### Supplementary Information for

A novel 1,3,5-triaminocyclohexane-based tripodal ligand forms a unique tetra(pyrazolate)-bridged tricopper(II) core: solution equilibrium, structure and catecholase activity

Attila Szorcsik<sup>a</sup>, Ferenc Matyuska<sup>b</sup>, Attila Bényei<sup>c</sup>, Nóra V. Nagy<sup>d</sup>, Róbert K. Szilágyi<sup>e</sup> and Tamás Gajda<sup>a,b,\*</sup>

<sup>a</sup> HAS-USZ Bioinorganic Chemistry Research Group, Dóm tér 7, H-6720 Szeged, Hungary
<sup>b</sup> Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
<sup>c</sup> Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
<sup>d</sup> Institute of Organic Chemistry, Research Centre for Natural Sciences HAS, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
<sup>e</sup> Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA and Department of Analytical Chemistry, Faculty of Engineering, University of Pannonia, Veszprém, 8201, Hungary



Figure S1: Calculated (top) and measured (bottom) (HR)ESI-MS spectra of tachpyz  $(C_{18}H_{27}N_9)$ .



Figure S2: <sup>1</sup>H-NMR spectrum of tachpyz at pH = 3.5 in 10%-90% D<sub>2</sub>O/H<sub>2</sub>O ([tachpyz] = 0.0028 M).

 Table S1 Crystallographic data of 1.

| $\boxed{C_{36}H_{50}Cu_3N_{18}\cdot 2(ClO_4)\cdot 4(H_2O)\cdot O}$ | F(000) = 2500                                  |
|--------------------------------------------------------------------|------------------------------------------------|
| $M_r = 1212.52$                                                    | $D_{\rm x} = 1.673 {\rm ~Mg~m^{-3}}$           |
| Monoclinic, $P2_1/c$                                               | Cu K $\alpha$ radiation, $\lambda = 1.54184$ Å |
| a = 13.0393 (2)  Å                                                 | Cell parameters from 14467 reflections         |
| b = 28.5503 (4)  Å                                                 | $\theta = 3.7 - 73.4^{\circ}$                  |
| c = 13.3878 (2) Å                                                  | $\mu = 3.26 \text{ mm}^{-1}$                   |
| $\beta = 105.004 \ (2)^{\circ}$                                    | T = 100  K                                     |
| $V = 4814.04 (13) \text{ Å}^3$                                     | Needle, brown                                  |
| <i>Z</i> = 4                                                       | $0.4 \times 0.06 \times 0.02 \text{ mm}$       |

#### Crystal data

#### Data collection

| SuperNova, Dual, Cu at zero, Atlas<br>diffractometer                                                                                                                                                                                                                                                                                                                                                                       | 9485 independent reflections                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Radiation source: sealed X-ray tube, SuperNova<br>(Cu) X-ray Source                                                                                                                                                                                                                                                                                                                                                        | 8187 reflections with $I > 2\sigma(I)$                                   |
| Mirror monochromator                                                                                                                                                                                                                                                                                                                                                                                                       | $R_{\rm int} = 0.029$                                                    |
| Detector resolution: 10.5908 pixels mm <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                       | $\theta_{\text{max}} = 73.5^{\circ},  \theta_{\text{min}} = 3.1^{\circ}$ |
| $\omega$ scans                                                                                                                                                                                                                                                                                                                                                                                                             | $h = -16 \rightarrow 16$                                                 |
| Absorption correction: multi-scan<br><i>CrysAlis PRO</i> , Agilent Technologies, Version<br>1.171.37.35 (release 13-08-2014 CrysAlis171<br>.NET) (compiled Aug 13 2014,18:06:01)<br>Empirical absorption correction using spherical<br>harmonics, implemented in SCALE3<br>ABSPACK scaling algorithm. Empirical<br>absorption correction using spherical harmonics,<br>implemented in SCALE3 ABSPACK scaling<br>algorithm. | <i>k</i> = -35→35                                                        |
| $T_{\min} = 0.720, \ T_{\max} = 1.000$                                                                                                                                                                                                                                                                                                                                                                                     | <i>l</i> = -16→16                                                        |
| 35344 measured reflections                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          |

## Refinement

| Refinement on $F^2$             | Hydrogen site location: mixed                                                                                            |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | H-atom parameters constrained                                                                                            |
| $R[F^2 > 2\sigma(F^2)] = 0.074$ | $w = 1/[\sigma^2(F_o^2) + (0.1399P)^2 + 13.6362P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                     |
| $wR(F^2) = 0.225$               | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                                      |
| <i>S</i> = 1.04                 | $\Delta \lambda_{\rm max} = 1.48 \ {\rm e} \ {\rm \AA}^{-3}$                                                             |
| 9485 reflections                | $\Delta$ <sub>min</sub> = -1.38 e Å <sup>-3</sup>                                                                        |
| 681 parameters                  | Extinction correction: <i>SHELXL</i> ,<br>Fc*=kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(2 $\theta$ )] <sup>-1/4</sup> |
| 123 restraints                  | Extinction coefficient: 0.00039 (8)                                                                                      |

| C1—N1    | 1.489 (7)  | C61—N62  | 1.318 (8)  |
|----------|------------|----------|------------|
| C1—C6    | 1.529 (8)  | C61—C65  | 1.364 (9)  |
| C1—C2    | 1.530 (8)  | N62—N63  | 1.363 (7)  |
| С1—Н1    | 1.0000     | N63—C64  | 1.265 (10) |
| C2—C3    | 1.530 (8)  | N63—H63  | 0.8800     |
| С2—Н2В   | 0.9900     | C64—C65  | 1.364 (9)  |
| C2—H2C   | 0.9900     | С64—Н64  | 0.9500     |
| C3—N2    | 1.489 (6)  | С65—Н65  | 0.9500     |
| C3—C4    | 1.523 (7)  | C70—N52  | 1.493 (7)  |
| С3—Н3    | 1.0000     | С70—С73  | 1.496 (7)  |
| C4—C5    | 1.525 (8)  | С70—Н70А | 0.9900     |
| C4—H4A   | 0.9900     | С70—Н70В | 0.9900     |
| С4—Н4В   | 0.9900     | C73—N72  | 1.335 (6)  |
| C5—N3    | 1.492 (7)  | С73—С74  | 1.388 (7)  |
| C5—C6    | 1.534 (9)  | C74—C75  | 1.392 (7)  |
| С5—Н5    | 1.0000     | С74—Н74  | 0.9500     |
| С6—Н6А   | 0.9900     | C75—N71  | 1.348 (6)  |
| С6—Н6В   | 0.9900     | С75—Н75  | 0.9500     |
| C10-C11  | 1.463 (10) | C80—N53  | 1.481 (7)  |
| C10—N1   | 1.470 (7)  | C80—C83  | 1.495 (7)  |
| C10—H10A | 0.9900     | C80—H80A | 0.9900     |
| С10—Н10В | 0.9900     | С80—Н80В | 0.9900     |
| C11—C15  | 1.252 (18) | C83—N82  | 1.343 (6)  |
| C11—N12  | 1.39 (2)   | C83—C84  | 1.387 (8)  |
| N12—N13  | 1.358 (16) | C84—C85  | 1.380 (8)  |
| N12—H92  | 0.8800     | С84—Н84  | 0.9500     |
| N13—C14  | 1.39 (2)   | C85—N81  | 1.336 (6)  |
| C14—C15  | 1.265 (17) | С85—Н85  | 0.9500     |
| C14—H14  | 0.9500     | Cl1—O14  | 1.243 (10) |
| С15—Н15  | 0.9500     | Cl1—O11  | 1.389 (8)  |
| C20—C23  | 1.488 (7)  | Cl1—O12  | 1.453 (9)  |
| C20—N2   | 1.491 (6)  | Cl1—O13  | 1.723 (17) |
| C20—H20A | 0.9900     | Cl2—O24A | 1.25 (3)   |
| С20—Н20В | 0.9900     | Cl2—O24  | 1.354 (13) |
| C23—N22  | 1.350 (6)  | Cl2—O21  | 1.383 (13) |
| C23—C24  | 1.385 (6)  | Cl2—O21A | 1.39 (3)   |
| C24—C25  | 1.394 (7)  | C12—O23A | 1.433 (11) |
| C24—H24  | 0.9500     | Cl2—O23  | 1.454 (9)  |

