SUPPLEMENTARY MATERIALS

Single-ion magnet behaviour in mononuclear and two-dimensional dicyanamidecontaining cobalt(II) complexes[†]

Anna Świtlicka–Olszewska*^a, Joanna Palion–Gazda^a, Tomasz Klemens^a, Barbara Machura^a, Julia Vallejo^b, Joan Cano^{b,c}, Franscesc Lloret^b, Miguel Julve^{*b}

^a Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40–006 Katowice, Poland, E–mail:anna.switlicka@gmail.com
^b Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol), Facultat de Química de la Universitat de València, C/ Catedrtico José Beltrán 2, 46980 Paterna, València, Spain. E–mail: <u>miguel.julve@uv.es</u>
^cFundació General de la Universitat de València (FGUV), Universitat de València, 96480 Paterna, València, Spain

D—H•••A	D—H	Н•••А	D•••A [Å]	D—H•••A [°]
Compound 1				
C(13)–H(13)•••N(97l)	0.93	2.61	3.419(4)	145.4
C(14)-H(14A)•••N(97m)	0.97	2.62	3.495(6)	150.1
Compound 2				
$C(2)-H(2) \bullet \bullet \bullet N(98n)$	0.93	2.51	3.407(6)	163.7
Compound 3				
C(15)-H(15C)•••N(94)	0.96	2.55	3.291(6)	133.9
Compound 4				
N(4)–H(4A)•••N(2o)	0.86	2.35	3.209(3)	174.3
N(4)–(H4B)•••N(97m)	0.86	2.25	3.083(3)	163.9
N(4)–(H4B)••••N(97m)	0.86	2.25	3.083(3)	163.

 Table S1. Short intra- and intermolecular contacts detected in the crystal structures of 1–4.

Symmetry transformations used to generate equivalent atoms: (l): x, 1+y, z; (m):-1/2+x, 1/2-y, -1/2+z; (n): -x, 1-y, 1-z; (o): 1/2-x, 1/2-y, 1-z.

Compound	$H^{a}\left(\mathrm{G} ight)$	$\tau_0^b \times 10^6 (\mathrm{s})$	E_{a}^{b} (cm ⁻¹)	α^{c}	$\chi_{\mathrm{S}^{c}} (\mathrm{cm}^{3}\mathrm{mol}^{-1})$	$\chi_{\mathrm{T}^{c}}$ (cm ³ mol ⁻¹)
1	1000	1.37	5.60	0.233 (2.5 K) 0.227 (3.0 K) 0.189 (3.5 K)	0329 (2.5 K) 0.281 (3.0 K) 0.255 (3.5 K)	1.044 (2.5 K) 0.898 (3.0 K) 0.775 (3.5 K)
1	2500	0.87	7.74	0.203 (2.5 K) 0.188 (3.0 K) 0.160 (3.5 K)	0.088 (2.5 K) 0.075 (3.0 K) 0.070 (3.5 K)	0.837 (2.5 K) 0.808 (3.0 K) 0.739 (3.5 K)
2	500	1.44	4.53	_	_	_
2	1000	1.54	5.33	0.115 (2.6 K) 0.095 (3.0 K) 0.066 (3.4 K)	0.202 (2.6 K) 0.182 (3.0 K) 0.172 (3.4 K)	0.649 (2.6 K) 0.577 (3.0 K) 0.515 (3.4 K)
2	2500	0.37	9.24	0.103 (2.6 K) 0.087 (3.0 K) 0.069 (3.4 K)	0.052 (2.6 K) 0.048 (3.0 K) 0.047 (3.4 K)	0.509 (2.6 K) 0.505 (3.0 K) 0.478 (3.4 K)
3	500	0.72	11.48	0.099 (5.5 K) 0.087 (6.0 K) 0.076 (6.5 K)	0.288 (5.5 K) 0.266 (6.0 K) 0.250 (6.5 K)	0.299 (5.5 K) 0.275 (6.0 K) 0.258 (6.5 K)
3	1000	0.63	13.81	0.047 (5.5 K) 0.042 (6.0 K) 0.056(6.5 K)	0.268 (5.5 K) 0.255 (6.0 K) 0.241 (6.5 K)	0.302 (5.5 K) 0.286 (6.0 K) 0.267 (6.5 K)
3	2500	0.71	15.44	0.158 (5.5 K) 0.060 (6.0 K) 0.021 (6.5 K)	0.260 (5.5 K) 0.240 (6.0 K) 0.227 (6.5 K)	0.293 (5.5 K) 0.285 (6.0 K) 0.269 (6.5 K)

Table S2. Selected *ac* magnetic data for 1, 2, and 3 at different *dc* applied fields.

^{*a*} Applied dc magnetic field. ^{*b*} The values of the pre–exponential factor (τ_0) and activation energy (E_a) are calculated through the Arrhenius law [$\tau = \tau_0 \exp(E_a/k_BT)$].^{*c*} The values of the α parameter, adiabatic (χ_S) and isothermal (χ_T) susceptibilities are calculated from the experimental data at different temperatures through the generalized Debye law (see text).

Figure S1. Solid reflectance spectra of 1–3.

Figure S3. X–ray powder diffraction pattern of **1** at room temperature, together with the calculated pattern from the single crystal data.

Figure S4. X–ray powder diffraction pattern of **2** at room temperature, together with the calculated pattern from the single crystal data.

Figure S5. X–ray powder diffraction pattern of **3** at room temperature, together with the calculated pattern from the single crystal data.

Figure S6. Frequency dependence of the in-phase (a) and out-of-phase (b) ac susceptibilities for 1 under an applied static field $H_{dc} = 1000$ G with a ±5.0 G oscillating field at frequencies in the range 1–10 kHz. The insets show the Cole–Cole plots at 2.5, 3.0 and 3.5 K (a) and the Arrhenius plot (b) in the high temperature region. The solid lines are the best fit curves (see Table S2).

Figure S7. Frequency dependence of the in-phase (a) and out-of-phase (b) ac susceptibilities for **2** under an applied static field $H_{dc} = 500$ G with a ± 5.0 G oscillating field at frequencies in the range 1–10 kHz. The insets show the Cole-Cole plots at 2.5, 3.0 and 3.5 K (a) and the Arrhenius plot (b) in the high temperature region. The solid lines are the best fit curves (see Table S2).

Figure S8. Frequency dependence of the in–phase (a) and out–of–phase (b) ac susceptibilities for **2** under an applied static field $H_{dc} = 1000$ G with a ±5.0 G oscillating field at frequencies in the range 1–10 kHz. The insets show the Cole–Cole plots at 2.4, 3.0 and 3.6 K (a) and the Arrhenius plot (b) in the high temperature region. The solid lines are the best fit curves (see Table S2).

T (K) **Figure S9.** Frequency dependence of the in-phase (a) and out-of-phase (b) ac susceptibilities for **3** under an applied static field $H_{dc} = 500$ G with a ± 5.0 G oscillating field at frequencies in the range 1–10 kHz. The insets show the Cole-Cole plots at 5.5, 6.0 and 6.5 K (a) and the Arrhenius plot (b) in the high temperature region. The solid lines are the best fit curves (see Table S2).

Figure S10. Frequency dependence of the in-phase (a) and out-of-phase (b) ac susceptibilities for **3** under an applied static field $H_{dc} = 1000$ G with a ± 5.0 G oscillating field at frequencies in the range 1–10 kHz. The insets show the Cole–Cole plots at 5.5, 6.0 and 6.5 K (a) and the Arrhenius plot (b) in the high temperature region. The solid lines are the best fit curves (see Table S2).