Supporting Information

Diastereoselective Synthesis of Chiral Aminophenolate Magnesium Complexes and Their Application in the Stereoselective Polymerization of *rac*-Lactide and *rac*-β-Butyrolactone

Haobing Wang*, Jianshuang Guo, Yang Yang and Haiyan Ma*

Shanghai Key Laboratory of Functional Materials Chemistry and Laboratory of Organometallic Chemistry, East China University of Science and Technology, Shanghai (P.R. China).

Contents:

1. Experimental Section

- 1.1 General considerations
- 1.2 Synthesis of chiral aminophenol proligands
- 1.3 Synthesis of chiral magnesium aminophenolate complexes 1-10
- 1.4 X-Ray diffraction measurements
- 1.5 Ring-opening polymerization of *rac*-lactide
- 1.6 Ring-opening polymerization of $rac-\beta$ -butyrolactone

2. X-Ray Diffraction Studies

Tables S1. Crystallographic data and structure refinement for complexes 3a/b, 4a/b, 5a, 10b

3. ¹H NMR and ¹³C NMR Spectra of Complexes 1-10

Figures S1-S20. ¹H NMR and ¹³C NMR spectra of complexes 1-10

Figure S21. The1H NMR spectrum of the in situ NMR scale reaction of proligand $L^{9}H$ with Mg[N(SiMe₃)₂]₂.

4. Polymerization of rac-LA catalyzed by magnesium complexes 1-10

Table S2. Polymerization of *rac*-LA catalyzed by magnesium complexes 1-10 in THF.

5. Microstructure Analysis of Poly(*rac*-lactide)s

Figures S22-S23. Methine region of homonuclear decoupled ¹H NMR spectra of PLAs

6. Microstructure Analysis of Poly(*rac-β*-butyrolactone)s

Figures S24-S25. Methylene region of ¹³C {¹H} NMR spectra of PHBs

1. Experimental Section

1.1 General considerations

Unless otherwise indicated, all manipulations involving air- and/or water-sensitive substances were carried out under a dry argon atmosphere using either an MBraun glove-box or standard Schlenk techniques. THF, toluene and *n*-hexane were refluxed over sodium benzophenone ketyl prior to use. Benzene- d_6 were properly dried and stored in the glove-box. 2-Propanol were dried over CaH₂ under reflux, collected by vacuum distillation and degassed through three freeze-pump-thaw cycles. Mg[N(SiMe₃)₂]₂ were synthesized according to the literature method.^{S1} (*R*)-(1-alkylpyrrolidin-2-yl)methanamine were synthesized according to the reported procedures.^{S2} *rac*-LA were recrystallized with dry toluene and then sublimed twice under vacuum at 90 °C. Glassware and vials used in the polymerization were dried in an oven at 120°C overnight and exposed to vacuum-argon cycle three times.

NMR spectra were recorded on a Bruker Avance-400 spectrometer. Chemical shifts for ¹H and ¹³C{¹H} NMR spectra were referenced internally using the residual solvent resonances and reported relative to tetramethylsilane (TMS). EA analyses were performed using a Carlo Erba EA1106 elemental analyzer. Gel permeation chromatography (GPC) analyses were carried out on a Waters 1515 infinity instrument in THF at 35 °C, at a flow rate of 1 mL·min⁻¹, with two PLgel 5 μ m Mixed-C columns (7.5 × 300 mm). Calibration standards were commercially available narrowly distributed linear polystyrene samples that cover a broad range of molar masses (6 × 10³ < M_n < 6.6 × 10⁵ g·mol⁻¹). Monomer conversion determination was monitored by integration of monomer *vs.* polymer methine resonances in ¹H NMR spectra. All spectroscopic analyses of polymers and homonuclear decoupled ¹H NMR spectra were performed in CDCl₃ on a Bruker Avance 400 MHz spectrometer with acryoprobe.

1.2 Synthesis of chiral aminophenol ligands $L^{2,5\&9}H$.

Synthesis of chiral aminophenol ligands $L^{1,3,4,6-8\&10}H$ see our submitted result.^{S2}

1.2.1 Synthesis of (S)-N-alkyl-1-(1-alkylpyrrolidin-2-yl)methanamine

(S)-(1-ⁿButylpyrrolidin-2-yl)methanamine (2.34 g, 0.015 mol) was added to a solution of benzaldehyde (1.75 g, 0.017 mol) in ethanol (20 mL) and the mixture was heated to reflux for 24 h. After cooling to r.t., sodium borohydride (1.33 g, 0.035 mmol) was sequentially added to the above light yellow solution in three times and the mixture was stirred for 3 h at 60 °C. The mixture was poured into water and extracted with methylene dichloride. The organic phase was dried over anhydrous MgSO₄. Evaporation of the solvent gave the target product as viscous oil (2.96 g), which used directly for the without further purification. was next step (*S*)-*N*-benzyl-1-(1-^{*n*}octylpyrrolidin-2-yl) methanamine, (S)-Nand

methyl-1'-napthyl-1- $(1-^{n}$ octylpyrrolidin-2-yl) methanamine were produced using the same procedure.

1.2.2 Synthesis of L^{2,5&9}H

 $(L^{2}H)$. Paraformaldehyde (0.600 g, 20.0 mmol) and 2, 4-dichlorophenol (1.63 g, 10.0 mmol) was added to a solution of (S)-N-benzyl-1- $(1-^{n}$ octylpyrrolidin-2-yl)methanamine (2.74 g, 10.0 mmol) in ethanol (30 mL) at 90 °C during 12 h with magnetic stirring. The mixture was cooled to ambient temperature and concentrated under vacuum to give red oil, which was purified by column chromatography (silica gel 100 Merck, petroleum ether/ethyl acetate = 5 : 1) to provide dark red oil (2.41 g, 50.5%) after removal of all the volatiles. ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.23 (m, 6H, Ar*H*), 6.90 (d, ${}^{4}J = 2.4$ Hz, 1H, Ar*H*), 3.90 (d, ${}^{2}J = 14.1$ Hz, 1H, Ar*CH*₂N), 3.72 (d, ${}^{2}J = 13.0$ Hz, 1H, ArC H_2 N), 3.61 (d, ${}^{2}J = 14.1$ Hz, 1H, ArC H_2 N), 3.47 (d, ${}^{2}J = 13.0$ Hz, 1H, ArC H_2 N), 3.14-3.05 (m, 1H, NCH₂- of pyrrolidinyl), 2.67-2.60 (m, 1H, NCH- of pyrrolidinyl), 2.60-2.45 (m, 3H, NCH₂of pyrrolidinyl & NCH₂CH), 2.14-2.03 (m, 2H, NCH₂(CH₂)₆CH₃), 2.04-1.92 (m, 1H, -CH₂- of pyrrolidinyl), 1.72-1.61 (m, 2H, -CH₂- of pyrrolidinyl), 1.49-1.34 (m, 3H, -CH₂- of pyrrolidinyl & NCH₂CH₂(CH₂)₅CH₃), 1.33-1.18 (m, 10H, NCH₂CH₂(CH₂)₅CH₃), 0.89 (t, ${}^{3}J = 7.3$ Hz, 3H, NCH₂(CH₂)₆CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 152.6, 136.2, 123.0, 128.9, 128.8, 128.1, 127.3, 125.0, 123.5, 121.8 (All ArC), 62.9 (ArCH₂N), 59.3 (ArCH₂N), 58.3 (NCH- of pyrrolidinyl), 57.9 (NCH₂of pyrrolidinyl), 55.7 $(NCH_2CH),$ 54.2 $(NCH_2(CH_2)_6CH_3),$ 32.0 (NCH₂CH₂(CH₂)₅CH₃), 30.2 (NCH₂(CH₂)₆CH₃), 29.6 (NCH₂(CH₂)₆CH₃), 29.4 (-CH₂- of pyrrolidinyl), 28.8 (NCH₂(CH₂)₆CH₃), 27.8 (NCH₂(CH₂)₆CH₃), 22.8 (NCH₂(CH₂)₆CH₃), 22.7 (-*C*H₂- of pyrrolidinyl), 14.3 (NCH₂(CH₂)₆*C*H₃). Anal. Calcd. for C₂₇H₃₈Cl₂N₂O: C, 67.91; H, 8.02; N, 5.87. Found: C, 68.02; H, 8.02; N, 5.51%.

