Tuning the Reactivity of Sp1 Zinc Finger with Platinum Complexes

Zhifeng Du, Raphael E. F. de Paiva, Yun Qu, and Nicholas Farrell

Supporting Information

1. Experimental Section

2. Table S1-S3
3. Figure S1-S8

Experimental Section

1. Materials

The complexes $\left[\mathrm{Pt}(\mathrm{en}) \mathrm{Cl}_{2}\right]$ (en $=$ ethylenediamine, common name for 1,2diaminoethane) and cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ (cis-DDP) were prepared by literature methods. Purity was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{195} \mathrm{Pt}$ NMR Spectroscopy, and Elemental Analysis (performed by QTI Laboratory, USA). All reagents were purchased from Sigma Aldrich, USA and used without further purification. The Sp1-F3 peptide (KKFACPECPKRFMSDHLSKHIKTHQNKK) and its short peptide mimic (ACPECP) were purchased from GenScript Corporation.

2. Preparation and characterization of the zinc finger

The procedure followed published methods ${ }^{1}$. The apopeptide was dissolved in deionized water at a concentration of 1 mM . Zinc acetate (1.2 molar eq.) was added to the solution and the pH was adjusted to 7.0 using $\mathrm{NH}_{4} \mathrm{OH}$. The zinc finger solution was incubated for 2 h at $37^{\circ} \mathrm{C}$ before recording any experiment. Secondary structure characterization of the zinc finger (ZF) was monitored using ESI-MS and CD spectroscopy.

3. Mass Spectrometry

For mass spectrometry experiments, all zinc finger samples were prepared in an aqueous solvent at 1 mM and incubated immediately with the appropriate concentration of metal complex, also in water. The reaction solutions were incubated at $37^{\circ} \mathrm{C}$ overnight and were sprayed using a final concentration of $\sim 100 \mu \mathrm{M}$. Experiments were carried out on an Orbitrap Velos from Thermo Electron Corporation operated in positive mode. Samples ($50 \mu \mathrm{~L}$) were diluted with methanol ($200 \mu \mathrm{~L}$) and directly infused at a flow rate of $1 \mu \mathrm{~L} / \mathrm{min}$ using a source voltage of 2.5 kV . The source temperature was maintained at $230^{\circ} \mathrm{C}$ throughout.

4. $\left\{{ }^{1} H,{ }^{15} N\right\}$ HSQC NMR Spectroscopy

For $\left\{{ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}\right\}$ HSQC NMR Spectroscopy the spectra were recorded at $22{ }^{\circ} \mathrm{C}$ on a Bruker AVANCE III 400 MHz and 600 MHz spectrometer fitted with a pulsed field gradient module. The ${ }^{1} \mathrm{H}$ NMR chemical shifts were internally referenced to TSP, the ${ }^{15} \mathrm{~N}$ chemical shifts externally referenced to ${ }^{15} \mathrm{NH}_{4} \mathrm{NO}_{3}$. The two-dimensional $\left\{{ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}\right\}$ HSQC spectra were recorded in phase sensitive mode using Echo/Antiecho-TPPI gradient selection. A total of 1024 points were acquired in the ${ }^{1} \mathrm{H}$ dimension and 96 complex points in the ${ }^{15} \mathrm{~N}$ dimension with 16 transients. $3 \mathrm{mM}\left[\mathrm{Pt}\left({ }^{15} \mathrm{~N}-\mathrm{en}\right) \mathrm{Cl}_{2}\right]$ was allowed to react with 1 eq. of $\mathrm{Spl-ZF} 3$ in $5 \% \mathrm{D}_{2} \mathrm{O} / 95 \% \mathrm{H}_{2} \mathrm{O}$, and the reaction was followed by $\left\{{ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}\right\}$ HSQC NMR spectroscopy on a Bruker Avance III 600 MHz NMR spectrometer (${ }^{1} \mathrm{H}, 600.1 \mathrm{MHz} ;{ }^{15} \mathrm{~N}, 60.8 \mathrm{MHz}$) with an inverse quadruple resonance (QXI) probe. $\left\{{ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}\right\}$ HSQC NMR spectra of ${ }^{15} \mathrm{~N}$-cisplatin with 1 eq. of Spl-ZF3 at 2 mM in $5 \% \mathrm{D}_{2} \mathrm{O} / 95 \% \mathrm{H}_{2} \mathrm{O}$ were recorded on a Bruker NanoBay Avance III 400 MHz NMR spectrometer (${ }^{1} \mathrm{H}, 400.0 \mathrm{MHz} ;{ }^{15} \mathrm{~N}, 40.5 \mathrm{MHz}$) with 5 mm Multinuclear broadband Fluorine Observe (BBFO). Other parameters are the same.

