Supporting Information (SI)

High-Performance Fluorescent Sensing of Lanthanum ion

 (La^{3+}) by Polydentate Pyridyl-based Quinoxaline DerivativeSynthesis of HPDQ-La. In a tube, a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}(\mathrm{v}: \mathrm{v}=1: 1,10 \mathrm{~mL})$ was carefully layered over a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ solution of $\mathrm{HPDQ}(0.05 \mathrm{mmol})$ as a buffer layer, over which, a solution of $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was carefully added. This was left undisturbed at room temperature, and dark-yellow block-shaped crystals were harvested after about four weeks. FT-IR (KBr pellets, cm^{-} ${ }^{1}$): 1653w, 1575w, 1559w, 1458s, 1374s, 1302s, 1168m, 1033w, 1003w, 817w, 735w, 555w.

X-ray Data Collection and Structure Determinations.

X-ray single-crystal diffraction data for HPDQ-La was collected on a SCX-Mini diffractometer at 293(2) K with Mo-K α radiation $(\lambda=0.71073 \AA$) by ω scan mode. The program SAINT ${ }^{12}$ was used for integration of the diffraction profiles. All the structures were solved by direct methods using the SHELXS program of the SHELXTL package and refined by full-matrix least-squares methods with SHELXL (semi-empirical absorption corrections were applied using SADABS program). ${ }^{13}$ Metal atoms in each complex were located from E-maps and other non-hydrogen atoms were located in successive difference Fourier syntheses and refined with anisotropic thermal parameters on F^{2}. The hydrogen atoms of the ligands were generated theoretically onto the specific atoms and refined isotropically with fixed thermal factors.

Fig. S1 Fluorescence emission spectra of HPDQ $\left(1 \times 10^{-5} \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ upon addition of La^{3+}.

Fig. S2 Fluorescence emission spectra of $\operatorname{HPDQ}\left(5 \times 10^{-6} \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ upon addition of La^{3+}

Fig. S3 Fluorescence emission spectra $\left(\lambda_{\mathrm{ex}}=300 \mathrm{~nm}\right)$ of HPDQ $\left(5 \times 10^{-5} \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}(3$ mL) upon the addition of $\mathrm{Ce}^{3+}, \mathrm{Pr}^{3+}, \mathrm{Nd}^{3+}, \mathrm{Sm}^{3+}, \mathrm{Eu}^{3+}, \mathrm{Gd}^{3+}, \mathrm{Tb}^{3+}, \mathrm{Dy}^{3+}, \mathrm{Ho}^{3+}, \mathrm{Er}^{3+}, \mathrm{Tm}^{3+}, \mathrm{Yb}^{3+}$, Lu^{3+} (0-10 equiv.), the excitation and emission slit widths were 5 nm .

Fig.S4. The changes in UV/Vis spectra of HPDQ $\left(2 \times 10^{-5} \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ upon the addition of $\mathrm{Ce}^{3+}, \mathrm{Pr}^{3+}, \mathrm{Nd}^{3+}, \mathrm{Sm}^{3+}, \mathrm{Eu}^{3+}, \mathrm{Gd}^{3+}, \mathrm{Tb}^{3+}, \mathrm{Dy}^{3+}, \mathrm{Ho}^{3+}, \mathrm{Er}^{3+}, \mathrm{Tm}^{3+}, \mathrm{Yb}^{3+}, \mathrm{Lu}^{3+}$ ($0,1,2,3,4,5,6,7,8,9,10$ equiv.)

Fig. S5 Fluorescence responses of HPDQ to various metal ions in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$. The bars represent the final fluorescence intensity at 470 nm over the original emission at 405 nm . White bars represent the addition of 3 equiv of different metal ions to HPDQ. Black bars represent the subsequent addition of 3 equiv of La^{3+} to the solution.

Table S1. The planarity change of HPDQ upon La^{3+} coordination based on DFT optimization (in degree).

Table S2. Crystal data and structure refinement parameters for complex

Formula	$\mathrm{C}_{42} \mathrm{H}_{28} \mathrm{La}_{3} \mathrm{~N}_{21} \mathrm{O}_{29}$
Formula weight	1707.58
Temperature	$293(2) \mathrm{K}$
Crystal system	Monoclinic
space group	$\mathrm{P} 2 / \mathrm{c}$
a	$16.847(3) \mathrm{A}$
b	$16.642(3) \mathrm{A}$
c	$24.017(5) \mathrm{A}$
alpha	90 deg
beta	$101.64(3) \mathrm{deg}$
gamma	90 deg
Volume	$6595(2) \mathrm{A}^{\wedge} 3$
Z	4
Calculated density	$1.721 \mathrm{Mg} / \mathrm{m} \wedge 3$
Absorption coefficient	$2.005 \mathrm{~mm} \wedge-1$
$\mathrm{~F}(000)$	3320
Crystal size	$0.21 \times 0.20 \mathrm{x} 0.17 \mathrm{~mm}$
Theta range for data collection	2.98 to 25.01 deg
Limiting indices	$-20<=\mathrm{h}<=20,-19<=\mathrm{k}<=19,-28<=1<=28$
Reflections collected $/$ unique	$53616 / 11608[\mathrm{R}(\mathrm{int})=0.1064]$
Completeness to theta $=25.01$	99.8%
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.085
Final R indices $[\mathrm{I}>2$ sigma(I) $]$	$\mathrm{R} 1=0.0833, \mathrm{wR} 2=0.1817$
R indices (all data)	$\mathrm{R} 1=0.1287, \mathrm{wR} 2=0.2018$

Table S3. Bond lengths of $\mathrm{La}-\mathrm{N}$

$\mathrm{La}(1)-\mathrm{N}(4)$	$2.693(10)$
$\mathrm{L}(1)-\mathrm{N}(1)$	$2.714(10)$
$\mathrm{La}(1)-\mathrm{N}(2)$	$2.748(8)$
$\mathrm{La}(1)-\mathrm{N}(3)$	$2.763(8)$
$\mathrm{La}(2)-\mathrm{N}(15)$	$2.742(9)$
$\mathrm{La}(2)-\mathrm{N}(18)$	$2.747(8)$
$\mathrm{La}(2)-\mathrm{N}(17)$	$2.775(8)$
$\mathrm{La}(3)-\mathrm{N}(9)$	$2.755(8)$
$\mathrm{La}(3)-\mathrm{N}(10)$	$2.783(9)$
$\mathrm{La}(3)-\mathrm{N}(8)$	$2.795(9)$

