Supporting Information (SI)

High-Performance Fluorescent Sensing of Lanthanum ion (La³⁺) by Polydentate Pyridyl-based Quinoxaline Derivative

Qiang Zhao, Xiu-Ming Liu, Huan-Rong Li, Ying-Hui Zhang* and Xian-He Bu

Synthesis of HPDQ-La. In a tube, a CH_2Cl_2/CH_3CN (v: v = 1: 1, 10 mL) was carefully layered over a CH_2Cl_2 (3 mL) solution of HPDQ (0.05 mmol) as a buffer layer, over which, a solution of La(NO₃)₃. $6H_2O$ (0.15 mmol) in CH₃CN (3 mL) was carefully added. This was left undisturbed at room temperature, and dark-yellow block-shaped crystals were harvested after about four weeks. FT-IR (KBr pellets, cm⁻¹): 1653w, 1575w, 1559w, 1458s, 1374s, 1302s, 1168m, 1033w, 1003w, 817w, 735w, 555w.

X-ray Data Collection and Structure Determinations.

X-ray single-crystal diffraction data for **HPDQ-La** was collected on a SCX-Mini diffractometer at 293(2) K with Mo-K α radiation ($\lambda = 0.71073$ Å) by ω scan mode. The program SAINT¹² was used for integration of the diffraction profiles. All the structures were solved by direct methods using the SHELXS program of the SHELXTL package and refined by full-matrix least-squares methods with SHELXL (semi-empirical absorption corrections were applied using SADABS program).¹³ Metal atoms in each complex were located from *E*-maps and other non-hydrogen atoms were located in successive difference Fourier syntheses and refined with anisotropic thermal parameters on F^2 . The hydrogen atoms of the ligands were generated theoretically onto the specific atoms and refined isotropically with fixed thermal factors.

Fig. S1 Fluorescence emission spectra of HPDQ (1 \times 10⁻⁵ mol·L⁻¹) in CH₃CN (3 mL) upon

addition of La^{3+} .

 $Fig. \ S2 \ Fluorescence \ emission \ spectra \ of \ HPDQ \ (5 \times 10^{-6} \ mol \cdot L^{-1}) \ in \ CH_3 CN \ (3 \ mL) \ upon \ addition \ of \ La^{3+1} \ (3 \ mL) \ upon \ addition \ of \ La^{3+1} \ (3 \ mL) \ upon \ addition \ of \ La^{3+1} \ (3 \ mL) \ upon \ addition \ of \ La^{3+1} \ (3 \ mL) \ upon \ addition \ of \ La^{3+1} \ (3 \ mL) \ upon \ addition \ of \ La^{3+1} \ (3 \ mL) \ upon \ addition \ of \ La^{3+1} \ (3 \ mL) \ upon \ addition \ of \ La^{3+1} \ (3 \ mL) \ upon \ addition \ of \ La^{3+1} \ (3 \ mL) \ upon \ addition \ addition\ addition \ addition \ addition \ addition \ addition$

Fig. S3 Fluorescence emission spectra ($\lambda_{ex} = 300 \text{ nm}$) of HPDQ (5 × 10⁻⁵ mol·L⁻¹) in CH₃CN (3 mL) upon the addition of Ce³⁺, Pr³⁺, Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Tb³⁺, Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺, Yb³⁺, Lu³⁺ (0-10 equiv.), the excitation and emission slit widths were 5 nm.

Fig.S4. The changes in UV/Vis spectra of HPDQ (2 × 10⁻⁵ mol·L⁻¹) in CH₃CN (3 mL) upon the addition of Ce³⁺, Pr³⁺, Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Tb³⁺, Dy³⁺, Ho³⁺, Er³⁺, Tm³⁺, Yb³⁺, Lu³⁺ (0,1,2,3,4,5,6,7,8,9,10 equiv.)

Fig. S5 Fluorescence responses of HPDQ to various metal ions in CH₃CN (3 mL). The bars represent the final fluorescence intensity at 470 nm over the original emission at 405 nm. White bars represent the addition of 3 equiv of different metal ions to HPDQ. Black bars represent the subsequent addition of 3 equiv of La³⁺ to the solution.

Table S1. The planarity change of HPDQ upon La³⁺ coordination based on DFT optimization (in degree).

	Averaged dihedral 1	Averaged dihedral 2	
HPDQ	28.060	3.974	
HPDQ-La ₃	14.920	2.588	

Table S2. Crystal data and structure refinement parameters for complex

Formula	$C_{42}H_{28}La_3N_{21}O_{29}$
Formula weight	1707.58
Temperature	293(2) K
Crystal system	Monoclinic
space group	P2/c
a	16.847(3) A
b	16.642(3) A
с	24.017(5) A
alpha	90 deg
beta	101.64(3) deg
gamma	90 deg
Volume	6595(2) A^3
Ζ	4
Calculated density	1.721 Mg/m^3
Absorption coefficient	2.005 mm^-1
F(000)	3320
Crystal size	0.21 x 0.20 x 0.17 mm
Theta range for data collection	2.98 to 25.01 deg
Limiting indices	-20<=h<=20, -19<=k<=19, -28<=l<=28
Reflections collected / unique	53616 / 11608 [R(int) = 0.1064]
Completeness to theta $= 25.01$	99.8 %
Goodness-of-fit on F^2	1.085
Final R indices [I>2sigma(I)]	R1 = 0.0833, $wR2 = 0.1817$
R indices (all data)	R1 = 0.1287, wR2 = 0.2018

La(1)-N(4)	2.693(10)	
La(1)-N(1)	2.714(10)	
La(1)-N(2)	2.748(8)	
La(1)-N(3)	2.763(8)	
La(2)-N(15)	2.742(9)	
La(2)-N(18)	2.747(8)	
La(2)-N(17)	2.775(8)	
La(3)-N(9)	2.755(8)	
La(3)-N(10)	2.783(9)	
La(3)-N(8)	2.795(9)	

Table S3. Bond lengths of La -N