For submission to Dalton Transactions

Tuning the Reactivity of Sp1 Zinc Finger with Platinum Complexes

Zhifeng Du, Raphael E. F. de Paiva, Yun Qu, and Nicholas Farrell

Supporting Information

- 1. Experimental Section
- 2. Table S1-S3
- 3. Figure S1 S8

Experimental Section

1. Materials

The complexes $[Pt(en)Cl_2]$ (en = ethylenediamine, common name for 1,2diaminoethane) and *cis*- $[PtCl_2(NH_3)_2]$ (*cis*-DDP) were prepared by literature methods. Purity was confirmed by ¹H and ¹⁹⁵Pt NMR Spectroscopy, and Elemental Analysis (performed by QTI Laboratory, USA). All reagents were purchased from Sigma Aldrich, USA and used without further purification. The Sp1-F3 peptide (KKFACPECPKRFMSDHLSKHIKTHQNKK) and its short peptide mimic (ACPECP) were purchased from GenScript Corporation.

2. Preparation and characterization of the zinc finger

The procedure followed published methods¹. The apopeptide was dissolved in deionized water at a concentration of 1mM. Zinc acetate (1.2 molar eq.) was added to the solution and the pH was adjusted to 7.0 using NH₄OH. The zinc finger solution was incubated for 2 h at 37 °C before recording any experiment. Secondary structure characterization of the zinc finger (ZF) was monitored using ESI-MS and CD spectroscopy.

3. Mass Spectrometry

For mass spectrometry experiments, all zinc finger samples were prepared in an aqueous solvent at 1 mM and incubated immediately with the appropriate concentration of metal complex, also in water. The reaction solutions were incubated at 37° C overnight and were sprayed using a final concentration of ~100 μ M. Experiments were carried out on an Orbitrap Velos from Thermo Electron Corporation operated in positive mode. Samples (50 μ L) were diluted with methanol (200 μ L) and directly infused at a flow rate of 1 μ L/min using a source voltage of 2.5 kV. The source temperature was maintained at 230 °C throughout.

4. {¹H,¹⁵N} HSQC NMR Spectroscopy

For {¹H,¹⁵N} HSQC NMR Spectroscopy the spectra were recorded at 22 °C on a Bruker AVANCE III 400 MHz and 600 MHz spectrometer fitted with a pulsed field gradient module. The ¹H NMR chemical shifts were internally referenced to TSP, the ¹⁵N chemical shifts externally referenced to ¹⁵NH₄NO₃. The two-dimensional {¹H,¹⁵N} HSQC spectra were recorded in phase sensitive mode using Echo/Antiecho-TPPI gradient selection. A total of 1024 points were acquired in the ¹H dimension and 96 complex points in the ¹⁵N dimension with 16 transients. 3 mM [Pt(¹⁵N-en)Cl₂] was allowed to react with 1 eq. of Sp1-ZF3 in 5% D₂O/95% H₂O, and the reaction was followed by {¹H,¹⁵N} HSQC NMR spectroscopy on a Bruker Avance III 600 MHz NMR spectrometer (¹H, 600.1 MHz; ¹⁵N, 60.8 MHz) with an inverse quadruple resonance (QXI) probe. {¹H,¹⁵N} HSQC NMR spectra of ¹⁵N-cisplatin with 1 eq. of Sp1-ZF3 at 2 mM in 5% D₂O/95% H₂O were recorded on a Bruker NanoBay Avance III 400 MHz NMR spectrometer (¹H, 400.0 MHz; ¹⁵N, 40.5 MHz) with 5mm Multinuclear broadband Fluorine Observe (BBFO). Other parameters are the same.

5. Circular Dichroism Spectroscopy

CD spectra were obtained in a JASCO J-1500 Spectropolarimeter (Jasco Corp., Tokyo, Japan) under N₂ at a wavelength range 190–250 nm in a 0.1 cm cuvette path length at room temperature. Platinum complexes in different concentration were added to 50 μ M zinc-bound Sp1-ZF3 sample in 10 mM phosphate buffer at pH 7.0. Samples were incubated for 30 h at 37°C prior to CD measurements.

