Supporting Information

Iron(II) β-ketiminate complexes as mediators of controlled radical polymerisation

Benjamin R. M. Lake^a and Michael. P. Shaver^{*a}

^aEaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 EJJ, UK.

<u>CONTENT</u>

GPC DATA

Table S1	ATRP of styrene
Table S2	ATRP of MMA
Table S3	OMRP of styrene
Table S4	OMRP of MMA
KINETIC DATA	
Figure S1	First-order kinetic plot for the OMRP of MMA mediated by complex 1a
NMR SPECTRA	
Figure S2	¹ H NMR spectrum of complex 1a (500 MHz, C_6D_6)
Figure S3	¹ H NMR spectrum of complex 2a (500 MHz, C ₆ D ₆)
Figure S4	¹ H NMR spectrum of complex 3a (500 MHz, THF-d ₈)
Figure S5	¹ H NMR spectrum of complex 4a (500 MHz, C_6D_6)
Figure S6	¹ H NMR spectrum of complex 1b (500 MHz, THF-d ₈)
Figure S7	¹ H NMR spectrum of complex 1c (500 MHz, THF-d ₈)
Figure S8	¹ H NMR spectrum of complex 3c (500 MHz, THF-d ₈)
X-RAY CRYSTALLOGR	APHIC DATA

Х-

Figure S9	Complex 1a
Figure S10	Complex 2a
Figure S11	Complex 3a
Figure S12	Complex 4a
Figure S13	Complex 1b
Figure S14	Complex 3b
Figure S15	Complex 1c
Figure S16	Complex 3c
Figure S17	Complex 3c'

GPC DATA

Table S1 ATRP of styrene^a

	Ph	[<u>Fe], 1-PEC</u> I toluene 120°C	Ph Ph	CI Ph	
Entry	Complex	Conv. (%)	M _{n,th} (Da)	M _n (Da)	Ð
S1	1a	34	3541	8362	1.78
S2	2a	24	2500	9377	1.76
S3	3a	22	2291	5366	1.66
S4	4a	23	2395	5892	1.74
S5	1b	23	2395	5057	1.69
S6	3b	19	1979	4935	1.70
S7	1c	21	2187	9312	1.74
S8	Зc	24	2500	4661	1.81

^a Conditions: [styrene]:[Fe^{II}]:[1-PECI] = 100:1.00:1.00, styrene:toluene = 1:1 (v/v), 120°C, 1 hour. Conversion determined by ¹H NMR spectroscopy. $M_{n,th} = [styrene]_0/[1-PECI]_0 \times M(styrene) \times conversion.$

Table S2 ATRP of MMA^a

Entry	Complex	Conv. (%)	M _{n,th} (Da)	Mn (Da)	Ð
S 9	1a	70	7008	14792	1.81
S10	2a	57	5707	19283	2.18
S11	3a	40	4005	12368	1.45
S12	4a	43	4305	13386	1.61
S13	1b	54	5406	15021	1.60
S14	3b	35	3504	15184	1.41
S15	1c	37	3704	28168	2.22
S16	3c	41	4105	15288	1.78

^a Conditions: [MMA]: $[Fe^{II}]$: [1-PECI] = 100:1.00:1.00, MMA: toluene = 1:1 (v/v), 120°C, 1 hour. Conversion determined by ¹H NMR spectroscopy. $M_{n,th} = [MMA]_0/[1-PECI]_0 \times M(MMA) \times conversion$.