(L⁵H) The procedure was same as that of L²H, except that 2-triphenylsilyl-4-methylphenol (3.66 g, 10.0 mmol) and (*S*)-*N*-(methyl-1-napthyl)-1-(1-^{*n*}butylpyrrolidin-2-yl)methanamine (10.0 mmol) were used to afford L¹⁰H as a white solid (3.19 g, 51.0%). ¹H NMR (400 MHz, CDCl₃): δ 10.73 (s, 1H, ArO*H*), 7.65 (d, 6H, ³*J* = 6.6 Hz, Ar*H*), 7.42-7.30 (m, 9H, Ar*H*), 7.23-7.16 (m, 3H, Ar*H*), 7.09 (d, 2H, ³*J* = 7.3 Hz, Ar*H*), 6.94 (s, 1H, Ar*H*), 6.90 (s, 1H, Ar*H*), 3.91 (d, 1H, ²*J* = 13.6 Hz, Ar*CH*₂N), 3.64 (d, 1H, ²*J* = 13.6 Hz, Ar*CH*₂N), 3.62 (d, 1H, ²*J* = 13.0 Hz, Ar*CH*₂N), 3.43 (d, 1H, ²*J* = 13.0 Hz, Ar*CH*₂N), 3.02-2.91 (m, 1H, N*CH*₂- of pyrrolidinyl), 2.58 (m, 1H, N*CH*- of pyrrolidinyl), 2.45 (m, 2H, N*CH*₂CH₂CH₂CH₃ & N*CH*₂CH₂, 2.41-2.31 (m, 1H, N*CH*₂- of pyrrolidinyl), 2.14 (s, 3H, Ar*CH*₃), 2.02-1.91 (m, 2H, N*CH*₂CH₂CH₂CH₃ & N*CH*₂CH), 1.72-1.58 (m, 1H, -*CH*₂- of pyrrolidinyl), 1.52-1.39 (m, 2H, -*CH*₂- of pyrrolidinyl), 1.39-1.28 (m, 2H, -*CH*₂- of pyrrolidinyl & N*CH*₂CH₂CH₃CH₃), 1.28-1.12 (m, 3H, N*CH*₂CH₂CH₂CH₃), 0.85 (t, 3H, ³*J* = 7.6 Hz, N*CH*₂CH₂CH₂CH₃). ¹³C{¹H} NMR (100 MHz, *CDC*l₃): δ 160.9, 138.0, 137.5, 136.7, 135.7, 132.7, 130.2, 129.2, 128.5, 127.7, 127.5, 121.8, 120.2(All Ar*C*), 63.1 (Ar*CH*₂N), 59.6 (Ar*CH*₂N), 59.4

(NCH- of pyrrolidinyl), 57.2 (NCH₂- of pyrrolidinyl), 55.3 (NCH₂CH), 54.3 (NCH₂CH₂CH₂CH₂CH₃), 30.9 (NCH₂CH₂CH₂CH₃), 29.8 (-CH₂- of pyrrolidinyl), 22.5 (-CH₂- of pyrrolidinyl), 21.0 (ArCH₃), 20.8 (NCH₂CH₂CH₂CH₃), 14.2 (NCH₂CH₂CH₂CH₃). Anal. Calcd. for C₄₂H₄₈N₂OSi: C, 80.72; H, 7.74; N, 4.48. Found: C, 80.51; H, 7.62; N, 4.32%.

 $(L^{9}H)$ The procedure was same as that of $L^{2}H$, except that 2-trityl-4-methylphenol (3.50 g, 10.0 mmol) and (S)-N-(methyl-1-napthyl)-1-(1-ⁿoctylpyrrolidin-2-yl)methanamine (10.0 mmol) were used to afford L⁹H as a white solid (3.12 g, 50%). ¹H NMR (400 MHz, CDCl₃): δ 10.26 (s, 1H, Ar*OH*), 7.86 (d, *J* = 8.4 Hz, 1H, Ar*H*), 7.81 (d, *J* = 7.8 Hz, 1H, Ar*H*), 7.73 (d, *J* = 8.2 Hz, 1H, Ar*H*), 7.46–7.36 (m, 2H), 7.32 (dd, J = 12.8, 4.7 Hz, 1H, ArH), 7.25–7.22 (m, 6H, ArH), 7.17–7.10 (m, 10H, ArH), 6.95 (d, J = 1.6 Hz, 2H, ArH), 6.88 (d, J = 1.6 Hz, 2H, ArH), 4.05 (d, J = 13.1 Hz, 1H, ArCH₂N), 3.81 (d, J = 13.1 Hz, 1H, ArCH₂N), 3.71(d, J = 13.5 Hz, 1H, ArCH₂N), 3.62 (d, J = 13.5 Hz, 1H, ArCH₂N), 3 Hz, 1H, ArCH₂N), 2.86–2.73 (m, 1H, NCH- of pyrrolidinyl), 2.56–2.36 (m, 3H, NCH₂CH & NCH₂of pyrrolidinyl), 2.18 (s, 3H, ArCH₃), 2.15–2.08 (m, 1H, NCH₂- of pyrrolidinyl), 1.87–1.68 (m, 2H, NCH₂(CH₂)₆CH₃), 1.34–1.14 (m, 12H, NCH₂(CH₂)₆CH₃), 1.14–1.07 (m, 2H, -CH₂- of pyrrolidinyl), 1.07–1.00 (m, 2H, -CH₂- of pyrrolidinyl), 0.89 (t, J = 7.0 Hz, 3H, NCH₂(CH₂)₆CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.9, 146.3, 133.8, 133.7, 133.6, 132.6, 131.3, 131.1, 130.9, 129.6, 128.6, 128.5, 127.9, 127.9, 126.9, 126.3, 126.1, 125.5, 125.3, 125.2, 123.8, 123.2 (All ArC), 63.8(ArCPh₃), 63.5(ArCH₂N), 60.0(ArCH₂N), 55.9(ArCH₂N), 55.8(NCH- of pyrrolidinyl), 55.3(NCH₂- of pyrrolidinyl), 54.0(ArCH₂N), 31.9(CH₂CH₂(CH₂)₅CH₃), 29.5(-CH₂- of pyrrolidinyl), 29.4(-CH₂- of pyrrolidinyl), 28.7(CH₂CH₂(CH₂)₅CH₃), 28.2(CH₂CH₂(CH₂)₅CH₃), 27.7(CH₂CH₂(CH₂)₅CH₃), 22.1(CH₂CH₂(*C*H₂)₅CH₃), 22.8(CH₂CH₂(CH₂)₅CH₃), $21.0(CH_2CH_2(CH_2)_5CH_3),$ 14.2(CH₂CH₂(CH₂)₅CH₃). Anal. Calcd. for C₅₁H₅₈N₂O: C, 85.67; H, 8.18; N, 3.92; Found: C, 85.17; H, 7.87; N, 3.54 %