5. Circular Dichroism Spectroscopy

CD spectra were obtained in a JASCO J-1500 Spectropolarimeter (Jasco Corp., Tokyo, Japan) under N_{2} at a wavelength range $190-250 \mathrm{~nm}$ in a 0.1 cm cuvette path length at room temperature. Platinum complexes in different concentration were added to $50 \mu \mathrm{M}$ zinc-bound Sp1-ZF3 sample in 10 mM phosphate buffer at pH 7.0 . Samples were incubated for 30 h at $37^{\circ} \mathrm{C}$ prior to CD measurements.

To estimate secondary structure changes, circular dichroism spectra were deconvoluted using the webserver DichroWeb 2 following a protocol published previously ${ }^{3}$. Data acquired in the range $190-260 \mathrm{~nm}$ were used and ellipticity was converted to $\Delta \varepsilon$. Deconvolution was obtained using CDSSTR and reference set $\# 7^{4}$. CDSSTR is a modification of VARSLC4 which uses all possible combinations of a fixed number of proteins in the reference set. The parameters Helix1 and Helix 1 were combined, as well as Strand 1 and Strand 2.

6. Sp1-F2

and
Sp1-F3
structural
analysis
Figure S1 shows the sequence alignment between Sp1-ZF2 and SP1-ZF3. The descriptors selected for the analysis and comparison of Zn -bound residues are briefly explained. The amino acid accessibility is calculated according to SurfV program. ${ }^{5}$ ${ }^{J} P D$ shows 3 values: for the protein chain in isolation, for the protein chain in complex with the other chain (if) present in the PDB file and finally, a relative accessibility (the last one given by the table of absolute solvent accessible area for amino acids). Numerical values are expressed in \AA^{2}. Electrostatic Potential values are calculated using Delphi ${ }^{6}$ program according to the modifications done by Walter Rocchia ${ }^{7}$ and further adapted to ${ }^{\mathrm{J}} \mathrm{PD}$ requirements. The numerical values are expressed in kT / e.

7. Computational Modeling

The preliminary DFT-optimized structure was obtained after 32 geometry optimization steps using Orca 3.0. PBE0 was selected and def2-tzvp was used for Pt atoms. Solvent medium was taken into account using Cosmo (water). Chain of spheres (RIJCOSX) approximation was used for solving the Hartree-Fock exchange term and level shift was turned on.

Supporting Information - Tables

Table S1: Main species observed by mass spectrometry for the $1: 1$ reaction of cisDDP with the ZF3 of Sp 1 .

Species	Charge State	Observed m/z	Calculated m/z
$\mathrm{Pt} /$ apopeptide	$5+$	713.15	713.15
$\mathrm{Pt}_{2} /$ apopeptide	$5+$	751.74	751.74
$\mathrm{Pt}\left(\mathrm{NH}_{3}\right) /$ apopeptide	$5+$	716.35	716.55
$\mathrm{Pt}_{2}\left(\mathrm{NH}_{3}\right) /$ apopeptide	$5+$	755.14	755.14
$\mathrm{Pt} / \mathrm{ZF} 3$	$5+$	725.73	725.73
$\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} /$ apopeptide	$5+$	719.96	719.96
$\mathrm{Pt}_{2}\left(\mathrm{NH}_{3}\right)_{2} /$ apopeptide	$5+$	758.35	758.55
$\mathrm{Pt}\left(\mathrm{NH}_{3}\right) / \mathrm{ZF} 3$	$5+$	729.14	729.13

Table S2: Main species observed by mass spectrometry for the 1:1 reaction of $\left[\mathrm{PtCl}_{2}(\mathrm{en})\right]$ with the ZF 3 of Sp 1 .