Table S3 OMRP of styrene^a

		Ph	[Fe], AIBN toluene CN 110°C			
Entry	Complex	Conv. (%)	М п,th [АІВN] (Da)	Mn,th [Fe] (Da)	Mn (Da)	Ð
S17	1a	45	2343	4686	8254	2.16
S18	2a	49	2552	5104	8294	2.27
S19	3a	35	1823	3646	6213	1.58
S20	4a	36	1875	3750	6561	1.61
S21	1b	43	2239	4478	8786	2.06
S22	3b	31	1614	3228	6881	1.86
S23	1c	41	2135	4270	8361	2.32
\$24	30	39	2031	4062	7104	1 92

 $\label{eq:second} \begin{array}{|c|c|c|c|c|} \hline $S24$ & $3c$ & 39 & 2031 & 4062 & 7104 & 1.92 \\ \hline a Conditions: [styrene]:[Fe^{III}]:[AIBN] = 100:1.00:1.00, styrene:toluene = 1:1 (v/v), 110°C, 1 hour. Conversion determined by 1H NMR spectroscopy. $M_{n,th}$ [AIBN] = [styrene]_0/(2 x [AIBN]_0) \times M(styrene) \times conversion. $M_{n,th}$ [Fe] = [styrene]_0/[Fe] \times M(styrene) \times conversion. $M_{n,th}$ [Fe] = $M(styrene) \times$

Table S4 OMRP of MMA^a

Entry	Complex	Conv. (%)	Mn,th [AIBN] (Da)	M n,th [Fe] (Da)	Mn (Da)	Ð
S25	1a	73	3654	7308	11764	1.47
S26	2a	69	3454	6908	11704	1.37
S27	3a	13	651	1302	13862	1.49
S28	4a	22	1101	2202	11128	1.53
S29	1b	56	2803	5606	10229	1.45
S30	3b	36	1802	3604	10123	1.41
S31	1c	54	2703	5406	10734	1.33
S32	3c	9	451	902	b	b

^a Conditions: $[MMA]:[Fe^{II}]:[AIBN] = 100:1.00:1.00$, MMA:toluene = 1:1 (v/v), 110°C, 1 hour. Conversion determined by ¹H NMR spectroscopy. $M_{n,th [AIBN]} = [MMA]_0/(2 \times [AIBN]_0) \times M(MMA) \times conversion$. $M_{n,th [Fe]} = [MMA]_0/[Fe] \times M(MMA) \times conversion$. ^b Too little polymer obtained for GPC analysis.

KINETIC DATA

Figure S1 First-order kinetic plot for the OMRP of MMA mediated by complex 1a^a

^a Conditions: [MMA]:[**1a**]:[AIBN] = 100:1.00:1.00, MMA:toluene = 1:1 (v/v), 110°C. Conversion determined by ¹H NMR spectroscopy.

NMR SPECTRA

Figure S2 ¹H NMR spectrum of complex 1a (500 MHz, C₆D₆)

Figure S5 ¹H NMR spectrum of complex 4a (500 MHz, C₆D₆)

Note. The number of resonances observed in the ¹H NMR spectrum of **1b** is double what would be expected based on the solid state structure. It is possible that multiple spectroscopically distinct species (e.g. monomers, dimers, etc.) are present in solution, thus giving rise to the higher than expected number of resonances. Combustion analysis and solution magnetic moment data together confirm the expected empirical formula of this complex.

Figure S7 ¹H NMR spectrum of complex 1c (500 MHz, THF-d₈)

Note. A number of resonances corresponding to residual solvent (toluene and n-hexane) are apparent in the above spectrum, despite the spectrum being obtained from a 'dry' crystalline sample of complex **1c**. The appearance of residual solvent presumably arises through release of crystal lattice solvent on dissolution in THF- d_8 (see **Figure S15** for x-ray structure).

Figure S8 ¹H NMR spectrum of complex 3c (500 MHz, THF-d₈)

Note. A number of resonances corresponding to residual solvent (toluene and n-hexane) are apparent in the above spectrum, despite the spectrum being obtained from a 'dry' crystalline sample of complex **3c**. The appearance of residual solvent presumably arises through release of crystal lattice solvent on dissolution in THF- d_8 (see **Figure S16** for x-ray structure).