**Table S2** Full list of bond length (Å) and bond angle (°) data for 1.

| C25—N21  | 1.345 (6) | Cl2—O22      | 1.47 (2)  |
|----------|-----------|--------------|-----------|
| С25—Н25  | 0.9500    | Cl2—O22A     | 1.68 (3)  |
| C30—N3   | 1.488 (7) | Cu1—N22      | 1.936 (3) |
| C30—C33  | 1.504 (7) | Cu1—N32      | 1.954 (4) |
| С30—Н30А | 0.9900    | Cu1—N3       | 2.030 (4) |
| С30—Н30В | 0.9900    | Cu1—N2       | 2.049 (4) |
| C33—N32  | 1.340 (6) | Cu1—N1       | 2.219 (5) |
| C33—C34  | 1.375 (7) | Cu2—N81      | 1.960 (4) |
| C34—C35  | 1.396 (7) | Cu2—N21      | 1.962 (4) |
| С34—Н34  | 0.9500    | Cu2—N31      | 1.971 (4) |
| C35—N31  | 1.343 (6) | Cu2—N71      | 1.973 (4) |
| С35—Н35  | 0.9500    | Cu3—N82      | 1.931 (4) |
| C51—N51  | 1.485 (6) | Cu3—N72      | 1.946 (4) |
| C51—C56  | 1.523 (8) | Cu3—N53      | 2.040 (4) |
| C51—C52  | 1.523 (8) | Cu3—N52      | 2.041 (4) |
| С51—Н51  | 1.0000    | Cu3—N51      | 2.262 (4) |
| C52—C53  | 1.520 (7) | N1—H1A       | 1.0000    |
| С52—Н52В | 0.9900    | N2—H2A       | 1.0000    |
| С52—Н52С | 0.9900    | N3—H3A       | 1.0000    |
| C53—N52  | 1.507 (6) | N21—N22      | 1.350 (5) |
| C53—C54  | 1.537 (9) | N31—N32      | 1.352 (5) |
| С53—Н53  | 1.0000    | N51—H51A     | 1.0000    |
| C54—C55  | 1.521 (8) | N52—H52A     | 1.0000    |
| С54—Н54А | 0.9900    | N53—H53A     | 1.0000    |
| С54—Н54В | 0.9900    | N71—N72      | 1.358 (5) |
| C55—N53  | 1.502 (6) | N81—N82      | 1.346 (5) |
| C55—C56  | 1.530 (7) | O1W—H81      | 0.8408    |
| С55—Н55  | 1.0000    | O1W—H82      | 0.8420    |
| С56—Н56А | 0.9900    | O2W—H21      | 0.8426    |
| С56—Н56В | 0.9900    | O2W—H22      | 0.8426    |
| C60—N51  | 1.461 (7) | O3W—H31      | 0.8417    |
| C60—C61  | 1.510 (7) | O3W—H32      | 0.8405    |
| С60—Н60А | 0.9900    | O4W—H41      | 0.8412    |
| С60—Н60В | 0.9900    | O4W—H42      | 0.8432    |
|          |           |              |           |
| N1—C1—C6 | 111.3 (4) | С61—С65—Н65  | 127.1     |
| N1—C1—C2 | 108.4 (4) | N52—C70—C73  | 108.8 (4) |
| C6—C1—C2 | 112.7 (5) | N52—C70—H70A | 109.9     |
| N1—C1—H1 | 108.1     | С73—С70—Н70А | 109.9     |
| С6—С1—Н1 | 108.1     | N52—C70—H70B | 109.9     |

