C(2)	121.5(9)
C(4)-C(3)-H(3)	119.3	
C(2)-C(3)-H(3)	119.3	
C(5)-C(4)-C(3)	119.9(9)
C(5)-C(4)-H(4)	120.0	
C(3)-C(4)-H(4)	120.0	
C(4)-C(5)-C(6)	122.1(9)
C(4)-C(5)-H(5)	118.9	
C(6)-C(5)-H(5)	118.9	
C(1)-C(6)-C(5)	115.5(8)
C(1)-C(6)-C(10)	122.8(8)
C(5)-C(6)-C(10)	121.6(8)
C(8)-C(7)-C(2)	110.5(7)
C(8)-C(7)-C(9)	111.0(8)
C(2)-C(7)-C(9)	110.6(8)
C(8)-C(7)-H(7)	108.2	
C(2)-C(7)-H(7)	108.2	
C(9)-C(7)-H(7)	108.2	
C(7)-C(8)-H(8A)	109.5	
C(7)-C(8)-H(8B)	109.5	
H(8A)-C(8)-H(8E	3)	109.5
C(7)-C(8)-H(8C)	109.5	
H(8A)-C(8)-H(8C	C)	109.5
H(8B)-C(8)-H(8C)		109.5
C(7)-C(9)-H(9A)	109.5	
С(7)-С(9)-Н(9В)	109.5	

H(9A)-C(9)-H(9B)	109.5
C(7)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(12)-C(10)-C(11)	114.4(13)
C(12)-C(10)-C(6)	112.5(10)
C(11)-C(10)-C(6)	111.8(10)
C(12)-C(10)-H(10)	105.8
C(11)-C(10)-H(10)	105.8
C(6)-C(10)-H(10)	105.8
C(10)-C(11)-H(11A)	109.5
C(10)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(10)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(10)-C(12)-H(12A)	109.5
C(10)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(10)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(18)-C(13)-C(14)	124.5(8)
C(18)-C(13)-N(2)	119.6(7)
C(14)-C(13)-N(2)	115.9(7)
C(15)-C(14)-C(13)	114.4(8)
C(15)-C(14)-C(19)	122.5(8)
C(13)-C(14)-C(19)	123.1(8)
C(16)-C(15)-C(14)	122.5(9)
C(16)-C(15)-H(15)	118.8
C(14)-C(15)-H(15)	118.8
C(17)-C(16)-C(15)	119.6(9)
C(17)-C(16)-H(16)	120.2
C(15)-C(16)-H(16)	120.2
C(16)-C(17)-C(18)	122.5(9)
C(16)-C(17)-H(17)	118.8

C(18)-C(17)-H(17)	118.8
C(13)-C(18)-C(17)	116.6(8)
C(13)-C(18)-C(22)	122.4(8)
C(17)-C(18)-C(22)	120.9(8)
C(20)-C(19)-C(14)	114.3(12)
C(20)-C(19)-C(21)	109.4(13)
C(14)-C(19)-C(21)	109.0(10)
C(20)-C(19)-H(19)	108.0
C(14)-C(19)-H(19)	108.0
C(21)-C(19)-H(19)	108.0
C(19)-C(20)-H(20A)	109.5
C(19)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(19)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(19)-C(21)-H(21A)	109.5
C(19)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(19)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(18)-C(22)-C(23)	109.3(8)
C(18)-C(22)-C(24)	112.8(8)
C(23)-C(22)-C(24)	113.2(9)
C(18)-C(22)-H(22)	107.1
С(23)-С(22)-Н(22)	107.1
С(24)-С(22)-Н(22)	107.1
С(22)-С(23)-Н(23А)	109.5
С(22)-С(23)-Н(23В)	109.5
H(23A)-C(23)-H(23B)	109.5
С(22)-С(23)-Н(23С)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(22)-C(24)-H(24A)	109.5
С(22)-С(24)-Н(24В)	109.5

