Supporting Information

μ-Oxo- and Bis(μ-carboxylato)-bridged Diiron(III) Complexes of a 3N Ligand as Catalysts for Alkane Hydroxylation: Steroelectronic Factors of Carboxylate Bridge Determine the Catalytic Efficiency

Mani Balamurugan,^aEringathodiSuresh,^b and Mallayan Palaniandavar^{a*}

^aSchool of Chemistry, Bharathidasan University, Tiruchirappalli - 620024, Tamil Nadu, India. ^bAnalytical Science Discipline, Central Salt and Marine Chemicals Research Institute, Bhavnagar - 364 002, India.

Figure S1. ESI-MS spectrum of the reaction of **4** with 5 eq. of *m*-CPBA and 1 eq. of TEA. Intense peak in the spectrum at m/z = 860.9, 894.8, 916.8 and 950.7 corresponding to $\{[Fe_2^{III}(O)(L)_2(OBz)_2]CIO_4\}^+$, $\{[Fe_2^{III}(O)(L)_2(OBz)_2](OBzCI)\}^+$, $\{[Fe_2^{III}(O)(L)_2(OBz)(OBzCI)]^+$ (OBzCI)]⁺ and $\{[Fe_2^{III}(O)(L)_2(OBzCI)_2](OBzCI)\}^+$. Less intense peaks in the spectrum are assigned to the *m*-CPBA adducts $\{[Fe_2^{III}(O)(L)_2(OBz)(OOCOC_6H_4CI)]CIO_4\}^+$ (m/z = 876.8) and $\{[Fe_2^{III}(O)(L)_2(OBzCI)(OOCOC_6H_4CI)]CIO_4\}^+$.

Figure S2. A linear correlation (R^2 , 0.84) between pK_a value of bridging carboxylates and total TON of diiron(III) complexes for cyclohexane oxidation

Figure S3.A linear correlation (R^2 , 0.93) between pK_a value of bridging carboxylates and total TON of diiron(III) complexes for adamantane oxidation

Figure S4. A linear correlation (\mathbb{R}^2 , 0.84) between $E_{1/2}$ value and total TON of diiron(III) complexes for cyclohexane oxidation.

Figure S5. Time dependent oxidation of cyclohexane catalyzed by 2 with m-CPBA