| С2—С1—Н1      | 108.1      | С73—С70—Н70В  | 109.9      |
|---------------|------------|---------------|------------|
| C1—C2—C3      | 115.2 (5)  | H70A—C70—H70B | 108.3      |
| С1—С2—Н2В     | 108.5      | N72—C73—C74   | 109.1 (4)  |
| С3—С2—Н2В     | 108.5      | N72—C73—C70   | 116.7 (4)  |
| С1—С2—Н2С     | 108.5      | С74—С73—С70   | 134.2 (4)  |
| С3—С2—Н2С     | 108.5      | C73—C74—C75   | 104.3 (4)  |
| H2B—C2—H2C    | 107.5      | С73—С74—Н74   | 127.8      |
| N2—C3—C4      | 108.7 (4)  | С75—С74—Н74   | 127.8      |
| N2—C3—C2      | 113.5 (4)  | N71—C75—C74   | 110.1 (4)  |
| C4—C3—C2      | 111.1 (5)  | N71—C75—H75   | 124.9      |
| N2—C3—H3      | 107.8      | С74—С75—Н75   | 124.9      |
| С4—С3—Н3      | 107.8      | N53—C80—C83   | 108.8 (4)  |
| С2—С3—Н3      | 107.8      | N53—C80—H80A  | 109.9      |
| C3—C4—C5      | 114.2 (5)  | С83—С80—Н80А  | 109.9      |
| С3—С4—Н4А     | 108.7      | N53—C80—H80B  | 109.9      |
| С5—С4—Н4А     | 108.7      | С83—С80—Н80В  | 109.9      |
| С3—С4—Н4В     | 108.7      | H80A—C80—H80B | 108.3      |
| С5—С4—Н4В     | 108.7      | N82—C83—C84   | 108.7 (4)  |
| H4A—C4—H4B    | 107.6      | N82—C83—C80   | 116.7 (4)  |
| N3—C5—C4      | 109.3 (4)  | C84—C83—C80   | 134.5 (5)  |
| N3—C5—C6      | 112.9 (5)  | C85—C84—C83   | 104.5 (4)  |
| C4—C5—C6      | 110.6 (5)  | С85—С84—Н84   | 127.7      |
| N3—C5—H5      | 108.0      | С83—С84—Н84   | 127.7      |
| С4—С5—Н5      | 108.0      | N81—C85—C84   | 110.1 (5)  |
| С6—С5—Н5      | 108.0      | N81—C85—H85   | 124.9      |
| C1—C6—C5      | 114.7 (4)  | С84—С85—Н85   | 124.9      |
| С1—С6—Н6А     | 108.6      | 014—Cl1—O11   | 113.9 (5)  |
| С5—С6—Н6А     | 108.6      | O14—Cl1—O12   | 110.8 (7)  |
| С1—С6—Н6В     | 108.6      | O11—Cl1—O12   | 108.9 (5)  |
| С5—С6—Н6В     | 108.6      | O14—Cl1—O13   | 114.6 (6)  |
| Н6А—С6—Н6В    | 107.6      | 011—Cl1—O13   | 98.8 (6)   |
| C11—C10—N1    | 116.4 (6)  | O12—Cl1—O13   | 109.1 (5)  |
| С11—С10—Н10А  | 108.2      | O24—Cl2—O21   | 107.3 (11) |
| N1—C10—H10A   | 108.2      | O24A—Cl2—O21A | 118 (2)    |
| C11—C10—H10B  | 108.2      | O24A—C12—O23A | 121.4 (18) |
| N1—C10—H10B   | 108.2      | O21A—Cl2—O23A | 118.1 (14) |
| H10A—C10—H10B | 107.3      | O24—Cl2—O23   | 118.0 (11) |
| C15—C11—N12   | 101.7 (9)  | O21—Cl2—O23   | 107.2 (9)  |
| C15—C11—C10   | 138.7 (16) | O24—Cl2—O22   | 111.3 (10) |
| N12—C11—C10   | 119.1 (13) | O21—Cl2—O22   | 110.7 (11) |

| N13—N12—C11   | 108.6 (12) | O23—Cl2—O22   | 102.2 (9)   |
|---------------|------------|---------------|-------------|
| N13—N12—H92   | 125.7      | O24A—Cl2—O22A | 97.7 (19)   |
| C11—N12—H92   | 125.7      | O21A—Cl2—O22A | 98 (2)      |
| N12—N13—C14   | 105.9 (12) | 023A—Cl2—O22A | 89.9 (11)   |
| C15—C14—N13   | 103.4 (11) | N22—Cu1—N32   | 98.23 (15)  |
| С15—С14—Н14   | 128.3      | N22—Cu1—N3    | 164.03 (18) |
| N13—C14—H14   | 128.3      | N32—Cu1—N3    | 82.76 (17)  |
| C11—C15—C14   | 120.3 (15) | N22—Cu1—N2    | 82.78 (16)  |
| С11—С15—Н15   | 119.8      | N32—Cu1—N2    | 158.42 (17) |
| С14—С15—Н15   | 119.8      | N3—Cu1—N2     | 90.51 (17)  |
| C23—C20—N2    | 108.3 (4)  | N22—Cu1—N1    | 101.20 (17) |
| С23—С20—Н20А  | 110.0      | N32—Cu1—N1    | 106.91 (16) |
| N2—C20—H20A   | 110.0      | N3—Cu1—N1     | 93.69 (17)  |
| С23—С20—Н20В  | 110.0      | N2—Cu1—N1     | 93.92 (17)  |
| N2-C20-H20B   | 110.0      | N81—Cu2—N21   | 136.45 (15) |
| H20A—C20—H20B | 108.4      | N81—Cu2—N31   | 95.71 (16)  |
| N22—C23—C24   | 109.1 (4)  | N21—Cu2—N31   | 100.51 (15) |
| N22—C23—C20   | 115.9 (4)  | N81—Cu2—N71   | 102.63 (16) |
| C24—C23—C20   | 135.0 (4)  | N21—Cu2—N71   | 96.67 (15)  |
| C23—C24—C25   | 104.1 (4)  | N31—Cu2—N71   | 130.86 (15) |
| С23—С24—Н24   | 128.0      | N82—Cu3—N72   | 98.22 (15)  |
| С25—С24—Н24   | 128.0      | N82—Cu3—N53   | 82.20 (16)  |
| N21—C25—C24   | 110.4 (4)  | N72—Cu3—N53   | 162.11 (16) |
| N21—C25—H25   | 124.8      | N82—Cu3—N52   | 166.36 (15) |
| С24—С25—Н25   | 124.8      | N72—Cu3—N52   | 82.00 (17)  |
| N3—C30—C33    | 108.5 (4)  | N53—Cu3—N52   | 93.42 (17)  |
| N3—C30—H30A   | 110.0      | N82—Cu3—N51   | 102.76 (15) |
| С33—С30—Н30А  | 110.0      | N72—Cu3—N51   | 103.76 (15) |
| N3—C30—H30B   | 110.0      | N53—Cu3—N51   | 93.51 (16)  |
| С33—С30—Н30В  | 110.0      | N52—Cu3—N51   | 90.37 (15)  |
| H30A—C30—H30B | 108.4      | C10—N1—C1     | 114.8 (5)   |
| N32—C33—C34   | 109.6 (4)  | C10—N1—Cu1    | 112.2 (3)   |
| N32—C33—C30   | 115.8 (4)  | C1—N1—Cu1     | 110.3 (3)   |
| C34—C33—C30   | 134.6 (4)  | C10—N1—H1A    | 106.3       |
| C33—C34—C35   | 104.3 (4)  | C1—N1—H1A     | 106.3       |
| С33—С34—Н34   | 127.8      | Cu1—N1—H1A    | 106.3       |
| С35—С34—Н34   | 127.8      | C3—N2—C20     | 115.3 (4)   |
| N31—C35—C34   | 109.7 (4)  | C3—N2—Cu1     | 113.5 (3)   |
| N31—C35—H35   | 125.1      | C20—N2—Cu1    | 110.4 (3)   |
| С34—С35—Н35   | 125.1      | C3—N2—H2A     | 105.6       |