1.3 Synthesis of chiral magnesium aminophenolate complexes 1-10

 $[(L^1)MgN(SiMe_3)_2](1)$. In a glove box, the aminophenol L^1H (0.632 g, 1.50 mmol) was dissolved in toluene (3 mL) and was added dropwise to a solution of Mg[N(SiMe₃)₂]₂ (0.520 g, 1.50 mmol) in *n*-hexane (3 mL). The reaction mixture was stirred at room temperature overnight, whereas a white precipitate was formed. After filtration, the collected white precipitate was washed with cold *n*-hexane $(3 \times 2 \text{ mL})$ and dried under vacuum to afford the target complex **1** in 60.6% (0.550 g) as a mixture of two diastereomers in 1 : 2 ratio (isomer 1a : isomer 1b). NMR spectroscopic data of **Mg1b**: ¹H NMR (400 MHz, C_6D_6): δ 7.35 (d, ⁴J = 2.8 Hz, 1H, ArH), 7.11-7.00 (m, 5H, ArH), 6.46 (d, ${}^{4}J = 2.8$ Hz, 1H, ArH), 3.77 (d, ${}^{2}J = 13.6$ Hz, 1H, ArCH₂N), 3.51 (d, ${}^{2}J = 12.8$ Hz, 1H, ArCH₂N), 3.32 (d, ${}^{2}J = 13.6$ Hz, 1H, ArCH₂N), 2.59 (d, ${}^{2}J = 12.8$ Hz, 1H, ArCH₂N), 2.48-2.39 (m, 1H, NCH- of pyrrolidinyl), 2.37-2.27 (m, 2H, NCH₂CH₂CH₂CH₃), 2.19 (td, ${}^{2}J = 11.9$, ${}^{3}J = 3.9$ Hz, 1H, NCH₂- of pyrrolidinyl), 2.01-1.92 (m, 1H, NCH₂- of pyrrolidinyl), 1.89 (dd, ${}^{2}J = 13.6$, ${}^{3}J = 13.6$ Hz, 1H, NCH₂CH), 1.47 (dd, ${}^{2}J = 13.6$, ${}^{3}J = 4.4$ Hz, 1H, NCH₂CH), 1.43-1.19 (m, 2H, NCH₂CH₂CH₂CH₃), 1.19-0.99 (m, 2H, NCH₂CH₂CH₂CH₃), 0.98-0.92 (m, 1H, -CH₂- of pyrrolidinyl), 0.89 (t, ${}^{3}J = 7.2$ Hz, 3H, NCH₂CH₂CH₂CH₃), 0.81-0.74 (m, 1H, -CH₂- of pyrrolidinyl), 0.43 (s, 18H, Si(CH₃)₃), 0.36-0.24 (m, 2H, -CH₂- of pyrrolidinyl). ¹³C {¹H} NMR (100 MHz, C₆D₆): δ 161.6, 132.9, 132.4, 131.6, 130.7, 129.4, 129.3, 129.0, 125.6, 117.2 (All Ar*C*), 65.5 (ArCH₂N), 63.6 (ArCH₂N), 59.7 (NCH- of pyrrolidinyl), 58.8 (NCH₂- of pyrrolidinyl), 55.7 (NCH₂CH), 50.6 (NCH₂CH₂CH₂CH₃), 31.4 (NCH₂CH₂CH₂CH₃), 25.9 (-CH₂- of pyrrolidinyl), 21.1 (-CH₂- of pyrrolidinyl), 20.9 (NCH₂CH₂CH₂CH₃), 14.5 (NCH₂CH₂CH₂CH₃), 7.3 (Si(CH₃)₃). Anal. Calcd. for C₂₉H₄₇Cl₂MgN₃OSi₂: C, 57.56; H, 7.83; N, 6.94. Found: C, 57.39; H, 7.55; N, 6.66%.

[(L²)MgN(SiMe₃)₂](2). The procedure was same as that of [(L¹)MgN(SiMe₃)₂](1), except that L²H (0.716 g, 1.50 mmol) and Mg[N(SiMe₃)₂]₂ (0.517 g, 1.50 mmol) were used to afford white precipitate target complex **2** in 35% (0.357 g) as a mixture of two diastereomers in 1 : 2 ratio (isomer **2a** : isomer **2b**). NMR spectroscopic data of **Mg2b**: ¹H NMR (400 MHz, C₆D₆): ¹C T H NMR (400 MHz, C₆D₆): ¹C T H NMR (400 MHz, C₆D₆): ¹C T H NMR (400 MHz, C₆D₆): ³O T H N H (400 MHz, C₆D₆): ³O T H (400 MHz, C₆D₆): ³O T H (400 M Hz, C₆D₆): ³O T H (

29.0 (NCH₂(*C*H₂)₆CH₃), 27.5 (-*C*H₂- of pyrrolidinyl), 25.5 (NCH₂(*C*H₂)₆CH₃), 23.1 (-*C*H₂- of pyrrolidinyl), 20.6 (NCH₂(*C*H₂)₆CH₃), 14.4 (NCH₂(CH₂)₆CH₃), 7.0 (Si(*C*H₃)₃). Anal. Calcd. for $C_{33}H_{55}Cl_2N_3OSi_2Zn$: C, 59.95; H, 8.38; N, 6.36. Found: C, 59.63; H, 8.32; N, 6.10%.

[(L³)MgN(SiMe₃)₂](3). The procedure was same as that of [(L³)MgN(SiMe₃)₂](1), except that $L^{3}H$ (0.761 g, 2.00 mmol) and Mg[N(SiMe_3)₂]₂ (0.690 g, 2.00 mmol) were used to afford the target complex 3 as a colorless crystal in 64% (0.715 g) as a mixture of two diastereomers in 1 : 1.3 ratio (isomer **3a** : isomer **3b**). NMR spectroscopic data for **Mg3b**: ¹H NMR (400 MHz, C_6D_6): δ 7.28– 7.24 (m, 1H, ArH), 7.19–7.10 (m, 1H, ArH), 7.13–7.09 (m, 1H, ArH), 7.06 (br s, 2H, ArH), 6.87 (d, ${}^{4}J = 2.0$ Hz, 1H, ArH), 6.54 (d, ${}^{4}J = 2.0$ Hz, 1H, ArH), 4.02 (d, ${}^{2}J = 13.5$ Hz, 1H, ArCH₂N), 3.84 (d, $^{2}J = 12.6$ Hz, 1H, ArCH₂N), 3.60 (d, $^{2}J = 13.5$ Hz, 1H, ArCH₂N), 3.07 (d, $^{2}J = 12.6$ Hz, 1H, ArCH₂N), 2.78–2.65 (m, 3H, NCH₂CH & NCH₂CH₂CH₂CH₃), 2.50 (s, 3H, Ar-CH₃), 2.45–2.38 (m, 1H, NCH₂- of pyrrolidinyl), 2.27 (s, 3H, Ar-CH₃), 2.20-2.15 (m, 1H, NCH₂- of pyrrolidinyl), 1.90-1.75 (m, 2H, NCH₂CH), 1.40–1.10 (m, 4H, NCH₂CH₂CH₂CH₃), 0.97 (t, ${}^{3}J = 7.0$ Hz, 3H, NCH₂CH₂CH₂CH₃), 0.80–0.65 (m, 2H, -CH₂- of pyrrolidinyl), 0.46–0.40 (m, 2H, -CH₂- of pyrrolidinyl). ¹³C {¹H} NMR (100 MHz, C₆D₆): δ 163.5, 133.1, 132.6, 132.2, 131.5, 129.3, 128.8, 128.7, 127.1, 121.3, 121.1 (All ArC), 64.9 (ArCH₂N), 60.0 (ArCH₂N), 58.2 (NCH- of pyrrolidinyl), (NCH₂- of 55.3 pyrrolidinyl), 50.5 $(NCH_2CH),$ 48.1 $(NCH_2CH_2CH_2CH_3),$ 30.8 (NCH₂CH₂CH₂CH₃), 25.7 (-CH₂- of pyrrolidinyl), 20.9 (ArCH₃), 20.8 (-CH₂- of pyrrolidinyl), 20.7 (ArCH₃), 17.7 (NCH₂CH₂CH₂CH₃), 14.1 (NCH₂CH₂CH₂CH₃), 7.0 (N(Si(CH₃)₃)₂). Anal. Calcd. For C₃₁H₅₃N₃OSi₂Mg: C, 65.99; H, 9.47; N, 7.45. Found: C, 65.57; H, 9.16; N, 6.86%.