H(24A)-C(24)-H(24B)	109.5			
С(22)-С(24)-Н(24С)	109.5			
H(24A)-C(24)-H(24C)	109.5			
H(24B)-C(24)-H(24C)	109.5			
C(1)-N(1)-H(1A) 109.5				
C(1)-N(1)-H(1B) 109.5				
H(1A)-N(1)-H(1B) 109.5				
C(1)-N(1)-H(1C) 109.5				
H(1A)-N(1)-H(1C)	109.5			
H(1B)-N(1)-H(1C)	109.5			
C(13)-N(2)-H(2A)	109.5			
C(13)-N(2)-H(2B)	109.5			
H(2A)-N(2)-H(2B)	109.5			
C(13)-N(2)-H(2C)	109.5			
H(2A)-N(2)-H(2C)	109.5			
H(2B)-N(2)-H(2C)	109.5			
I(2)-Bi(1)-I(2)#1 180.0				
I(2)-Bi(1)-I(3) 88.179	9(18)			
I(2)#1-Bi(1)-I(3) 91.820	0(18)			
I(2)-Bi(1)-I(3)#1 91.821(18)				
I(2)#1-Bi(1)-I(3)#1	88.180(18)			
I(3)-Bi(1)-I(3)#1 180.0				
I(2)-Bi(1)-I(1)#1 90.518	3(17)			
I(2)#1-Bi(1)-I(1)#1	89.482(17)			
I(3)-Bi(1)-I(1)#1 92.67(2)			
I(3)#1-Bi(1)-I(1)#1	87.327(19)			
I(2)-Bi(1)-I(1) 89.482	2(17)			
I(2)#1-Bi(1)-I(1) 90.518	3(17)			
I(3)-Bi(1)-I(1) 87.33(2)			
I(3)#1-Bi(1)-I(1) 92.67(2)			
I(1)#1-Bi(1)-I(1) 180.0				

Symmetry transformations used to generate equivalent atoms:

#1 -x-1/2,-y+3/2,-z+1

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)I(1)#1	0.89	3.07	3.706(6)	130.0
N(1)-H(1B)I(4)	0.89	2.70	3.490(6)	148.8
N(1)-H(1C)I(2)	0.89	2.95	3.599(6)	131.6
N(1)-H(1A)I(3)	0.89	2.97	3.601(6)	129.2
N(2)-H(2A)I(2)#2	0.89	2.79	3.548(6)	143.7
N(2)-H(2B)I(4)	0.89	2.77	3.558(6)	148.4
N(2)-H(2C)I(1)#3	0.89	3.10	3.677(6)	124.1
N(2)-H(2C)I(3)#3	0.89	3.06	3.735(7)	133.8

Table T4: Hydrogen bonds for 2 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x-1/2,-y+3/2,-z+1 #2 -x,y,-z+3/2 #3 x+1/2,-y+3/2,z+1/2

Thermo gravimetry Analysis Plot of compound 1:

Figure S2: TGA plot of 1

Inter-atomic distances	298 K (Å)	85K (Å)	Change upon cooling (Å)
II			
1212'''	4.315	4.319	0.004
11''12'	3.962	3.958	0.004
11'14	4.261	4.268	0.007
4' 4''	4.945	4.969	0.026
BiBi			
Bi1Bi2	4.583	4.588	0.005
Bi2Bi3	4.631	4.638	0.007
Bi-l			
Bi1–I1(bridged)	3.381	3.384	0.003
Bi1–I2(bridged)	3.063	3.069	0.006
Bi1–I3(terminal)	2.882	2.890	0.008
Bi1–I4(terminal)	2.894	2.903	0.009
Bi1–I'(bridged)	3.077	3.083	0.006
Bi1-I2'(bridged)	3.383	3.387	0.004
NI			
N212'	4.159	4.144	-0.015
N2I1'	3.717	3.706	-0.011
N1I2''	3.756	3.781	0.025
N1I3'	3.723	3.721	-0.002
N1I1'	4.210	4.220	0.010

Table T5: Bond lengths [Å] of 1 at 85 K and 296K

'-' signs denotes the decrease in the inter atomic distances upon cooling.

Figure S3: Atom labels for compound **1**.

¹ a) P. Kubelka, *J. Opt. Soc. Am.*, 1948, **38**, 448; b) P. Kubelka, *J. Opt. Soc. Am.*, 1954, **44**, 330; c) A. B. Murphy, *J. Phys. D: Appl. Phys.*, 2006, **39**, 3571; d) N. Laidani, R. Bartali, G. Gottardi and M. Anderle, *J. Phys.: Condens. Matter*, 2008, **20**, 15216.

² A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, *J. Appl. Crystallogr.*, 1994, **27**, 435.

³ G. M. Sheldrick, Acta Cryst. 2008, **A64**, 112.