X-RAY CRYSTALLOGRAPHIC DATA

Figure S9 Complex 1a

Refinement method	Full
Data / restraints / parameters	6463 / 0 / 209
Goodness of fit	1.055
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0393, wR_2 = 0.0773$
R indices (all data)	$R_1 = 0.0537, wR_2 = 0.0826$
Largest diff. peak and hole	0.4 and -0.261e.Å ⁻³

Figure S10 Complex 2a

Size

Ζ

F(000)	856
Data collection range	$2.735 \le \theta \le 31.12^\circ$
Index ranges	$-17 \le h \le 17, -13 \le k \le 13, -26 \le l \le 27$
Reflections collected	44886
Independent reflections	6597 [<i>R</i> (int) = 0.0339]
Observed reflections	5798 [<i>l</i> >2σ(<i>l</i>)]
Absorption correction	Gaussian
Max. and min. transmission	0.878 and 0.702
Refinement method	Full
Data / restraints / parameters	6597 / 0 / 216
Goodness of fit	1.074
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0282, wR_2 = 0.0661$
R indices (all data)	$R_1 = 0.035, wR_2 = 0.0697$
Largest diff. peak and hole	0.366 and -0.232e.Å ⁻³

Figure S11 Complex 3a

Space group	P21/c	
Unit cell dimensions	<i>a</i> = 15.8709(5) Å	α = 90°
	<i>b</i> = 16.3660(5) Å	$\beta=103.421(3)^\circ$
	<i>c</i> = 8.6899(3) Å	γ = 90°
Volume	2195.50(12) Å ³	
Ζ	4	
Density (calculated)	1.227 Mg/m ³	
Absorption coefficient	0.805 mm ⁻¹	
F(000)	864	
Data collection range	$2.712 \le \theta \le 29.665^\circ$	
Index ranges	$-21 \le h \le 21, -22 \le k \le 22, -1$	$12 \le l \le 10$
Reflections collected	38643	
Independent reflections	5793 [<i>R</i> (int) = 0.0574]	
Observed reflections	4655 [<i>l</i> >2σ(<i>l</i>)]	
Absorption correction	Gaussian	
Max. and min. transmission	0.977 and 0.905	
Refinement method	Full	
Data / restraints / parameters	5793 / 0 / 225	
Goodness of fit	1.063	
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0434, wR_2 = 0.0845$	
R indices (all data)	$R_1 = 0.0615, wR_2 = 0.0915$	
Largest diff. peak and hole	0.435 and -0.311e.Å ⁻³	

CCDC Code	1470310		
Formula	C ₁₈ H ₃₃ FeN ₃ O ₂ Si ₂		
Formula weight	435.5		
Size	0.4065 x 0.174 x 0.1573 mn	n	
Crystal morphology	Green block		
Temperature	120.00(10) K		
Wavelength	0.71073 Å [Mo- <i>K</i> α]		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	<i>a</i> = 8.8657(6) Å	$\alpha=90.425(4)^\circ$	
	<i>b</i> = 10.8724(6) Å	$\beta = 100.153(5)^{\circ}$	
	<i>c</i> = 12.2568(5) Å	γ = 97.601(5)°	
Volume	1152.16(11) Å ³		
Ζ	2		
Density (calculated)	1.255 Mg/m ³		
Absorption coefficient	0.774 mm ⁻¹		
F(000)	464		
Data collection range	$2.814 \le \theta \le 31.03^\circ$		
Index ranges	$-12 \le h \le 11, -15 \le k \le 14, -1$.7 ≤ <i>l</i> ≤ 17	
Reflections collected	24682		
Independent reflections	6749 [<i>R</i> (int) = 0.0535]		
Observed reflections	5501 [/ >2σ(/)]		
Absorption correction	Gaussian		
Max. and min. transmission	0.952 and 0.905		
Refinement method	Full		
Data / restraints / parameters	6749 / 0 / 244		
Goodness of fit	1.06		
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0428, wR_2 = 0.0996$		
R indices (all data)	$R_1 = 0.0555, wR_2 = 0.1088$		
Largest diff. peak and hole	0.715 and -0.491e.Å ⁻³		