| N51_C51_C56   | 111 0 (4) | C20_N2_H2A                                           | 105.6     |
|---------------|-----------|------------------------------------------------------|-----------|
| N51—C51—C52   | 110.0 (4) | Cu1—N2—H2A                                           | 105.6     |
| $C_{56}$      | 111.7 (5) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 115.6 (4) |
| N51 C51 H51   | 107.7     | $C_{20}$ N3 $C_{11}$                                 | 110.0 (3) |
| N51-C51-H51   | 107.7     | C5 N2 C-1                                            | 110.0 (3) |
| C50-C51-H51   | 107.7     | $C_{20}$ N2 H2 A                                     | 114.7 (3) |
| C52—C51—H51   | 114.7 (4) | C5 N2 H2A                                            | 105.1     |
| C53-C52-C51   | 114.7 (4) | C5—N3—H3A                                            | 105.1     |
| C53—C52—H52B  | 108.6     | Cu1—N3—H3A                                           | 105.1     |
| C51—C52—H52B  | 108.6     | C25—N21—N22                                          | 107.0 (4) |
| С53—С52—Н52С  | 108.6     | C25—N21—Cu2                                          | 128.3 (3) |
| С51—С52—Н52С  | 108.6     | N22—N21—Cu2                                          | 124.5 (3) |
| H52B—C52—H52C | 107.6     | C23—N22—N21                                          | 109.4 (3) |
| N52—C53—C52   | 113.1 (4) | C23—N22—Cu1                                          | 115.9 (3) |
| N52—C53—C54   | 109.4 (4) | N21—N22—Cu1                                          | 131.5 (3) |
| C52—C53—C54   | 110.6 (5) | C35—N31—N32                                          | 107.4 (4) |
| N52—C53—H53   | 107.9     | C35—N31—Cu2                                          | 130.8 (3) |
| С52—С53—Н53   | 107.9     | N32—N31—Cu2                                          | 120.5 (3) |
| С54—С53—Н53   | 107.9     | C33—N32—N31                                          | 108.9 (4) |
| C55—C54—C53   | 114.5 (4) | C33—N32—Cu1                                          | 116.1 (3) |
| С55—С54—Н54А  | 108.6     | N31—N32—Cu1                                          | 133.6 (3) |
| С53—С54—Н54А  | 108.6     | C60—N51—C51                                          | 114.8 (4) |
| С55—С54—Н54В  | 108.6     | C60—N51—Cu3                                          | 113.4 (3) |
| С53—С54—Н54В  | 108.6     | C51—N51—Cu3                                          | 109.8 (3) |
| H54A—C54—H54B | 107.6     | C60—N51—H51A                                         | 106.0     |
| N53—C55—C54   | 109.0 (4) | C51—N51—H51A                                         | 106.0     |
| N53—C55—C56   | 112.4 (4) | Cu3—N51—H51A                                         | 106.0     |
| C54—C55—C56   | 111.1 (5) | C70—N52—C53                                          | 115.2 (4) |
| N53—C55—H55   | 108.1     | C70—N52—Cu3                                          | 110.2 (3) |
| С54—С55—Н55   | 108.1     | C53—N52—Cu3                                          | 114.2 (3) |
| С56—С55—Н55   | 108.1     | C70—N52—H52A                                         | 105.4     |
| C51—C56—C55   | 115.3 (4) | C53—N52—H52A                                         | 105.4     |
| С51—С56—Н56А  | 108.5     | Cu3—N52—H52A                                         | 105.4     |
| С55—С56—Н56А  | 108.5     | C80—N53—C55                                          | 114.2 (4) |
| С51—С56—Н56В  | 108.5     | C80—N53—Cu3                                          | 111.4 (3) |
| С55—С56—Н56В  | 108.5     | C55—N53—Cu3                                          | 114.2 (3) |
| Н56А—С56—Н56В | 107.5     | C80—N53—H53A                                         | 105.3     |
| N51—C60—C61   | 113.7 (4) | C55—N53—H53A                                         | 105.3     |
| N51—C60—H60A  | 108.8     | Cu3—N53—H53A                                         | 105.3     |
| C61—C60—H60A  | 108.8     | C75—N71—N72                                          | 106.8 (4) |
| N51—C60—H60B  | 108.8     | C75—N71—Cu2                                          | 127.9 (3) |

| С61—С60—Н60В  | 108.8     | N72—N71—Cu2 | 124.2 (3) |
|---------------|-----------|-------------|-----------|
| H60A—C60—H60B | 107.7     | C73—N72—N71 | 109.7 (4) |
| N62—C61—C65   | 110.1 (5) | C73—N72—Cu3 | 116.9 (3) |
| N62—C61—C60   | 121.1 (5) | N71—N72—Cu3 | 133.4 (3) |
| C65—C61—C60   | 128.8 (5) | C85—N81—N82 | 107.7 (4) |
| C61—N62—N63   | 104.2 (6) | C85—N81—Cu2 | 126.4 (3) |
| C64—N63—N62   | 112.6 (5) | N82—N81—Cu2 | 125.6 (3) |
| С64—N63—H63   | 123.7     | C83—N82—N81 | 109.0 (4) |
| N62—N63—H63   | 123.7     | C83—N82—Cu3 | 117.3 (3) |
| N63—C64—C65   | 107.4 (6) | N81—N82—Cu3 | 133.7 (3) |
| N63—C64—H64   | 126.3     | H81—O1W—H82 | 109.4     |
| С65—С64—Н64   | 126.3     | H21—O2W—H22 | 109.4     |
| C64—C65—C61   | 105.7 (6) | H31—O3W—H32 | 109.4     |
| С64—С65—Н65   | 127.1     | H41—O4W—H42 | 109.4     |

 Table S3
 Hydrogen-bond geometry (Å, °) for 1.