3H), 0.77-0.67 (m, 1H, $-CH_2$ - of pyrrolidinyl), 0.45 (s, 18H, N(Si(CH_3)₃)₂). ¹³C{¹H} NMR (100 MHz, C₆D₆): δ 163.8, 138.6, 134.7, 132.6, 132.3, 129.2, 128.9, 126.9, 124.7, 120.7 (All ArC), 61.4 (ArCH₂N), 60.4 (ArCH₂N), 57.2 (NCH- of pyrrolidinyl), 57.0 (NCH₂- of pyrrolidinyl), 55.6(NCH₂CH), 52.4 (NCH₂CH₂CH₂CH₃), 36.2 (*C*(CH₃)₃), 34.6 (*C*(CH₃)₃), 32.7 (C(*C*H₃)₃), 30.6 (C(*C*H₃)₃), 30.2 (NCH₂CH₂CH₂CH₃), 26.2 (-*C*H₂- of pyrrolidinyl), 21.9 (-*C*H₂- of pyrrolidinyl), 21.0 (NCH₂CH₂CH₂CH₃), 14.2 (NCH₂CH₂CH₂CH₃), 7.0 (N(Si(*C*H₃)₃)₂). Anal. Calcd. For C₃₇H₆₅N₃OSi₂Mg·0.25C₆H₁₄: C, 69.02; H, 10.31; N, 6.27. Found: C, 69.49; H, 9.96; N, 6.25%.

 $[(L^5)MgN(SiMe_3)_2](5)$. The procedure was same as that of $[(L^4)MgN(SiMe_3)_2](4)$, except that $L^{5}H$ (0.942 g, 1.50 mmol) and Mg[N(SiMe_3)_2]_2 (0.520 g, 1.50 mmol) were used to afford colorless crystals of $[(L^5)MgN(SiMe_3)_2](5)$ (0.456 g, 37.6%) as a mixture of two diasteromers in 5.7 : 1 (isomer 5a : isomer 5b). NMR spectroscopic data of 5a: ¹H NMR (400 MHz, C_6D_6): δ 7.97-7.90 (m, 6H, ArH), 7.37 (d, ${}^{4}J = 2.0$ Hz, 1H, ArH), 7.30-7.07 (m, 12H, ArH), 6.95-6.89 (m, 2H, ArH), 6.57 (d, ${}^{4}J = 2.0$ Hz, 1H, ArH), 4.38 (d, ${}^{2}J = 12.8$ Hz, 1H, ArCH₂N), 4.25 (d, ${}^{2}J = 14.0$ Hz, 1H, ArC H_2 N), 4.15 (d, ${}^{2}J = 14.0$ Hz, 1H, ArC H_2 N), 3.37 (d, ${}^{2}J = 12.8$ Hz, 1H, ArC H_2 N), 3.33-3.18 (m, 1H, NCH- of pyrrolidinyl), 2.32-2.13 (m, 2H, NCH₂- of pyrrolidinyl), 2.00 (s, 3H, ArCH₃), 1.97-1.89 (m, 2H, NCH₂CH₂CH₂CH₃), 1.80 (dd, ${}^{2}J = 14.0$, ${}^{3}J = 3.6$ Hz, 1H, NCH₂CH), 1.55-1.43 (m, 1H, NCH₂CH), 1.36-1.21 (m, 3H, -CH₂- of pyrrolidinyl & NCH₂CH₂CH₂CH₂CH₃), 1.20-1.05 (m, 2H, -CH₂- of pyrrolidinyl), 1.04-0.93 (m, 2H, NCH₂CH₂CH₂CH₃), 0.89 (t, ${}^{3}J = 7.0$ Hz, 3H, NCH₂CH₂CH₂CH₃), 0.59-0.47 (m, 1H, -CH₂- of pyrrolidinyl), 0.29 (s, 18H, Si(CH₃)₃). ¹³C {¹H} NMR (100 MHz, C₆D₆): δ 161.8, 136.4, 138.9, 138.6, 136.6, 133.4, 130.6, 129.7, 129.0, 127.9, 122. 7, 121.2 (All ArC), 63.6 (ArCH₂N), 60.1 (ArCH₂N), 59.8 (NCH₂- of pyrrolidinyl), 57.2 (NCH- of pyrrolidinyl), 55.6 (NCH₂CH), 54.4 (NCH₂CH₂CH₂CH₃), 31.6 (-CH₂- of pyrrolidinyl), 30.0 (CH₂CH₂CH₂CH₃), 23.1(-CH₂- of pyrrolidinyl), 21.4 (Ar-CH₃), 21.0 (CH₂CH₂CH₂CH₂CH₃), 14.7 (CH₂CH₂CH₂CH₃), 137.4 (Si(CH₃)₃). Anal. Calcd. for C₄₈H₆₅N₃OSi₃Mg: C, 72.37; H, 8.14; N, 4.92. Found: C, 71.93; H, 8.24; N, 5.08%.