Figure S13 Complex 1b

Data / restraints / parameters	4970/0/194
Goodness of fit	1.086
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0318$, $wR_2 = 0.0707$
R indices (all data)	$R_1 = 0.0359, wR_2 = 0.0723$
Largest diff. peak and hole	0.494 and -0.284e.Å ⁻³

Figure S14 Complex 3b

Note. Crystals of complex **3b** were generally observed to be of very poor quality. However, a suitable single crystal was eventually found and a data set obtained. The asymmetric unit of complex **3b** was found to contain two crystallographically-distinct [Fe(L)OBn] units, with each representing half of a (μ^2 -OBn)₂ bridged dimer. The two halves of each dimer are crystallographically related through inversion. After some preliminary structural refinement, a very large residual electron density peak was observed in the vicinity of Fe2, along with further, more diffuse electron density. Therefore, the [Fe(L)OBn] unit initially containing Fe2 was modelled as being split over two positions with SOFs of 0.75 for the major component (containing Fe2A) and 0.25 for the minor component (containing Fe2B). One of the β -ketiminate methyl groups (C23) was best modelled as being common to both disorder components. Unfortunately, the OBn group of the minor disorder component appeared disordered further, and could not be satisfactorily refined without the use of EADP constraints. Therefore, this group was refined isotropically. The disordered nature of this structure accounts for the large number of checkCIF alerts.

	O(1') O(2') e(1') Fe(1) O(2) O(1) O(1) N(2) N(2)	
CCDC Code	1470324	
Formula	$C_{36}H_{40}Fe_2N_4O_4$	
Formula weight	704.42	
Size	0.1677 x 0.1112 x 0.0678 m	ım
Crystal morphology	Dark red plate	
Temperature	120.00(10) K	
Wavelength	1.54184 Å [Cu- <i>K</i> α]	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	<i>a</i> = 8.2528(4) Å	α = 90°
	<i>b</i> = 18.5226(6) Å	$\beta=119.539(7)^\circ$
	<i>c</i> = 24.7956(13) Å	γ = 90°
Volume	3297.7(3) Å ³	

Ζ	4
Density (calculated)	1.419 Mg/m ³
Absorption coefficient	7.42 mm ⁻¹
F(000)	1472
Data collection range	$3.145 \le \theta \le 76.889^\circ$
Index ranges	$-6 \le h \le 10, -23 \le k \le 23, -31 \le l \le 30$
Reflections collected	53543
Independent reflections	6864 [<i>R</i> (int) = 0.1062]
Observed reflections	5515 [<i>l</i> >2σ(<i>l</i>)]
Absorption correction	multi-scan
Max. and min. transmission	1 and 0.54604
Refinement method	Full
Data / restraints / parameters	6864 / 5 / 553
Goodness of fit	1.2
Final R indices $[l > 2\sigma(l)]$	$R_1 = 0.0861, wR_2 = 0.1848$
R indices (all data)	$R_1 = 0.102, wR_2 = 0.1922$
Largest diff. peak and hole	0.689 and -0.506e.Å ⁻³

Figure S15 Complex 1c

Note. The asymmetric unit of complex **1c** was found to consist of two structurally analogous dimers (only one shown below), and two regions of co-crystallised solvent. One region could be easily modelled as a molecule of toluene with an SOF of 1. The contents of the additional solvent region were a little less clear, though could be modelled as containing either one molecule of toluene (SOF = 0.66) or one molecule of hexane (SOF = 0.33) (this explains the non-integer value in the chemical formula shown below). A number of geometric and ADP constraints/restraints were required to generate chemically sensible structures of the disordered solvent.