| D—H···A                                       | D—H  | Н…А  | $D \cdots A$ | <i>D</i> —H⋯ <i>A</i> |
|-----------------------------------------------|------|------|--------------|-----------------------|
| C5—H5…O22 <sup>i</sup>                        | 1.00 | 2.55 | 3.454 (18)   | 150                   |
| C6—H6 <i>B</i> ···O22 <i>A</i> <sup>i</sup>   | 0.99 | 2.44 | 3.34 (3)     | 151                   |
| C20—H20 <i>B</i> ····O3 <i>W</i>              | 0.99 | 2.52 | 3.261 (7)    | 131                   |
| C30—H30 <i>B</i> ···Cl1 <sup>ii</sup>         | 0.99 | 2.96 | 3.773 (6)    | 140                   |
| C30—H30 <i>B</i> ···O11 <sup>ii</sup>         | 0.99 | 2.58 | 3.441 (9)    | 146                   |
| C54—H54 <i>B</i> ⋯O11 <sup>iii</sup>          | 0.99 | 2.63 | 3.531 (10)   | 151                   |
| C55—H55…O13 <sup>iv</sup>                     | 1.00 | 2.45 | 3.379 (10)   | 154                   |
| N63—H63…O2 <i>W</i> <sup>iii</sup>            | 0.88 | 2.04 | 2.904 (9)    | 165.5                 |
| C70—H70 <i>B</i> ···O24 <i>A</i> <sup>v</sup> | 0.99 | 2.55 | 3.47 (3)     | 155                   |
| C80—H80A…O12 <sup>iv</sup>                    | 0.99 | 2.65 | 3.305 (9)    | 124                   |
| N2—H2A…Cl2                                    | 1.00 | 2.93 | 3.791 (5)    | 145                   |
| N2—H2A…O21                                    | 1.00 | 2.22 | 3.183 (18)   | 162                   |
| N2—H2A…O21A                                   | 1.00 | 2.15 | 3.06 (3)     | 150                   |
| N3—H3A…O13 <sup>ii</sup>                      | 1.00 | 2.03 | 2.987 (12)   | 159                   |
| N52—H52A····Cl1 <sup>iii</sup>                | 1.00 | 2.67 | 3.644 (5)    | 165                   |
| N52—H52A…O11 <sup>iii</sup>                   | 1.00 | 2.36 | 3.312 (8)    | 158                   |
| N52—H52A…O14 <sup>iii</sup>                   | 1.00 | 2.16 | 3.015 (8)    | 142                   |
| N53—H53 $A$ ···O1 $W$ <sup>iii</sup>          | 1.00 | 1.92 | 2.907 (7)    | 169                   |
| N53—H53A…O12 <sup>iv</sup>                    | 1.00 | 2.30 | 3.072 (9)    | 133                   |
| O1 <i>W</i> —H81…Cl1 <sup>vi</sup>            | 0.84 | 2.45 | 3.108 (11)   | 135                   |

| 01 <i>W</i> —H81…011 <sup>vi</sup>                                                                                                                      | 0.84 | 2.50 | 3 298 (12) | 159   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------------|-------|
| O2W—H21···O12 <sup>iii</sup>                                                                                                                            | 0.84 | 2.57 | 3 292 (12) | 145   |
| O2W—H21···O14 <sup>iii</sup>                                                                                                                            | 0.84 | 2.48 | 3.279 (11) | 1.59  |
| O4W—H42…N62                                                                                                                                             | 0.84 | 2.41 | 3 025 (13) | 130   |
| C5—H5…O22 <sup>i</sup>                                                                                                                                  | 1.00 | 2.55 | 3 454 (18) | 150   |
| $C6-H6B\cdots O22A^{i}$                                                                                                                                 | 0.99 | 2.33 | 3 34 (3)   | 151   |
| $C20 H20B \cdots O3W$                                                                                                                                   | 0.99 | 2.52 | 3 261 (7)  | 131   |
| $C30 H30B C11^{ii}$                                                                                                                                     | 0.99 | 2.96 | 3 773 (6)  | 140   |
| $\begin{array}{c} \hline \hline$ | 0.99 | 2.58 | 3.441 (9)  | 146   |
| C54—H54 $B$ ···O11 <sup>iii</sup>                                                                                                                       | 0.99 | 2.50 | 3 531 (10) | 151   |
| C55_H55013 <sup>iv</sup>                                                                                                                                | 1.00 | 2.05 | 3 379 (10) | 154   |
| N62 H62O2W/iii                                                                                                                                          | 0.88 | 2.43 | 2 004 (0)  | 165 5 |
|                                                                                                                                                         | 0.88 | 2.04 | 2.904 (9)  | 105.5 |
| $C/0$ — $H/0B\cdots O24A^{\vee}$                                                                                                                        | 0.99 | 2.55 | 3.47(3)    | 155   |
| C80—H80A…O12 <sup>iv</sup>                                                                                                                              | 0.99 | 2.65 | 3.305 (9)  | 124   |
| N2—H2A…Cl2                                                                                                                                              | 1.00 | 2.93 | 3.791 (5)  | 145   |
| N2—H2A…O21                                                                                                                                              | 1.00 | 2.22 | 3.183 (18) | 162   |
| N2—H2A…O21A                                                                                                                                             | 1.00 | 2.15 | 3.06 (3)   | 150   |
| N3—H3A…O13 <sup>ii</sup>                                                                                                                                | 1.00 | 2.03 | 2.987 (12) | 159   |
| N52—H52A····Cl1 <sup>iii</sup>                                                                                                                          | 1.00 | 2.67 | 3.644 (5)  | 165   |
| N52—H52A…O11 <sup>iii</sup>                                                                                                                             | 1.00 | 2.36 | 3.312 (8)  | 158   |
| N52—H52A…O14 <sup>iii</sup>                                                                                                                             | 1.00 | 2.16 | 3.015 (8)  | 142   |
| N53—H53 <i>A</i> ···O1 <i>W</i> <sup>iii</sup>                                                                                                          | 1.00 | 1.92 | 2.907 (7)  | 169   |
| N53—H53A…O12 <sup>iv</sup>                                                                                                                              | 1.00 | 2.30 | 3.072 (9)  | 133   |
| O1 <i>W</i> —H81····Cl1 <sup>vi</sup>                                                                                                                   | 0.84 | 2.45 | 3.108 (11) | 135   |
| O1 <i>W</i> —H81…O11 <sup>vi</sup>                                                                                                                      | 0.84 | 2.50 | 3.298 (12) | 159   |
| O2 <i>W</i> —H21…O12 <sup>iii</sup>                                                                                                                     | 0.84 | 2.57 | 3.292 (12) | 145   |
| O2 <i>W</i> —H21…O14 <sup>iii</sup>                                                                                                                     | 0.84 | 2.48 | 3.279 (11) | 159   |
| O4 <i>W</i> —H42⋯N62                                                                                                                                    | 0.84 | 2.41 | 3.025 (13) | 130   |

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, y-1/2, -z+3/2; (iii) -x+1, -y+2, -z+1; (iv) x, y, z-1; (v) -x+2, y+1/2, -z+1/2; (vi) -x+1, -y+2, -z+2.