Species	Charge State	Observed m/z	Calculated m/z
$\{\mathrm{Ptt}(\mathrm{en})\}_{2} /$ apopeptide	$5+$	775.77	775.76
$2[\mathrm{Pt}(\mathrm{en})] / \mathrm{ZF} 3$	$5+$	788.55	788.55
$2[\mathrm{Pt}(\mathrm{en})] \mathrm{Cl} / \mathrm{ZF} 3$	$5+$	795.75	795.74
$\mathrm{Pt}(\mathrm{en}) /$ apopeptide	$5+$	724.96	725.16
$2[\mathrm{Pt}(\mathrm{en}) \mathrm{Cl}] / \mathrm{ZF} 3$	$5+$	803.34	803.14
$2[\mathrm{Pt}(\mathrm{en})] \mathrm{Cl} /$ apopeptide	$5+$	782.96	782.96
$3[\mathrm{Pt}(\mathrm{en})] /$ apopeptide	$5+$	826.37	826.37
$3[\mathrm{Pt}(\mathrm{en})] \mathrm{Cl} /$ apopeptide	$5+$	833.77	833.76

Table S3. Comparison of relevant $\left\{{ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}\right\}$ and ${ }^{15} \mathrm{~N}$ NMR chemical shifts for Pt-S species formed from reactions of cisplatin and $\left[\mathrm{Pt}(\mathrm{en}) \mathrm{Cl}_{2}\right]$ with biomolecules.

Pt Reactant	S Reactant	Pt-S Product	$\left\{{ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}\right\}$ HSQC Shift	Ref.
$\left[\mathrm{Pt}(\mathrm{en}) \mathrm{Cl}_{2}\right.$]	GSSG	[$\left.\left\{\mathrm{Pt}(\mathrm{en})\left(\mu_{2}-\mathrm{SG}\right)\right\}_{2}\right]$	-10.0, 5.1	8
		Bridged Pt-S-Pt Macrochelate	$\begin{gathered} \hline-5.5,6.0 / 5.2 \\ -13.4,5.4 / 5.1 \end{gathered}$	
$\left[\mathrm{PtCl}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{en})\right]^{+}$	N-Ac-L-Met	$\left[\mathrm{Pt}\left(\left[{ }^{15} \mathrm{~N}\right] \mathrm{en}\right)(\mathrm{MeCO}-\mathrm{Met}-\mathrm{S}) \mathrm{C} 1\right]^{+}$	-8.7, 5.4	9
		$\left[\mathrm{Pt}\left(\left[{ }^{15} \mathrm{~N}\right] \mathrm{en}\right)\{\mathrm{MeCO}-\mathrm{Met}(2-)-\mathrm{S}, \mathrm{N}\}\right]$	$\begin{gathered} \hline-8.2,5.4 / 5.1 \\ -10.9,5.3 \end{gathered}$	
		$\left[\operatorname{Pt}\left(\left[{ }^{15} \mathrm{~N}\right] \mathrm{en}\right)\{\mathrm{MeCO}-\mathrm{Met}(1-)-\mathrm{S}, \mathrm{O}\}\right]^{+}$	-6.7, 6.0/5.6	
cis- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$	GSH	$\left.\left[\mathrm{Pt}\left({ }^{15} \mathrm{NH}_{3}\right)_{2}(\mu-\mathrm{GS})\right\}_{2}\right]^{2+}$	$-41.7{ }^{\text {a }}$	10
cis-DDP	NCP7-ZF2	$\mathrm{S}-\mathrm{Pt}-\mathrm{NH}_{3}$	$\begin{aligned} & \hline-41.6,3.6 \\ & -40.6,3.8 \end{aligned}$	11
$\left[\mathrm{Pt}(\mathrm{en}) \mathrm{Cl}_{2}\right]$	ZF3	$\mathrm{S}-\mathrm{Pt}-\mathrm{NH}_{2}$	$\begin{aligned} & -10.5,5.2 \\ & -8.2,5.3 \\ & -8.0,5.2 \end{aligned}$	This work
cis-DDP	ZF3	$\mathrm{S}-\mathrm{Pt}-\mathrm{NH}_{3}$	-41.7, 4.0	This work

