Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting information

to

Towards targeting anticancer drugs. Ruthenium(II)-arene complexes with biologically active naphthoquinonederived ligand systems

M. Kubanik,^a W. Kandioller,^{b,c} K. Kim,^a R. F. Anderson,^{a,d} Erik Klapproth,^b M. A. Jakupec, A. Roller, ^{b,c} Tilo Söhnel,^a B. K. Keppler ^{b,c} and C. G. Hartinger^{a-c,*}

^a University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand. E-mail: c.hartinger@auckland.ac.nz.

^b University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Str. 42, A-1090 Vienna, Austria.

^c University of Vienna, Research Platform Translational Cancer Therapy Research, Waehringer Str. 42, A-1090 Vienna, Austria.

^d Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.

* Corresponding author. E-mail address: c.hartinger@auckland.ac.nz (C.G.Hartinger).

Table of Contents:

X-ray diffraction analysis data	S3
Comparison between ligand synthesis methods	S4
¹ H NMR spectra of 1a	S4
¹ H NMR spectra of 6a in MeOD	S5
¹ H NMR spectra of 6a in d ₆ -DMSO	S5
Molecular structures of 6 and 3a	S6
Unit cell of 3a	S7
Thermogravimetric analysis of complex 3a	S7
¹ H NMR spectra of the reaction between 1a and AgNO ₃	S8
¹ H NMR spectra of the stability of AsH in phosphate buffer	S8
¹ H NMR spectra of the reaction between 1a and AsH	S9
¹ H NMR spectra of the reaction between 1a and GSH	S9
Pulse radiolysis data	S10
clog <i>P</i> values for ligands 1–8	S11
Concentration–effect curves (MTT assay)	S12
References	S13

	1a	3a	5a	6
Formula	C ₂₂ H ₂₃ ClO ₃ Ru	C ₂₄ H ₂₇ ClO ₃ Ru·1.5H ₂ O	C ₂₂ H ₂₄ CINO ₃ Ru	C ₁₃ H ₁₃ NO ₃
CCDC Nr.	1469089	1468156	1469090	1469091
Molecular weight (g mol ⁻¹)	471.92	527.09	486.94	231.25
Temperature (K)	100(2)	100(2)	100(2)	100(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal system	monoclinic	triclinic	monoclinic	monoclinic
Space group	P2 ₁ /n	<i>P</i> -1	C2/c	P 2 ₁ /n
a (Å)	15.5644(8)	9.3210(15)	18.3763(6)	11.8478(4)
b (Å)	7.9491(4)	15.229(3)	9.2791(3)	6.9261(2)
c (Å)	15.7175(8)	17.358(3)	23.9785(8)	13.7030(4)
β (°)	100.110(2)	92.771(5)	98.607(2)	98.488(2)
Volume (Å ³)	1914.42(17)	2454.3(7)	4042.7(2)	1112.14(6)
Z	4	4	4	4
Calculated density (g cm ⁻³)	1.627	1.353	1.600	1.381
Absorption coefficient (mm ⁻¹)	0.978	0.767	0.931	0.099
F(000)	948	1024.0	1984	488
Crystal size (mm × mm × mm)	0.36 × 0.32 × 0.30	0.15 × 0.12 × 0.03	0.32 × 0.28 × 0.16	0.38 × 0.1× 0.1
2θ (min, max) (°)	1.70, 27.88	2.189, 25.350	1.72, 27.84	3.00, 26.00
Limiting indices	-19 ≤ h ≤ 20	-12 ≤ h ≤ 13	-24 ≤ h ≤ 24	-12 ≤ h ≤ 14
	-10 ≤ k ≤ 10	-21 ≤ k ≤ 21,	-12 ≤ k ≤ 11	-8 ≤ k ≤ 8
	-18 ≤ I ≤ 20	-19 ≤ l ≤ 22	-31 ≤ I ≤ 31	-16 ≤ l ≤ 16
Reflections collected / unique	22739 / 4558 [R(int) = 0.0547]	41883 / 8736 [R(int) = 0.0807]	22613 / 4780 [R(int) = 0.0397]	11807 / 2184 [R(int) = 0.0735]
Completeness to theta	99.7%	97.2%	99.3%	99.8%
Data / restraints / parameters	4558 / 0 / 248	8736 / 9 / 534	4778 / 0 / 261	2184 / 2 / 165
Goodness-of-fit on F ²	1.047	1.052	1.043	1.044
Final R indices [I>2o(I)]	R ₁ = 0.0253, wR ₂ = 0.0651	$R_1 = 0.0398$, $wR_2 = 0.0841$	$R_1 = 0.0263, wR_2 = 0.0612$	R ₁ = 0.0531, wR ₂ = 0.1083
R indices (all data)	$R_1 = 0.0272$, $wR_2 = 0.0666$	$R_1 = 0.0549, wR_2 = 0.0892$	$R_1 = 0.0319, wR_2 = 0.0640$	R ₁ = 0.0893, wR ₂ = 0.1243
Largest diff. peak and hole (eÅ-3)	0.464 and -0.585	0.72 and -1.04	0.501 and -0.470	0.227 and -0.225