**Figure S3.** Overlay of Cu1 and Cu3 coordination in **1** showing the opposite configuration of N1 and N52.



Figure S4. Unit cell packing diagram of 1, view normal to (100) showing the perchlorate counter ions in the channel

**Table S4**XYZ coordinates of the calculated structure shown in Figure 2A

| B381   | HFP86/def2T           | ZVP Ms= $1/2$         | E = -6859.562 | 299058 | Hartree <s2></s2> | >=1.7513  |           |
|--------|-----------------------|-----------------------|---------------|--------|-------------------|-----------|-----------|
| Cu     | -3.842661             | -0.178519             | -0.198362     | С      | 1.809258          | 3.410167  | 1.096530  |
| С      | -2.359297             | 2.769419              | -2.512761     | С      | 2.895602          | 2.582523  | 0.864307  |
| С      | -1.162010             | 2.236406              | -2.063918     | Ν      | 2.472340          | 1.442917  | 0.325988  |
| Ν      | -1.392983             | 1.230623              | -1.216841     | Ν      | 1.147024          | 1.485899  | 0.178932  |
| Ν      | -2.714681             | 1.103035              | -1.099096     | С      | 0.731842          | 2.666260  | 0.645693  |
| С      | -3.318071             | 2.008347              | -1.864196     | С      | 2.359317          | -2.770031 | -2.512090 |
| С      | -1.809249             | -3.409906             | 1.097333      | С      | 3.318084          | -2.008791 | -1.863713 |
| С      | -0.731837             | -2.666138             | 0.646256      | Ν      | 2.714687          | -1.103283 | -1.098851 |
| Ν      | -1.147010             | -1.485869             | 0.179255      | Ν      | 1.392990          | -1.230890 | -1.216590 |
| N      | -2.472320             | -1.442828             | 0.326338      | С      | 1.162025          | -2.236864 | -2.063442 |
| С      | -2.895587             | -2.582305             | 0.864929      | Η      | 1.796840          | 4.399621  | 1.515996  |
| Н      | -2.500372             | 3.579436              | -3.204901     | Н      | -0.311068         | 2.927911  | 0.619894  |
| Н      | -0.155290             | 2.527307              | -2.310324     | Н      | 2.500399          | -3.580236 | -3.204009 |
| Н      | -1 796836             | -4 399254             | 1 517048      | Н      | 0 155308          | -2 527806 | -2 309810 |
| Н      | 0 311066              | -2 927819             | 0 620476      | N      | 5 077617          | 1 781117  | 0 221239  |
| N      | -4 555518             | 0.948739              | 1 628826      | C      | 6 4 5 0 3 0 6     | 1 415521  | 0.629654  |
| Н      | -4 337853             | 1 907398              | 1 389280      | Н      | 5 154468          | 2 241206  | -0 679001 |
| N      | -5 077597             | -1 781065             | 0.221665      | N      | 4 555465          | -0.948334 | 1 629083  |
| Н      | -5 154409             | -2.241383             | -0.678461     | N      | 5 315601          | -0 743789 | -1 348464 |
| C      | -6 450302             | -1 415386             | 0 629948      | Н      | 5 375475          | -0 134582 | -2 156284 |
| N      | -5 315587             | 0 743457              | -1 348672     | C      | 6 658122          | -0 760753 | -0 729308 |
| Н      | -5 375431             | 0 134044              | -2 156337     | C      | 4 810375          | -2 041938 | -1 840112 |
| C      | -6 658122             | 0.760556              | -0 729551     | Н      | 5 156101          | -2 826294 | -1 168478 |
| C      | -4 361727             | -2 720337             | 1 107429      | Н      | 5 219107          | -2 274762 | -2 824248 |
| Н      | -4 697776             | -3 745968             | 0 947847      | C      | 4 361746          | 2 720636  | 1 106742  |
| Н      | -4 598049             | -2 470885             | 2 140483      | н      | 4 598087          | 2.720050  | 2 139865  |
| C      | -4 810363             | 2.470005              | -1 840635     | H      | 4 697783          | 3 746223  | 0.946853  |
| Н      | -5 219075             | 2 274057              | -2 824840     | Н      | 7.011016          | 2 337098  | 0.813358  |
| Н      | -5 156110             | 2.274037              | -1 169210     | C      | 6 492961          | 0 584195  | 1 905383  |
| Н      | -7 011005             | -2 336925             | 0.813863      | н      | 7 352123          | -1 244719 | -1 423219 |
| C      | -7.138054             | -0.671922             | -0 511076     | C II   | 6 701601          | -1.532405 | 0 583723  |
| C      | 6 /03001              | 0.583740              | 1 005472      | C      | 7 138076          | -1.552405 | 0.512060  |
| с<br>ц | -0.493001             | -0.383749<br>1 244342 | 1.903472      | с<br>и | 8 203860          | 0.632374  | -0.312009 |
| C      | 6 701733              | 1.244342              | 0.583201      | и<br>П | 7.057455          | 1 2/3600  | 1 //1301  |
| С<br>Ц | -0.701733<br>8 202845 | 0.632404              | 0.385291      | и<br>П | 7.037433          | 0.550610  | -1.441391 |
| н<br>Ц | -0.203043             | 1 244067              | -0.280005     | и<br>П | 6 217199          | 2 546001  | 0.460020  |
| н<br>Ц | -7.037393             | -1.244007             | -1.441130     | П<br>П | 0.31/100          | -2.340001 | 0.400929  |
| П      | -7.330013             | -0.330100             | 2.222033      | П      | 6 01 4 7 2 8      | -1.03/303 | 0.838009  |
| С<br>U | -0.014/65             | 0.033290              | 1.701246      | С<br>и | 6 221414          | -0.034002 | 1.701302  |
| п      | -3.909042             | -1.081373             | 2./19301      | П      | 0.321414          | -1.380034 | 2.070202  |
| П      | -0.31/242             | 2.340090              | 0.400230      | П      | 3.908983          | 1.082020  | 2./192/4  |
| П      | -/./34903             | 1.05//51              | 0.838125      | U<br>U | 3.834008          | -0.038482 | 2.839449  |
| C II   | -3.834132             | 0.039150              | 2.859266      | H      | 4.337789          | -1.90/041 | 1.389/39  |
| H      | -3.892000             | -0.423005             | 3.082862      | H      | 2.783432          | -0.88491/ | 2./298/4  |
| H      | -4.224438             | 1.19343/              | 3./1/340      | H      | 3.892014          | 0.423/11  | 3.0828/0  |
| H      | -2./83512             | 0.885651              | 2./29680      | H      | 4.22430/          | -1.192646 | 5./1/635  |
| H      | -6.321486             | 1.38/28/              | 2.669815      | Cu     | 3.842667          | 0.178486  | -0.198422 |
| Cu     | 0.000008              | -0.000057             | -0.486429     |        |                   |           |           |