 $[(L^6)MgN(SiMe_3)_2](6)$. The procedure was same as that of $[(L^4)MgN(SiMe_3)_2](4)$, except that L^6H (0.997 g, 1.50 mmol) and Mg[N(SiMe_3)_2]_2 (0.520 g, 1.50 mmol) were used to afford colorless crystals of $[(L^6)MgN(SiMe_3)_2](6)$ (0.856 g, 66.6%) as a mixture of two diasteromers in 7 : 1 (isomer **6a** : isomer **6b**). NMR spectroscopic data of **6a**: ¹H NMR (400 MHz, C₆D₆): δ 7.72-7.43 (m, 6H, Ar*H*), 7.28 (d, ⁴*J* = 2.0 Hz, 1H, Ar*H*), 7.15-7.07 (m, 8H, Ar*H*), 7.04-6.90 (m, 6H, Ar*H*), 6.53 (d, ⁴*J* = 2.0 Hz, 1H, Ar*H*), 4.38 (d, ²*J* = 12.8 Hz, 1H, Ar*CH*₂N), 4.23 (d, ²*J* = 14.0 Hz, 1H, Ar*CH*₂N), 3.44 (d, ²*J* = 12.8 Hz, 1H, Ar*CH*₂N), 3.36-3.20 (m, 1H, NC*H*- of pyrrolidinyl), 2.07 (s, 3H, Ar*CH*₃), 2.04-1.93 (m, 3H, NC*H*₂- of pyrrolidinyl & NC*H*₂CH), 1.75 (dd, ²*J* = 14.0, ³*J* = 3.6 Hz, 1H, NC*H*₂CH), 1.64-1.54 (m, 2H, NC*H*₂(C*H*₂)₅CH₂CH₃), 1.47-1.36 (m, 2H, -C*H*₂- of pyrrolidinyl), 1.38-1.21 (m, 10H,

NCH₂(CH₂)₅CH₂CH₃), 1.17-1.02 (m, 2H, N(CH₂)₆CH₂CH₃), 0.90 (t, ${}^{3}J = 6.9$ Hz, 1H, N(CH₂)₇CH₃), 0.87-0.72 (m, 1H, -CH₂- of pyrrolidinyl), 0.52-0.39 (m, 1H, -CH₂- of pyrrolidinyl), 0.32 (s, 18H, Si(CH₃)₃). 13 C { 1 H} NMR (100 MHz, C₆D₆): δ 163.2, 136.4, 134.4, 132.5, 131.8, 130.8, 129.2, 127.7, 125.6, 121.7, 120.9 (All ArC), 64.6 (ArCPh₃), 60.4 (ArCH₂N), 59.4 (ArCH₂N), 56.7 (NCH- of pyrrolidinyl), 55.8 (NCH₂- of pyrrolidinyl), 52.0 (NCH₂CH), 49.4 (NCH₂(CH₂)₆CH₃), 32.5 (NCH₂(CH₂)₆CH₃), 30.3 (-CH₂- of pyrrolidinyl), 30.2 (NCH₂(CH₂)₆CH₃), 28.7 (NCH₂(CH₂)₆CH₃), 28.3 (NCH₂(CH₂)₆CH₃), 25.3 (-CH₂- of pyrrolidinyl), 23.4 (NCH₂(CH₂)₆CH₃), 21.9 (ArCH₃), 21.2 (NCH₂(CH₂)₆CH₃), 14.7 (N(CH₂)₇CH₃), 7.4 (Si(CH₃)₃). Anal. Calcd. for C₅₃H₇₃N₂OSi₂Mg: C, 75.01; H, 8.67; N, 4.95; Found: C, 75.17; H, 8.60; N, 4.84%.

 $[(L^7)MgN(SiMe_3)_2](7)$. The procedure was same as that of $[(L^4)MgN(SiMe_3)_2](4)$, except that $L^{7}H$ (0.964 g, 1.50 mmol) and Mg[N(SiMe₃)₂]₂ (0.520 g, 1.50 mmol) were used to afford colorless crystals of $[(L^7)MgN(SiMe_3)_2](7)$ (0.511 g, 41.2%) as an diastereomer mixture product 7a : 7b = 2.5 : 1. ¹H NMR (400 MHz, C₆D₆): δ 7.58 (d, ³J = 7.2 Hz, 6H, ArH), 7.27 (d, ⁴J = 2.0 Hz, 1H, Ar*H*), 7.16-7.10 (m, 9H, Ar*H*), 7.04-6.94 (m, 10H, Ar*H*), 6.56 (d, ${}^{4}J = 2.0$ Hz, 1H, Ar*H*), 4.41 (d, ${}^{2}J$ = 13.2 Hz, 1H, ArCH₂N), 3.98 (d, ${}^{2}J$ = 14.0 Hz, 1H, ArCH₂N), 3.68 (d, ${}^{2}J$ = 12.8 Hz, 1H, ArCH₂N), 3.51 (d, ²*J* = 14.0 Hz, 1H, ArC*H*₂N), 3.46 (d, ²*J* = 13.2 Hz, 1H, ArC*H*₂N), 3.27-3.15 (m, 1H, NC*H*₂of pyrrolidinyl), 2.84 (d, J = 12.8 Hz, 1H, ArCH₂N), 2.09 (s, 1H, ArCH₃), 1.98 (t, ${}^{2}J = {}^{3}J = 13.6$ Hz, 1H, NCH₂CH), 1.84-1.74 (m, 1H, NCH₂- of pyrrolidinyl), 1.69-1.58 (m, 1H, NCH- of pyrrolidinyl), 1.51 (dd, ${}^{2}J = 14.0$, ${}^{3}J = 4.0$ Hz, 1H, NCH₂CH), 1.24-0.98 (m, 3H, -CH₂- of pyrrolidinyl), 0.86-0.70 (m, 1H, -CH₂- of pyrrolidinyl), 0.39 (s, 18H, Si(CH₃)₃). ^{13}C {¹H} NMR (100 MHz, C₆D₆): δ 162.9, 136.7, 135.8, 134.3 132.3, 132.2, 131.7, 131.5, 130.8, 129.6, 129.5, 129.3, 129.1, 127.9, 127.7, 125.6, 121.8, 120.9 (All ArC), 64.6 (ArCPh₃), 59.9 (ArCH₂N), 59.3 (ArCH₂N), 58.8 (ArCH₂N), 55.4 (NCH- of pyrrolidinyl), 51.5 (NCH₂- of pyrrolidinyl), 48.4 (NCH₂CH), 25.3 (-CH₂- of pyrrolidinyl), 21.9 (-CH2- of pyrrolidinyl), 21.2 (ArCH3), 7.6 (Si(CH3)3). Anal. Calcd. for C₅₂H₆₃N₃OSi₂Mg: C, 75.56; H, 7.68; N, 5.08. Found: C, 75.21; H, 7.82; N, 4.97%.

 $[(L^8)MgN(SiMe_3)_2](8)$. The procedure was same as that of $[(L^4)MgN(SiMe_3)_2](4)$, except that L^8H (0.988 g, 1.50 mmol) and Mg[N(SiMe_3)_2]_2 (0.520 g, 1.50 mmol) were used to afford colorless crystals of $[(L^8)MgN(SiMe_3)_2](8)$ (0.685 g, 41%) as an enantiopure product 8. ¹H NMR (400 MHz, C_6D_6): δ 8.39 (d, ³J = 8.7 Hz, 1H, ArH), 7.74–7.49 (m, 10H, ArH), 7.43–7.38 (m, 1H, ArH), 7.26–7.19 (m, 5H, ArH), 7.12–6.94 (m, 6H, ArH), 6.16 (d, ⁴J = 2.1 Hz, 1H, ArH), 5.07 (d, ²J = 14.6 Hz, 1H, ArCH₂N), 4.65 (d, ²J = 12.7 Hz, 1H, ArCH₂N), 4.43 (d, ²J = 14.7 Hz, 1H, ArCH₂N), 3.32 (d, ²J = 12.8 Hz, 1H, ArCH₂N), 3.40–3.29 (m, 1H, NCH- of pyrrolidinyl), 2.09–1.93 (m, 4H, NCH₂- of pyrrolidinyl), 0.96 (t, ³J = 7.1 Hz, 3H, NCH₂CH₂CH₂CH₃), 0.80–0.72 (m, 1H, -CH₂- of pyrrolidinyl), 0.51 (m, 1H, -CH₂- of pyrrolidinyl), 0.37 (s, 18H, Si(CH₃)₃). ¹³C {¹H} NMR (100