Formula weight	1031.9	
Size	0.47 x 0.27 x 0.06 mm	
Crystal morphology	Orange plate	
Temperature	120.00(10) K	
Wavelength	0.71073 Å [Mo- <i>K</i> α]	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	<i>a</i> = 34.0413(13) Å	α = 90°
	<i>b</i> = 15.5968(6) Å	$\beta = 98.031(3)^{\circ}$
	<i>c</i> = 20.4395(7) Å	γ = 90°
Volume	10745.7(7) Å ³	
Ζ	8	
Density (calculated)	1.276 Mg/m ³	
Absorption coefficient	0.59 mm ⁻¹	
F(000)	4368	
Data collection range	$2.747 \le \theta \le 25.351^\circ$	
Index ranges	$-41 \le h \le 40, -18 \le k \le 18, -2$	24 ≤ <i>l</i> ≤ 23
Reflections collected	157681	
Independent reflections	19635 [<i>R</i> (int) = 0.0987]	
Observed reflections	15942 [<i>l</i> >2σ(<i>l</i>)]	
Absorption correction	Gaussian	
Max. and min. transmission	0.998 and 0.99	
Refinement method	Full	
Data / restraints / parameters	19635 / 17 / 1311	
Goodness of fit	1.121	
Final R indices $[l > 2\sigma(l)]$	$R_1 = 0.0608, wR_2 = 0.1085$	
R indices (all data)	$R_1 = 0.0819, wR_2 = 0.1158$	
Largest diff. peak and hole	0.747 and -0.487e.Å ⁻³	

Figure S16 Complex 3c

Note. Regions of diffuse, poorly resolved electron density were observed in the crystalline lattice, but could not be modelled satisfactorily as solvent (toluene or hexane). This residual electron density was removed using the SQUEEZE routine in PLATON. In all, electron density (125 electrons) pertaining to 2.5 molecules of toluene (or hexane) per unit cell was removed. This is included in the chemical formula and as a result produces many errors in checkCIF which should be ignored.

CCDC Code	1470384	
Formula	$C_{62.38}H_{57}Fe_2N_4O_4$	
Formula weight	1038.32	
Size	0.3462 x 0.2548 x 0.0594 m	ım
Crystal morphology	Orange block	
Temperature	120.00(10) K	
Wavelength	0.71073 Å [Mo- <i>K</i> _α]	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	<i>a</i> = 12.7953(2) Å	α = 90°
	<i>b</i> = 14.0417(3) Å	$\beta=91.2680(17)^\circ$
	<i>c</i> = 30.0899(6) Å	γ = 90°
Volume	5404.83(18) ų	
Ζ	4	
Density (calculated)	1.276 Mg/m ³	
Absorption coefficient	0.588 mm ⁻¹	
F(000)	2173	
Data collection range	$2.937 \le \theta \le 28.281^\circ$	
Index ranges	$-17 \le h \le 17, -18 \le k \le 18, -4$	$10 \le l \le 40$
Reflections collected	140618	
Independent reflections	13322 [<i>R</i> (int) = 0.0579]	
Observed reflections	11966 [<i>l</i> >2σ(<i>l</i>)]	
Absorption correction	Multi-scan	
Max. and min. transmission	1 and 0.89445	
Refinement method	Full	
Data / restraints / parameters	13322/0/617	

Goodness of fit	1.191
Final <i>R</i> indices $[l > 2\sigma(l)]$	$R_1 = 0.0749, wR_2 = 0.1619$
R indices (all data)	$R_1 = 0.086, wR_2 = 0.1672$
Largest diff. peak and hole	0.794 and -0.641e.Å ⁻³

Figure S17 Complex 3c'

Ζ

Reflections collected	52301
Independent reflections	8832 [<i>R</i> (int) = 0.0691]
Observed reflections	8288 [<i>l</i> >2σ(<i>l</i>)]
Absorption correction	multi-scan
Max. and min. transmission	1 and 0.77371
Refinement method	Full
Data / restraints / parameters	8832 / 0 / 546
Goodness of fit	1.046
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0471, wR_2 = 0.1214$
R indices (all data)	$R_1 = 0.0498$, $wR_2 = 0.1251$
Largest diff. peak and hole	0.624 and -0.916e.Å ⁻³