Table S5 XYZ coordinates of the calculated structure shown in Figure 2B  $\,$ 

| B3LYP/def2TZVP Ms= $1/2$ E= -6859.51849445 Hartree $\langle$ S2 $\rangle$ = 1.7394 |                       |           |           |        |            |           |                       |  |  |  |  |
|------------------------------------------------------------------------------------|-----------------------|-----------|-----------|--------|------------|-----------|-----------------------|--|--|--|--|
| Cu                                                                                 | -3.865819             | -0.189685 | -0.198666 | С      | 1.799125   | 3.437788  | 1.095425              |  |  |  |  |
| С                                                                                  | -2.427192             | 2.745094  | -2.605083 | С      | 2.895422   | 2.607140  | 0.881732              |  |  |  |  |
| С                                                                                  | -1.211540             | 2.218368  | -2.178501 | Ν      | 2.476717   | 1.461914  | 0.323769              |  |  |  |  |
| Ν                                                                                  | -1.418845             | 1.226906  | -1.292965 | Ν      | 1.142975   | 1.509118  | 0.151584              |  |  |  |  |
| N                                                                                  | -2.752203             | 1 110517  | -1 127665 | C      | 0 721080   | 2 699722  | 0.618076              |  |  |  |  |
| C                                                                                  | -3 377425             | 2.005889  | -1 907339 | C      | 2 423776   | -2.731875 | -2.615069             |  |  |  |  |
| C                                                                                  | -1 798243             | -3 442599 | 1 083339  | C      | 3 376375   | -1 995757 | -1 917001             |  |  |  |  |
| C                                                                                  | -0 718946             | -2 701652 | 0.613425  | N      | 2 752122   | -1 104297 | _1 131779             |  |  |  |  |
| N                                                                                  | 1 137385              | 1 508170  | 0.152406  | N      | 1 / 22/000 | 1 210277  | 1 202021              |  |  |  |  |
| IN<br>N                                                                            | -1.137303             | -1.308179 | 0.132400  | C      | 1.422099   | -1.219277 | -1.293021             |  |  |  |  |
| IN<br>C                                                                            | -2.4/34/2             | -1.401409 | 0.322398  | С<br>Ц | 1.209300   | -2.200494 | -2.102373<br>1 521257 |  |  |  |  |
|                                                                                    | -2.093032             | -2.010337 | 0.0/2490  | П      | 1.701021   | 4.420272  | 0.576020              |  |  |  |  |
| П                                                                                  | -2.383183             | 3.537870  | -3.313932 | п      | -0.320823  | 2.900934  | 0.576029              |  |  |  |  |
| H                                                                                  | -0.212082             | 2.502317  | -2.4643/1 | H      | 2.5/94/4   | -3.522220 | -3.329162             |  |  |  |  |
| H                                                                                  | -1./81016             | -4.433213 | 1.504284  | H      | 0.208/40   | -2.48/242 | -2.466503             |  |  |  |  |
| Н                                                                                  | 0.322645              | -2.970563 | 0.572287  | Ν      | 5.109802   | 1.811135  | 0.269647              |  |  |  |  |
| Ν                                                                                  | -4.606959             | 0.976051  | 1.683534  | С      | 6.494441   | 1.436961  | 0.687705              |  |  |  |  |
| Н                                                                                  | -4.405195             | 1.934494  | 1.415492  | Н      | 5.192967   | 2.284421  | -0.627455             |  |  |  |  |
| Ν                                                                                  | -5.108028             | -1.812845 | 0.261557  | Ν      | 4.602276   | -0.983429 | 1.678842              |  |  |  |  |
| Н                                                                                  | -5.189093             | -2.282280 | -0.637783 | Ν      | 5.383159   | -0.733650 | -1.345705             |  |  |  |  |
| С                                                                                  | -6.493778             | -1.443013 | 0.679178  | Η      | 5.446132   | -0.113811 | -2.149945             |  |  |  |  |
| Ν                                                                                  | -5.382722             | 0.738708  | -1.342290 | С      | 6.731880   | -0.741237 | -0.702608             |  |  |  |  |
| Η                                                                                  | -5.443162             | 0.123149  | -2.150005 | С      | 4.874780   | -2.040132 | -1.859906             |  |  |  |  |
| С                                                                                  | -6.732509             | 0.740990  | -0.701606 | Н      | 5.205050   | -2.829731 | -1.184540             |  |  |  |  |
| С                                                                                  | -4.360516             | -2.747021 | 1.153843  | Н      | 5.304517   | -2.265978 | -2.838794             |  |  |  |  |
| Η                                                                                  | -4.701041             | -3.776121 | 1.014124  | С      | 4.361951   | 2.741512  | 1.164790              |  |  |  |  |
| Н                                                                                  | -4.575410             | -2.480639 | 2.188397  | Н      | 4.575933   | 2.471582  | 2.198624              |  |  |  |  |
| С                                                                                  | -4.875746             | 2.048889  | -1.848745 | Н      | 4.702363   | 3.771156  | 1.028861              |  |  |  |  |
| H                                                                                  | -5 307131             | 2 280591  | -2 825552 | Н      | 7 049792   | 2 360972  | 0 883684              |  |  |  |  |
| Н                                                                                  | -5 205755             | 2 833982  | -1 168024 | C      | 6 534979   | 0 587777  | 1 965332              |  |  |  |  |
| Н                                                                                  | -7 047919             | -2.368819 | 0.870235  | Н      | 7 437554   | -1 211040 | -1 396737             |  |  |  |  |
| C                                                                                  | -7 195700             | -0 707785 | -0 474881 | C      | 6 772714   | -1 531902 | 0.612153              |  |  |  |  |
| C                                                                                  | -6 537482             | -0 599605 | 1 960560  | C      | 7 196838   | 0 705840  | -0.468654             |  |  |  |  |
| н                                                                                  | -7.437662             | 1 212879  | -1 39/900 | ч      | 8 26/126   | 0.705040  | -0.700004             |  |  |  |  |
| C                                                                                  | 6 777002              | 1.525656  | 0.616666  | и<br>Ц | 7 1113/7   | 1 286274  | 1 303878              |  |  |  |  |
| С<br>U                                                                             | -0.777002<br>8 262261 | 0.681270  | 0.010000  | н<br>Ц | 7.111347   | 0.567447  | -1.393070             |  |  |  |  |
| П                                                                                  | -8.203301             | -0.001270 | -0.249126 | п      | 6 201720   | 0.30/44/  | 2.293393              |  |  |  |  |
| П                                                                                  | -7.10/999             | -1.263933 | -1.402303 | п      | 0.391/39   | -2.340334 | 0.4/40/3              |  |  |  |  |
| Н                                                                                  | -7.580059             | -0.582416 | 2.28/339  | Н      | /.82/100   | -1.050800 | 0.868908              |  |  |  |  |
| C II                                                                               | -6.0/9469             | 0.85/863  | 1.809080  | C      | 6.074809   | -0.868266 | 1.806682              |  |  |  |  |
| H                                                                                  | -5.9968/4             | -1.088114 | 2.//0/66  | H      | 6.394410   | -1.405063 | 2.709785              |  |  |  |  |
| Н                                                                                  | -6.397972             | 2.541520  | 0.484513  | H      | 5.994112   | 1.073499  | 2.777052              |  |  |  |  |
| Н                                                                                  | -7.832036             | 1.647165  | 0.872399  | С      | 3.871166   | -0.734557 | 2.933350              |  |  |  |  |
| С                                                                                  | -3.876895             | 0.722673  | 2.937699  | Н      | 4.399360   | -1.940411 | 1.406448              |  |  |  |  |
| Н                                                                                  | -3.924818             | -0.330942 | 3.206321  | Н      | 2.822231   | -0.988001 | 2.789169              |  |  |  |  |
| Н                                                                                  | -4.273343             | 1.308980  | 3.774060  | Η      | 3.919796   | 0.317889  | 3.206376              |  |  |  |  |
| Н                                                                                  | -2.828034             | 0.977546  | 2.795520  | Н      | 4.266275   | -1.324663 | 3.767652              |  |  |  |  |
| Н                                                                                  | -6.401083             | 1.390061  | 2.714201  | Cu     | 3.865896   | 0.191241  | -0.199028             |  |  |  |  |
| Cu                                                                                 | 0.003196              | 0.002554  | -0.536409 |        |            |           |                       |  |  |  |  |

| B3LYP/def2TZVP Ms=1/ | /2 E= -6859 51849445 | Hartree $< S_{2} = 17394$ |
|----------------------|----------------------|---------------------------|