${ }^{a}{ }^{15} \mathrm{~N}$ observed directly

Supporting Information - Figures

```
Query: 1SP1 chain: A, Length: 29
Subject: 1SP2 chain: A, Length: 31
Identities: 14/31, i.e., 48.28 % (query) and 45.16 % (subject)
Similars: 18/31, i.e., 62.07 % (query) and 58.06 % (subject)
    1SP1.A 1 KKFAC--PECPKRFMRSDHLSKHIKTHQNKK 29
    . | | | ||| ||| | .| .|| .|
    1SP2.A 1 RPFMCTWSYCGKRFTRSDELQRHKRTHTGEK 31
```

Figure S1. Smith-Waterman sequence alignment comparison for ZF2 and ZF3 (PDB entries 1SP2 and 1SP1 respectively). F3 is two residues shorter. Caption: Green identical residues; Pink - similar residues; Blue - sequence mismatch; Brown insertion/deletion.

Figure S2. ESI-MS spectra of A) Sp1-ZF3, the inset shows the theoretical isotope distribution of the peak at $\mathrm{m} / \mathrm{z} 858.67, \mathrm{~B})\left[\{\mathrm{Pt}(\mathrm{en})\}_{2}\right]$ /apopeptide species, the inset shows the theoretical isotope distribution of the peak.

Figure S3. $\left\{{ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}\right\}$ HSQC NMR spectra of $1: 1$ reaction of A) ${ }^{15} \mathrm{~N}$-cis-DDP with Sp1-ZF3 for 4 days. B) $\left[\mathrm{PtCl}_{2}\left({ }^{15} \mathrm{~N}\right.\right.$-en $\left.)\right]$ with $\mathrm{Sp} 1-\mathrm{ZF} 3$ for 24 h .

Figure S4. Circular dichroism spectra of the reaction of Sp1-ZF3 with A) cisplatin and B) $\left[\mathrm{PtCl}_{2}(\mathrm{en})\right]$ after 30 h incubation at $37^{\circ} \mathrm{C}$. Ratio of $[\mathrm{Pt}] /[$ protein $]: 0: 1,1: 1,2: 1$, 3:1. The red line shows the spectrum of apo-Sp1-ZF3 after addition of EDTA to remove zinc from the protein.

Figure S5. Secondary structure from CD spectrum deconvolution for Sp1-ZF3 incubated with platinum compounds in different molar ratios.

Figure S6. Contact interaction map for the zinc-coordinated residues of Sp1 Finger 2 (top) and Finger 3 (bottom).

Figure S7. MSSP analysis showing structurally aligned residues (MUSTANG 3.2.2) and comparing the descriptors (A) EP @ LHA and (B) Accessibility in isolation for every residues in the sequences of Sp1-ZF2 (PDB 1SP2) and Sp1-ZF3 (PDB 1SP1)

Figure S8. Detailed view of the Cys- X_{n}-Cys spacer region for Sp1-F2 (green) and Sp1-F3 (blue).

References

1. Q. A. de Paula, J. B. Mangrum and N. P. Farrell, J Inorg Biochem, 2009, 103, 1347-1354.
2. L. Whitmore and B. A. Wallace, Nucleic Acids Res., 2004, 32, W668-W673.
3. N. J. Greenfield, Nat. Protocols, 2007, 1, 2876-2890.
4. N. Sreerama and R. W. Woody, Anal. Biochem., 2000, 287, 252-260.
5. S. S., A. Nicholls and B. Honig, Biophys. J., 1992, 61, A174.
6. B. Honig and A. Nicholls, Science, 1995, 268, 1144-1149.
7. W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera and B. Honig, J Comput Chem, 2002, 23, 128-137.
8. P. del Socorro Murdoch, N. A. Kratochwil, J. A. Parkinson, M. Patriarca and P. J. Sadler, Angew. Chem. Int. Ed., 1999, 38, 2949-2951.
9. K. J. Barnham, Z. Guo and P. J. Sadler, J. Chem. Soc., Dalton Trans., 1996, 2867-2876.
10. T. G. Appleton, J. W. Connor, J. R. Hall and P. D. Prenzler, Inorg. Chem., 1989, 28, 20302037.
11. S. D. Tsotsoros, Y. Qu and N. P. Farrell, J Inorg Biochem, 2015, 143, 117-122.