To estimate secondary structure changes, circular dichroism spectra were deconvoluted using the webserver DichroWeb² following a protocol published previously³. Data acquired in the range 190-260 nm were used and ellipticity was converted to $\Delta\epsilon$. Deconvolution was obtained using CDSSTR and reference set #7⁴. CDSSTR is a modification of VARSLC4 which uses all possible combinations of a fixed number of proteins in the reference set. The parameters Helix1 and Helix 1 were combined, as well as Strand 1 and Strand 2.

6. Sp1-F2 and Sp1-F3 structural analysis

Figure S1 shows the sequence alignment between Sp1-ZF2 and SP1-ZF3. The descriptors selected for the analysis and comparison of Zn-bound residues are briefly explained. The amino acid **accessibility** is calculated according to SurfV program.⁵ ^JPD shows 3 values: for the protein chain in isolation, for the protein chain in complex with the other chain (if) present in the PDB file and finally, a relative accessibility (the last one given by the table of absolute solvent accessible area for amino acids). Numerical values are expressed in Å². **Electrostatic Potential** values are calculated using Delphi⁶ program according to the modifications done by Walter Rocchia⁷ and further adapted to ^JPD requirements. The numerical values are expressed in kT/e.

7. Computational Modeling

The preliminary DFT-optimized structure was obtained after 32 geometry optimization steps using Orca 3.0. PBE0 was selected and def2-tzvp was used for Pt atoms. Solvent medium was taken into account using Cosmo (water). Chain of spheres (RIJCOSX) approximation was used for solving the Hartree-Fock exchange term and level shift was turned on.

Supporting Information - Tables

Table S1: Main species observed by mass spectrometry for the 1:1 reaction of *cis*-DDP with the ZF3 of Sp1.

Species	Charge State	Observed m/z	Calculated m/z
Pt/ apopeptide	5+	713.15	713.15
Pt ₂ / apopeptide	5+	751.74	751.74
Pt(NH ₃) / apopeptide	5+	716.35	716.55
Pt ₂ (NH ₃) / apopeptide	5+	755.14	755.14
Pt / ZF3	5+	725.73	725.73
Pt(NH ₃) ₂ / apopeptide	5+	719.96	719.96
Pt ₂ (NH ₃) ₂ / apopeptide	5+	758.35	758.55
Pt(NH ₃)/ZF3	5+	729.14	729.13

Table S2: Main species observed by mass spectrometry for the 1:1 reaction of $[PtCl_2 (en)]$ with the ZF3 of Sp1.

Species	Charge State	Observed m/z	Calculated m/z
${Pt(en)}_2$ / apopeptide	5+	775.77	775.76
2[Pt(en)] /ZF3	5+	788.55	788.55
2[Pt(en)]Cl/ZF3	5+	795.75	795.74
Pt(en) / apopeptide	5+	724.96	725.16
2[Pt(en)Cl] / ZF3	5+	803.34	803.14
2[Pt(en)]Cl / apopeptide	5+	782.96	782.96
3[Pt(en)] / apopeptide	5+	826.37	826.37
3[Pt(en)]Cl/ apopeptide	5+	833.77	833.76

Table S3.	Comparison	of	relevant { ¹ H, ¹⁵ N} and ¹⁵ N NMR chemical shifts for				
Pt-S species formed from reactions of cisplatin and [Pt(en)Cl ₂] with biomolecules.							

Pt Reactant	S Reactant	Pt-S Product	{ ¹ H, ¹⁵ N} HSQC Shift	Ref.	
[Pt(en)Cl ₂]	GSSG	$[\{Pt(en)(\mu_2-SG)\}_2]$	-10.0, 5.1		
		Bridged Pt-S-Pt Macrochelate	-5.5, 6.0/5.2	8	
			-13.4, 5.4/5.1		
[PtCl(H ₂ O)(en)] ⁺	N-Ac-L-Met	[Pt([¹⁵ N]en)(MeCO-Met-S)C1] ⁺	-8.7, 5.4	9	
		$[Pt([^{15}N]en)\{MeCO-Met(2-)-S,N\}]$	-8.2, 5.4/5.1		
			-10.9, 5.3		
		$[Pt([^{15}N]en){MeCO-Met(1-)-S,O}]^+$	-6.7, 6.0/5.6		
$cis-[Pt(NH_3)_2(H_2O)_2]^{2+}$	GSH	$[Pt(^{15}NH_3)_2(\mu-GS)]_2]^{2+}$	-41.7 a	10	
	NCP7-ZF2	S Dt NIH	-41.6, 3.6	11	
CIS-DDF		5-rt - INH ₃	-40.6, 3.8		
[Pt(en)Cl ₂]	ZF3		-10.5, 5.2	Thic	
		$S-Pt-NH_2$	-8.2, 5.3	work	
			-8.0, 5.2	WOIK	
	752	S Dt NIL	-41.7, 4.0	This	
CIS-DDF	253	5-r t-INIT ₃		work	

