Electronic Supplementary Information (ESI) – Table of Contents

An oxygen-sensitive luminescent Dy(III) complex

Hidetaka Nakai,*^{abc} Juncheol Seo,^a Kazuhiro Kitagawa,^{ac} Takahiro Goto,^a Takahiro Matsumoto^{abc} and Seiji Ogo*^{abc}

^{*a*} Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan

^b Centre for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan

^c International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan

Tables

Table S1 Crystallographic data for 1 ^{Dy}	S 2
Table S2 Continuous shape measures (CSM) values calculated for the Dy^{3+} in 1^{Dy}	S 3

Figures

Fig. S1 CIE chromaticity diagram of 1 ^{Dy}	S 4
Fig. S2 Absorption and excitation spectra of 1 ^{Dy}	S 5
Fig. S3 Luminescence decay curves of 1 ^{Dy}	S 6
Fig. S4 Luminescence spectra of 1 ^{Dy} /PS	S 7
Fig. S5 Stern–Volmer plot (I_0/I vs. [O ₂]) for $1^{\text{Dy}}/\text{PS}$	S 7
Fig. S6 Luminescence spectrum of 1 ^{Gd}	S 8
Fig. S7 Luminescence spectra of 1^{Dy} at $-100 ^{\circ}\text{C}$	S 9
Fig. S8 Stern–Volmer plots (I_0/I vs. [O ₂]) for 1^{Dy} at -100 °C	S10
Fig. S9 Luminescence decay curve of 1 ^{Gd}	S11
Fig. S10 Luminescence spectra of 1^{Dy} ($\lambda_{ex} = 470 \text{ nm}$)	S11

Tables

Table S1Crystallographic data for 1^{Dy}							
	1 ^{Dy}						
Formula	$C_{37}H_{50}N_3O_4Dy$						
Fw	763.32						
Crystal system	triclinic						
Space group	<i>P</i> -1 (No. 2)						
<i>a</i> (Å)	7.9076(14)						
<i>b</i> (Å)	14.308(3)						
<i>c</i> (Å)	16.300(3)						
α (deg)	68.911(6)						
β (deg)	76.832(9)						
γ (deg)	85.214(9)						
$V(\text{\AA}^3)$	1675.4(6)						
Ζ	2						
$\mu (\mathrm{cm}^{-1})$	22.77						
<i>F</i> (000)	782.00						
$D_{\rm calcd}({\rm g/cm}^3)$	1.513						
Temperature (K)	112						
Reflections collected	20482						
Independent reflection	7646						
	$(R_{\rm int} = 0.032)$						
Data/parameters	7646/412						
$R_1 \left[I > 2\sigma(I) \right]$	0.0421						
wR_2 (all data)	0.1283						
Goodness-of-fit	1.166						

	HP–7	HPY-7	PBPY-7	COC-7	CTPR-7	JPBPY-7	JETPY-7
1^{Dy}	33.596	20.405	8.428	0.919	2.315	11.180	14.067
HP-7 (D;	_{7h})	Heptagon					
HPY-7 (C_{6v}) Hexagonal pyramid							
PBPY-7	PY-7 (D _{5h}) Pentagonal bipyramid						
COC-7 (C_{3v}) Monocapped octahedron (Capped octahedron)							
CTPR-7 (C_{2v}) Monocapped trigonal prism (Capped trigonal prism)							
JPBPY-7	7 (D _{5h})) Johnson pentagonal bipyramid (J13)					
JETPY-7	ETPY-7 (C_{3v}) Johnson elongated triangular pyramid (J7)						

Table S2 Continuous shape measures (CSM) values calculated for the $\text{Dy}^{\scriptscriptstyle 3+}$ in $1^{\scriptscriptstyle \text{Dy}}$

Figures

Fig. S1 CIE 1931 chromaticity diagram of $\mathbf{1}^{Dy}$ in THF at room temperature ($\lambda_{ex} = 300$ nm).

Fig. S2 Absorption (black dot) and excitation (red) spectra of 1^{Dy} under air in THF at room temperature. The excitation spectrum was detected at 575 nm.

Fig. S3 Luminescence decay curves of $\mathbf{1}^{Dy}$ under (a) N₂ (red, 17.7 µs) and (b) O₂ (blue, 4.1 µs) in THF at room temperature. The decay was monitored by a TBX-850 detector (250–850 nm) with an L42 color filter ($\lambda_{ex} = 300$ nm). Fitted by single exponential curve (black).

Fig. S4 Corrected luminescence spectra of $1^{Dy}/PS$ under N₂ (red) and O₂ (blue) at room temperature ($\lambda_{ex} = 300$ nm).

Fig. S5 Stern–Volmer plot of the luminescence intensity against the oxygen concentration for $1^{Dy}/PS$ (I_0/I vs. [O₂]). The I_0 and I are the luminescence intensities at 0% of O₂ and at the indicated O₂ concentrations, respectively. The luminescence intensities were monitored at 575 nm.

Fig. S6 Corrected luminescence spectrum of 1^{Gd} under Ar in the crystalline-state at room temperature. ($\lambda_{ex} = 250$ nm). The spectrum was acquired with a delay time of 50 µs in order to show the phosphorescence from the lowest triplet state (T1) of the ligand clearly.

Fig. S7 Corrected luminescence spectra of 1^{Dy} under (a) N₂ and (b) O₂ at room temperature (black) and -100 °C (red) in THF ($\lambda_{ex} = 300$ nm).

Fig. S8 Stern–Volmer plots of the luminescence intensity (I_0/I) against the oxygen concentration ([O₂]) for $\mathbf{1}^{\text{Dy}}$ at $-100 \,^{\circ}\text{C}$ (\blacktriangle) (1.5×10^{-5} M, $K_{\text{SV}} = 274 \,^{-1}$, $R^2 = 0.9998$) and room temperature (•) (1.5×10^{-5} M, $K_{\text{SV}} = 317 \,^{-1}$, $R^2 = 0.9999$). The I_0 and I are the luminescence intensities at 0% of O₂ and at the indicated O₂ concentrations, respectively. The luminescence intensities were monitored at 485 nm.

Fig. S9 Luminescence decay curve of $\mathbf{1}^{\text{Gd}}$ under Ar (blue) in the crystalline-state at room temperature. The decay was monitored at 436 nm ($\lambda_{\text{ex}} = 250 \text{ nm}$). The decay curve was fitted by bi-exponential curve (black: $\tau_1 = 315 \text{ }\mu\text{s}$, amplitude $A_1 = 0.704$; $\tau_2 = 155 \text{ }\mu\text{s}$, amplitude $A_1 = 0.296$) since the emission at 436 nm contains two emissions ($\lambda_{\text{em}}^{\text{max}} = 397$ and 466 nm: see Fig. S6).

Fig. S10 Corrected luminescence spectra of $\mathbf{1}^{Dy} ({}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2})$ under N₂ (red) and O₂ (blue) in THF at room temperature ($\lambda_{ex} = 470$ nm).