MHz, C_6D_6): δ 162.8, 135.6, 134.8, 134.6, 134.1, 131.6, 131.3, 130.1, 129.5, 127.5, 127.4, 127.3, 126.4, 125.2, 124.8, 124.1, 121.7, 120.5(All ArC), 64.2 (ArCPh₃), 61.1 (ArCH₂N), 60.0 (ArCH₂N), 56.1 (NCH- of pyrrolidinyl), 51.0 (NCH₂- of pyrrolidinyl), 50.7 (NCH₂CH), 48.1 (NCH₂CH₂CH₂CH₃), 30.3 (NCH₂CH₂CH₂CH₃), 24.9 (-CH₂- of pyrrolidinyl), 21.2(Ar-CH₃), 21.0 (-CH₂- of pyrrolidinyl), 20.6 (NCH₂CH₂CH₂CH₃), 14.1 (NCH₂CH₂CH₂CH₃), 7.1 (Si(CH₃)₃). Anal. Calcd. for C₅₃H₆₇N₃OSi₂Mg: C, 74.55; H, 8.01; N, 4.99; Found: C, 74.01; H, 8.17; N, 4.56%.

 $[(L^9)MgN(SiMe_3)_2](9)$. The procedure was same as that of $[(L^4)MgN(SiMe_3)_2](4)$, except that $L^{9}H$ (0.715 g, 1.00 mmol) and Mg[N(SiMe₃)₂]₂ (0.345 g, 1.00 mmol) were used to afford colorless crystals of $[(L^9)MgN(SiMe_3)_2](9)$ (0.449 g, 50%) as an enantiopure product 9. ¹H NMR (400 MHz, C_6D_6): δ 8.40 (d, ²J = 8.6 Hz, 1H), 7.70–7.53 (m, 10H, ArH), 7.45–7.39 (m, 1H, ArH), 7.29–7.20 (m, 5H, ArH), 7.13–6.98 (m, 6H, ArH), 6.17 (d, ${}^{2}J = 2.1$ Hz, 1H, ArH), 5.08 (d, ${}^{2}J = 14.6$ Hz, 1H, ArC H_2 N), 4.65 (d, ${}^{2}J = 12.6$ Hz, 1H, ArC H_2 N), 4.47 (d, ${}^{2}J = 14.7$ Hz, 1H, ArC H_2 N), 3.45–3.36 (m, 1H, NCH- of pyrrolidinyl), 3.33 (d, ${}^{2}J = 12.7$ Hz, 1H, ArCH₂N), 2.06–1.97 (m, 4H, NCH₂- of pyrrolidinyl & NCH₂CH), 1.90 (s, 3H, ArCH₃), 1.65–1.10 (m, 16H, -CH₂- of pyrrolidinyl, $N(CH_2)_7CH_3$, 0.91 (t, ${}^{3}J = 6.7$ Hz, 3H, $N(CH_2)_7CH_3$), 0.82–0.73 (m, 1H, -CH₂- of pyrrolidinyl), 0.55–0.46 (m, 1H, -CH₂- of pyrrolidinyl), 0.38 (s, 18H, Si(CH₃)₃). ¹³C {¹H} NMR (100 MHz, C₆D₆): δ 162.9, 135.5, 134.8, 134.6, 134.1, 131.6, 131.3, 130.1, 129.5, 129.3, 128.5, 127.5, 127.4, 126.4, 125.2, 124.8, 124.1(All ArC), 64.2 (ArCPh₃), 61.2 (ArCH₂N), 60.0 (ArCH₂N), 56.2 (NCH- of pyrrolidinyl), 51.1 (NCH₂- of pyrrolidinyl), 50.6 (NCH₂CH), 48.1 (NCH₂CH₂(CH₂)₅CH₃), 32.2 (NCH₂CH₂(CH₂)₅CH₃), 29.9 (-CH₂- of pyrrolidinyl), 29.9 (NCH₂CH₂(CH₂)₅CH₃), 28.4 (NCH₂CH₂(*C*H₂)₅CH₃), 27.9 (NCH₂CH₂(*C*H₂)₅CH₃), 25.0 (NCH₂CH₂(*C*H₂)₅CH₃), 23.0 (Ar-*C*H₃), 21.1 (-CH₂- of pyrrolidinyl), 20.7 (NCH₂CH₂(CH₂)₅CH₃), 14.3 (N(CH₂)₆CH₃), 7.2 (Si(CH₃)₃). Anal. Calcd. for C₅₇H₇₅N₃OSi₂Mg: C, 76.18; H, 8.41; N, 4.68; Found: C, 75.69; H, 7.98; N, 4.45 %.

 $[(L^{10})MgN(SiMe_3)_2](10)$. The procedure was same as that of $[(L^4)MgN(SiMe_3)_2](4)$, except that $L^{10}H$ (0.439 g, 1.00 mmol) and Mg[N(SiMe_3)_2]_2 (0.345 g, 1.00 mmol) were used to afford colorless crystals of $[(L^{10})MgN(SiMe_3)_2](10)$ (0.818 g, 71%) as an diastereomer mixture product 10a : 10b = 2 : 1. ¹H NMR (400 MHz, C₆D₆): δ 7.72 (d, ⁴J = 2.4 Hz, 1H, ArH), 7.56 (d, ³J = 7.2 Hz, 2H, ArH), 7.47 (d, ³J = 8.0 Hz, 3H, ArH), 7.25 (t, ³J = 7.6 Hz, 2H, ArH), 7.15-7.06 (m, 6H, ArH), 7.02 (t, ³J = 6.8 Hz, 2H, ArH), 6.83 (d, ⁴J = 2.4 Hz, 1H, ArH), 4.18 (d, ²J = 13.6 Hz, 1H, ArCH₂N), 3.90 (d, ²J = 13.6 Hz, 1H, ArCH₂N), 3.65 (d, ²J = 12.8 Hz, 1H, ArCH₂N), 3.47-3.36 (m, 1H, NCH₂-of pyrrolidinyl), 2.73-2.61 (m, 1H, NCH- of pyrrolidinyl), 2.51 (d, ²J = 12.8 Hz, 1H, ArCH₂N), 2.39-2.31 (m, 1H, NCH₂CH₃), 2.29 (s, 3H, C(CH₃)₂Ph), 2.08-1.91 (m, 2H, NCH₂CH), 1.88 (s, 3H, C(CH₃)₂Ph), 1.81 (s, 6H, C(CH₃)₂Ph), 1.74-1.56 (m, 2H, NCH₂- of pyrrolidinyl), 0.59 (t, ³J = 7.2 Hz, 3H, NCH₂CH₃), 0.56-0.49 (m, 1H, -CH₂- of pyrrolidinyl), 0.33 (s, 18H, Si(CH₃)₃). ¹³C {¹H}

NMR (100 MHz, C_6D_6): δ 163.3, 153.3, 153.0, 137.9, 132.5, 132.4, 132.0, 130.0, 129.1, 128.9, 128..5, 127.8, 127.5, 127.1, 126.3, 125.9, 124.9, 121.3 (All ArC), 59.5 (ArCH₂N), 56.4 (ArCH₂N), 55.8 (NCH- of pyrrolidinyl), 55.4 (NCH₂- of pyrrolidinyl), 54.5 (NCH₂CH), 51.0 (NCH₂CH₃), 43.7 (*C*(CH₃)₂Ph), 43.1 (*C*(CH₃)₂Ph), 34.2 (C(CH₃)₂Ph), 32.2 (C(CH₃)₂Ph), 31.9 (C(CH₃)₂Ph), 27.7 (C(CH₃)₂Ph), 26.2 (-CH₂- of pyrrolidinyl), 21.9 (-CH₂- of pyrrolidinyl), 13.5 (NCH₂CH₃), 6.9 (Si(CH₃)₃). Anal. Calcd. For C₄₅H₆₅N₃OSi₂Mg: C, 72.60; H, 8.80; N, 5.64. Found: C, 72.18; H, 8.69; N, 5.38%.