Table S1. Details of collected X-ray data for complexes 1a, 3a, 5a and 6.

Table S2. Comparison between Pd(0)-catalyzed and peroxide-based synthesis of **2** and **3**.

	compound	Steps	Reaction	Yield (%)	Cost per
			time (h)		gram (€)
Pd(0)	2	2	3.5	31	23.50
	3	2	3.5	28	26.39
peroxide	2	2	12	24	4.82
	3	2	14	16	12.37

Figure S1. ¹H NMR spectrum of **1a** with assignment of the peaks and numbering scheme of the protons and carbon atoms.

Figure S2. ¹H NMR spectrum of **6a** in MeOD with assignment of the peaks and numbering scheme of the protons and carbon atoms.

Figure S3. ¹H NMR spectrum of **6a** in DMSO with assignment of the peaks and numbering scheme of the protons and carbon atoms.

Figure S4. Molecular structures of the *E* (right) and *Z* isomers of **6** drawn at 50% probability level.

Figure S5. Molecular structure of **3a** drawn at 50% probability level. Solvent molecules were omitted for clarity.

Figure S6. Unit cell of 3a including the electron density for the embedded solvent molecules.

Figure S7. Thermogravimetric analysis of complex 3a.

Figure S8. The reaction between **1a** and AgNO₃ in 20 mM phosphate buffer (pH 7.4) followed by ¹H NMR spectroscopy.

Figure S9. Stability of AsH in 20 mM phosphate buffer (pH 7.4) followed by ¹H NMR spectroscopy over 3.5 days.

Figure S10. Time course of the reaction between **1a** and AsH in 20 mM phosphate buffer (pH 7.4) followed by ¹H NMR spectroscopy.

Figure S11. Time course of the reaction between **1a** and GSH in 20 mM phosphate buffer (pH 7.4) followed by ¹H NMR spectroscopy.

Figure S12. 1-Electron reduction spectra recorded after pulse radiolysis of a mixture of **1a** (S^{-}) and Diquat (DQ²⁺).

Compound	clogP					
	ChemDraw	Molinspiration	ALOGPS 2.1			
	naphthoquinones					
1	2.73	2.22	1.86			
2	3.26	2.61	2.30			
3	3.79	3.17	2.76			
4	4.32	3.67	3.20			
L	3.70	3.16	2.76			
	oximes					
5 °×	3.33	2.61	1.99			
6 °×	3.86	3.00	2.43			
7 °×	4.39	3.56	2.89			
8 ^{ox}	4.92	4.07	3.44			
	nitroso					
5 ^{nit}	2.80	3.28	2.93			
6 ^{nit}	3.32	3.67	3.38			
7 ^{nit}	3.85	4.23	3.84			
8 ^{nit}	4.38	4.73	4.30			

Table S3. clogP values for ligands 1–5 calculated with ChemDraw 12.0, Molinspiration(www.molinspiration.com) and the average logP from the ALOGPS 2.1 program.¹

Figure S13. Concentration–effect curves of ligands **1**, **2**, **5** and **6** and the respective Ru(cym)Cl complexes in human colon carcinoma (SW480), ovarian teratocarcinoma (CH1/PA-1) and non-small cell lung carcinoma cells (MTT assay, exposure time 96 h).

References

 I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V. A. Palyulin, E. V. Radchenko, N. S. Zefirov, A. S. Makarenko, V. Y. Tanchuk and V. V. Prokopenko, *J. Comput.-Aided Mol. Des.*, 2005, **19**, 453.