^{a 15}N observed directly

Supporting Information - Figures

Figure S1. Smith-Waterman sequence alignment comparison for ZF2 and ZF3 (PDB entries 1SP2 and 1SP1 respectively). F3 is two residues shorter. Caption: Green – identical residues; Pink – similar residues; Blue – sequence mismatch; Brown – insertion/deletion.

Figure S2. ESI-MS spectra of A) Sp1-ZF3, the inset shows the theoretical isotope distribution of the peak at m/z 858.67, B) $[{Pt(en)}_2]/apopeptide species, the inset shows the theoretical isotope distribution of the peak.$

Figure S3. { 1 H, 15 N} HSQC NMR spectra of 1:1 reaction of A) 15 N-*cis*-DDP with Sp1-ZF3 for 4 days. B) [PtCl₂ (15 N-en)] with Sp1-ZF3 for 24h.

Figure S4. Circular dichroism spectra of the reaction of Sp1-ZF3 with A) cisplatin and B) [PtCl₂(en)] after 30 h incubation at 37 °C. Ratio of [Pt]/[protein]: 0:1, 1:1, 2:1, 3:1. The red line shows the spectrum of apo-Sp1-ZF3 after addition of EDTA to remove zinc from the protein.

Figure S5. Secondary structure from CD spectrum deconvolution for Sp1-ZF3 incubated with platinum compounds in different molar ratios.

Figure S6. Contact interaction map for the zinc-coordinated residues of Sp1 Finger 2 (top) and Finger 3 (bottom).

Figure S7. MSSP analysis showing structurally aligned residues (MUSTANG 3.2.2) and comparing the descriptors (A) EP @ LHA and (B) Accessibility in isolation for every residues in the sequences of Sp1-ZF2 (PDB 1SP2) and Sp1-ZF3 (PDB 1SP1)

Figure S8. Detailed view of the Cys- X_n -Cys spacer region for Sp1-F2 (green) and Sp1-F3 (blue).

References

- 1. Q. A. de Paula, J. B. Mangrum and N. P. Farrell, *J Inorg Biochem*, 2009, **103**, 1347-1354.
- 2. L. Whitmore and B. A. Wallace, *Nucleic Acids Res.*, 2004, **32**, W668-W673.
- 3. N. J. Greenfield, Nat. Protocols, 2007, 1, 2876-2890.
- 4. N. Sreerama and R. W. Woody, Anal. Biochem., 2000, 287, 252-260.
- 5. S. S., A. Nicholls and B. Honig, *Biophys. J.*, 1992, **61**, A174.
- 6. B. Honig and A. Nicholls, *Science*, 1995, **268**, 1144-1149.
- 7. W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera and B. Honig, *J Comput Chem*, 2002, 23, 128-137.
- 8. P. del Socorro Murdoch, N. A. Kratochwil, J. A. Parkinson, M. Patriarca and P. J. Sadler, *Angew. Chem. Int. Ed.*, 1999, **38**, 2949-2951.
- 9. K. J. Barnham, Z. Guo and P. J. Sadler, J. Chem. Soc., Dalton Trans., 1996, 2867-2876.
- T. G. Appleton, J. W. Connor, J. R. Hall and P. D. Prenzler, *Inorg. Chem.*, 1989, 28, 2030-2037.
- 11. S. D. Tsotsoros, Y. Qu and N. P. Farrell, *J Inorg Biochem*, 2015, 143, 117-122.