1.3 X-Ray diffraction measurements

Single crystals of complexes **3**, **4**, **5** and **10** were obtained from a mixture of toluene/*n*-hexane or benzene/*n*-hexane solution by slow evaporation at room or low temperature. The X-ray diffraction measurements were performed on a Bruker SMART APEX II diffractometer with graphite-monochromated Mo-K α (λ = 0.71073 Å) radiation. Complex 3 was collected at 130 K and the others were collected at 140 K using the ω -scan techniques. All the structures were solved by direct methods and refined using Fourier techniques. An absorption correction based on SADABS was applied.^[S3] All non-hydrogen atoms were refined by full-matrix least-squares on F^2 using the SHELXTL program package.^[S4] Hydrogen atoms were located and refined by the geometry method. The cell refinement, data collection, and reduction were done by Bruker SAINT.^[S5] The structure solution and refinement were performed by SHELXS-97^[S6] and SHELXL-97^[S7] respectively. For further crystal data and details of measurements see Tables S1 and S2. Molecular structures were generated using ORTEP program.^[S8] CCDC numbers 1450912 (**3**), 1450913 (**4**), 1450915 (**5**) and 1450914 (**10**) contain the supplementary crystallographic data for this paper.

1.4 Ring-opening polymerization of *rac*-lactide

Typical polymerization procedure. In a glove box, an initiator solution (0.5 mL, 10 mmol/mL) from a stock solution in toluene or THF was injected sequentially to a series of 10 mL vials loaded with *rac*-lactide (0.144 g, 1.00 mmol) and suitable amounts (0.5 mL) of the same dry solvent. The mixture was stirred at room temperature and quenched at the specific time intervals by adding an excess amount of normal light petroleum ether. After being dissolved with dichloromethane, a small amount of an aliquot of the bulk solution was withdrawn and dried under reduced pressure for monomer conversion determination via ¹H NMR spectroscopy. The bulk solution was slightly concentrated and the polymer was precipitated from dichloromethane via the addition of excess methanol. The collected polymer sample was further dried in a vacuum oven at 60 °C for 16 h to constant weight for gel permeation chromatography (GPC), ¹H and homonuclear decoupled ¹H NMR analyses. In the cases where 2-propanol was used, the monomer solution was injected to the

mixture. Otherwise the procedures were the same.

1.5 Ring-opening polymerization of *rac-β*-butyrolactone

In a glove box, an initiator solution (1.0 mL, 0.01 mmol/mL) in toluene was injected sequentially to a series of 10 mL vials loaded with rac-BBL (0.172 g, 2.0 mmol/mL). The mixture was stirred at room temperature and quenched at the specific time intervals by adding an excess amount of normal light petroleum ether. The reaction liquid was dissolved with dichloromethane, and then concentrated slightly. The polymer was precipitated from dichloromethane via the addition of excess methanol. The collected polymer sample was further dried in a vacuum oven at 60 °C for 16 h to constant weight. Monomer conversion rate is the ratio of the weight of the polymer and the monomer used. The collected polymer would be used for gel permeation chromatography (GPC) and ¹³C NMR analyses.

2. X-Ray Diffraction Studies

	3a/b	4a/b	5a	10b	
Empirical	C. H. Mg. N. O. Si	CooHeacMgNcOoSi	CueHarMgNaOSiarCaHa	C45H65MgN3OSi2	
formula	C62111061416214602014	C801113610161 602014	C48116514161430513 C/118		
Formula weight	564.25	1374.93	744.49	1296.15	
Temp (K)	130(2)	140(2)	140(2)	140(2)	
Crystal size (mm)	$0.25\times0.22\times0.18$	$0.30 \times 0.10 \times 0.02$	$0.20\times0.15\times0.10$	$0.357 \times 0.311 \times 0.269$	
Crystal system	Monoclinic	Monoclinic	Triclinic	Orthorhombic	
Space group			P 1	P 21 21 21	
a (Å)	14.6459(18)	10.578(3)	8.7667(15)	10.0092(4)	
<i>b</i> (Å)	13.6541(18)	17.438(5)	11.5603(19)	22.1908(9)	
<i>c</i> (Å)	18.104(2)	23.315(7)	12.315(2)	23.6773(9)	
α(°)	90	90	64.610(3)	90	
β (°)	111.227(2)°	100.208(5))	78.219(3)	90	
$\gamma(^{\circ})$	90	90	88.125(3)	90	
Volume(Å ³)	3374.8(7)	4233(2)	1101.7(3)	5259.0(4)	
Ζ	4	2	1	4	
Density _{calc} (mg/m ³)	1.111	1.079	1.122	1.138	
Abs coeff (mm ⁻¹)	0.150	0.130	0.130	1.242	
F(000)	1232	1508	404	1944	
θ range (°)	1.207 to 25.996	0.89 to 26.00	1.954 to 30.688	3.734 to 70.010	
Data collected (<i>hkl</i>)	-18 to 15, -14 to 16, ±22	-13 to 12, ±21, ±28	±12, -16 to 15, ±17	-10 to 11, -26 to 24, -28 to 26	
Reflns collected/unique	24894 / 11868	29633 / 16449	10913 / 9075	49130 / 9521	
R(int)	0.0647	0.0887	0.0258	0.1762	
Max. and min. transmn	0.7461 and 0.6748	0.9974 and 0.9620	0.7461 and 0.6483	0.7461 and 0.4989	
Data / restrains / para	11868 / 73 / 703	16449 / 35 / 873	9075 / 117 / 468	9521 / 0 / 578	
Goodness-of-fit on F^2	1.008	0.992	1.028	0.977	
Final R_1 , wR_2 [I > $2\sigma(I)$]	0.0673, 0.1493	0.0702, 0.1424	0.0580, 0.1528	0.0626, 0.1359	
R_1 , wR_2 (all data)	0.1247, 0.1796	0.1257, 0.1670	0.0714, 0.1728	0.1072, 0.1605	
$\Delta\rho_{max,\ min}\!/e\ \text{\AA}^{-3}$	1.063 and -0.357	1.177 and -0.613	1.024 and -0.851	0.389 and -0.394	

Tables S1. Crystallographic data and structure refinement for complexes 3a/b, 4a/b, 5a, 10b

3. ¹H NMR and ¹³C NMR Spectra of Complexes 1-10

Figure S1. ¹H NMR spectrum (C₆D₆, 400 MHz, 20 °C) of $[(S)-L^1]MgN(SiMe_3)_2$ (1) (*:impurity in C₆D₆; **: free HN[Si(CH₃)₂]₂).

Figure S2. ¹³C{¹H} NMR spectrum (C_6D_6 , 400 MHz, 20 °C) of $[(S)-L^1]MgN(SiMe_3)_2$ (1).

Figure S4. ¹³C{¹H} NMR spectrum (C_6D_6 , 400 MHz, 20 °C) of $[(S)-L^2]MgN(SiMe_3)_2$ (2).

Figure S6. ¹³C{¹H} NMR spectrum (C_6D_6 , 400 MHz, 20 °C) of $[(S)-L^3]MgN(SiMe_3)_2$ (3).

Figure S8. ¹³C{¹H} NMR spectrum (C_6D_6 , 400 MHz, 20 °C) of $[(S)-L^4]MgN(SiMe_3)_2$ (4).

Figure S10. ¹³C{¹H} NMR spectrum (C₆D₆, 400 MHz, 20 °C) of $[(S)-L^5]MgN(SiMe_3)_2$ (5).

Figure S11. ¹H NMR spectrum (C_6D_6 , 400 MHz, 20 °C) of $[(S)-L^6]MgN(SiMe_3)_2$ (**6**). (Δ :methyl signal of residual toluene; *:impurity in C_6D_6 ; **: free HN[Si(CH_3)_2]_2).

Figure S12. ¹³C{¹H} NMR spectrum (C_6D_6 , 400 MHz, 20 °C) of $[(S)-L^6]MgN(SiMe_3)_2$ (6).

Figure S14. ¹³C{¹H} NMR spectrum (C₆D₆, 400 MHz, 20 °C) of $[(S)-L^7]MgN(SiMe_3)_2$ (7).

Figure S16. ¹³C{¹H} NMR spectrum (C₆D₆, 400 MHz, 20 °C) of $[(S)-L^8]MgN(SiMe_3)_2$ (8).

Figure S18. ${}^{13}C{}^{1}H$ NMR spectrum (C₆D₆, 400 MHz, 20 °C) of [(S)-L⁹]MgN(SiMe₃)₂ (9).

Figure S21. ¹H NMR spectrum of the in situ NMR scale reaction of proligand **L**⁹H with Mg[N(SiMe₃)₂]₂ (C₆D₆; 400 MHz, 20 °C; *, HN(SiMe₃)₂).

4. Polymerization of *rac*-LA catalyzed by magnesium complexes 1-10

Run	Cat.	Feed Ratio	Solvent	Time (min)	$\operatorname{Conv.}_{^{b}(\%)}$	$\frac{M_{\rm c}}{(\times 10^4 {\rm g} \cdot {\rm mol}^{-1})}$	$\frac{M_{\rm n}^{\ d}}{(\times 10^4 {\rm g} \cdot {\rm mol}^{-1})}$	$\mathop{\mathrm{PDI}}_{d}$	$P_{\rm m}^{\ e}$
1	1	200:1:0	THF	5 h	15	n.d	n.d	n.d	0.50
2	1	200:1:1	THF	5 h	21	n.d	n.d	n.d	0.51
3	2	200:1:0	THF	72 h	62	1.78	2.09	1.32	0.50
4	2	200:1:1	THF	96 h	84	2.41	2.54	1.30	0.52
5	3	200:1:0	THF	2	92	2.65	2.98	1.36	0.44
6	3	200:1:1	THF	2	94	2.70	2.83	1.34	0.47
7	4	200:1:0	THF	4	96	2.76	2.79	1.45	0.38
8	4	200:1:1	THF	3	93	2.68	1.86	1.42	0.38
9	5	200:1:0	THF	15	92	2.65	5.14	1.57	0.27
10	5	200:1:1	THF	10	90	2.59	2.97	1.26	0.31
11	6	200:1:0	THF	15	93	2.68	3.89	1.72	0.26
12	6	200:1:1	THF	10	89	2.56	2.22	1.29	0.32
13	7	200:1:0	THF	18	90	2.59	1.61	1.36	0.36
14	7	200:1:1	THF	15	98	2.82	1.72	1.32	0.40
15	8	200:1:0	THF	2 h	94	2.70	3.36	1.32	0.51
16	8	200:1:1	THF	15	94	2.70	2.95	1.30	0.50
17	9	200:1:0	THF	2 h	90	2.56	2.91	1.35	0.46
18	9	200:1:1	THF	50	93	2.67	2.89	1.37	0.47
19	10	200:1:0	THF	10	93	2.68	4.25	1.40	0.36
20	10	200:1:1	THF	5	98	2.82	3.57	1.19	0.43

Table S2. Polymerization of *rac*-LA catalyzed by magnesium complexes 1-10 in THF^a

^{*a*} At 25 ± 1 °C, in tetrahydrofuran, $[rac-LA]_0 = 1.0$ M; ^{*b*} Determined by ¹H NMR spectroscopy; ^{*c*} $M_{n,Calcd} = ([LA]_0/[i^PrOH]_0) \times 144.13 \times \text{conv.\%} + 60$ or $([LA]_0/[Mg]_0) \times 144.13 \times \text{conv.\%} + 161$; ^{*d*} Determined by GPC; ^{*e*} P_r is the probability of forming a new *r*-dyad, determined by homonuclear decoupled ¹H NMR spectroscopy.

5. Microstructure Analysis of Poly(rac-lactide)s

Figure S22. De-convoluted homonuclear decoupled ¹H NMR spectra of PLAs obtained from *rac*-lactide by using **6** as initiator in toluene at -38 °C (CDCl₃, 400 MHz, $P_r = 0.81$).

Figure S23. De-convoluted homonuclear decoupled ¹H NMR spectra of PLAs obtained from *rac*-lactide by using **3** as initiator in toluene at 25 °C (CDCl₃, 400 MHz, $P_{\rm m} = 0.67$).

6. Microstructure Analysis of Poly(*rac-β*-butyrolactone)s

Figure S24. The methylene region of ¹³C {¹H} NMR spectrum(CDCl₃, 400 MHz, 25°C) of PHB prepared by ROP of *rac-β*-butytolactone with **7** as initiator in toluene ($P_r = 0.73$). $P_r = 2(rr)/[2(rr)+rm+mr]$, $rm = mr = P_r(1 - P_r)$, $mm = (1 - P_r)^2$, $rr = P_r^2$.

Figure S25. The methylene region of ¹³C {¹H} NMR spectrum(CDCl₃, 400 MHz, 25°C) of PHB prepared by ROP of *rac-β*-butytolactone with **3** as initiator in toluene ($P_r = 0.56$).

References

- [S1] a) H. Bürger, W. Sawodny, U. Wannagat, J. Organomet. Chem. 1965, 3, 113. b) G. S. Lannoye, S. M. Moerlein, D.Parkinson, M. J. Welch, J. Med. Chem. 1990, 33, 2430. c) M. B. Sassaman, J. Giovanelli, V. K. Soodc, W. C. Eckelman, Bioorg. Med. Chem. 1998, 6, 1759.
- [S2] H. Wang, Y. Yang, H. Ma submitted for publication.
- [S3] SADABS, Bruker Nonius area detector scaling and absorption correction, V2.05, Bruker AXS Inc., Madison, WI, 1996.
- [S4] G. M. Sheldrick, SHELXTL 5.10 for windows NT, Structure Determination Software Programs, Bruker Analytical X-ray Systems, Inc., Madison, WI, 1997.
- [S5] SAINT, Version 6.02, Bruker AXS Inc., Madison, WI, 1999.
- [S6] G. M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1990.
- [S7] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
- [S8] L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565. ORTEP-III for Windows-Version 2.0, University of Glasgow, 2008.