Scheme S1 Labelling scheme used for summarizing the computational results



# **Table S6** Comparison of experimental and calculated Cu-based bond lengths andintramolecular distances for $S_t=3/2$ state employing various functionals and using def2TZVPbasis set

|                                                                   |               |                 |                                 | Cu <sup>c</sup> en | vironmen | t               |        | Cu             | <sup>p-</sup> enviror | nment          |        | Cu <sup>p+</sup> environment |        |                |                |        |  |
|-------------------------------------------------------------------|---------------|-----------------|---------------------------------|--------------------|----------|-----------------|--------|----------------|-----------------------|----------------|--------|------------------------------|--------|----------------|----------------|--------|--|
| Cu <sup>p-</sup> Cu <sup>c</sup> Cu <sup>c</sup> Cu <sup>p+</sup> |               |                 | 1 <sup>p+</sup>                 | N <sup>p-</sup>    |          | N <sup>p+</sup> |        | N <sup>b</sup> |                       | N <sup>p</sup> |        | N <sup>a</sup>               |        | N <sup>b</sup> | N <sup>p</sup> |        |  |
| Experimental                                                      | 3.83          | 3.77            | 1.94                            | 2.01               | 1.93     | 1.91            | 2.22   | 2.02           | 2.01                  | 1.97           | 1.93   | 2.22                         | 2.03   | 2.06           | 1.90           | 1.97   |  |
| HF                                                                | 3.89          | 3.89            | 2.07                            | 2.08               | 2.08     | 2.07            | 2.31   | 2.12           | 2.14                  | 1.98           | 1.98   | 2.31                         | 2.12   | 2.14           | 1.98           | 1.98   |  |
| HFP86                                                             | 3.83          | 3.83            | 2.00                            | 2.00               | 2.00     | 2.00            | 2.19   | 2.05           | 2.07                  | 1.93           | 1.93   | 2.19                         | 2.05   | 2.07           | 1.93           | 1.93   |  |
| B75HFP86                                                          | 3.84          | 3.84            | 2.00                            | 2.00               | 2.00     | 2.00            | 2.21   | 2.06           | 2.07                  | 1.93           | 1.93   | 2.21                         | 2.06   | 2.07           | 1.93           | 1.93   |  |
| B38HFP86                                                          | 3.86          | 3.86            | 1.99                            | 2.00               | 2.00     | 1.99            | 2.26   | 2.07           | 2.08                  | 1.94           | 1.93   | 2.26                         | 2.07   | 2.08           | 1.93           | 1.94   |  |
| B3LYP                                                             | 3.89          | 3.89            | 2.01                            | 2.02               | 2.02     | 2.01            | 2.33   | 2.09           | 2.11                  | 1.95           | 1.95   | 2.33                         | 2.09   | 2.11           | 1.95           | 1.95   |  |
| B18HFP86                                                          | 3.87          | 3.87            | 1.99                            | 2.00               | 2.00     | 1.99            | 2.29   | 2.08           | 2.10                  | 1.94           | 1.94   | 2.29                         | 2.08   | 2.10           | 1.94           | 1.94   |  |
| BP86                                                              | 3.88          | 3.88            | 2.00                            | 2.01               | 2.01     | 2.00            | 2.31   | 2.10           | 2.12                  | 1.95           | 1.95   | 2.31                         | 2.10   | 2.12           | 1.95           | 1.95   |  |
| min                                                               | <b>5</b> .83  | 3.83            | r 1.99                          | 2.00 🔻             | 72.00    | 1.99            | 72.19  | 7 2.05         | 7 2.07                | 1.93           | 1.93   | 7 2.19                       | 7 2.05 | 7 2.07         | 1.93           | 7 1.93 |  |
| max                                                               | <b>7</b> 3.89 | 3.89            | 7 2.07                          | 7 2.08             | 7 2.08   | 7 2.07          | 7 2.33 | 72.12          | 7 2.14                | <b>*</b> 1.98  | r 1.98 | 7 2.33                       | 72.12  | 72.14          | 7 1.98         | 7 1.98 |  |
|                                                                   |               |                 |                                 | Cu <sup>c</sup> en | vironmen | t               |        | Cu             | <sup>p-</sup> enviror | nment          |        | Cu <sup>p+</sup> environment |        |                |                |        |  |
| xp. deviations $Cu^{p}$ $Cu^{c} Cu^{c}$ $Cu^{p+1}$                |               | 1 <sup>p+</sup> | N <sup>p-</sup> N <sup>p+</sup> |                    | Nª       | N <sup>b</sup>  |        | Np             |                       | N <sup>a</sup> |        | N <sup>b</sup>               | Np     |                |                |        |  |
| HF                                                                | 0.06          | 0.13            | 0.12                            | 0.06               | 0.15     | 0.16            | 0.09   | 0.11           | 0.13                  | 0.01           | 0.05   | 0.09                         | 0.10   | 0.09           | 0.07           | 0.01   |  |
| HFP86                                                             | 0.00          | 0.06            | 0.05                            | -0.01              | 0.07     | 0.09            | -0.03  | 0.03           | 0.05                  | -0.04          | 0.00   | -0.03                        | 0.02   | 0.01           | 0.02           | -0.04  |  |
| B75HFP86                                                          | 0.01          | 0.07            | 0.05                            | -0.01              | 0.07     | 0.09            | 0.00   | 0.04           | 0.06                  | -0.04          | 0.00   | 0.00                         | 0.03   | 0.02           | 0.02           | -0.04  |  |
| B38HFP86                                                          | 0.03          | 0.09            | 0.05                            | -0.01              | 0.07     | 0.09            | 0.04   | 0.05           | 0.07                  | -0.04          | 0.00   | 0.04                         | 0.04   | 0.03           | 0.03           | -0.04  |  |
| B3LYP                                                             | 0.06          | 0.12            | 0.07                            | 0.01               | 0.10     | 0.11            | 0.12   | 0.08           | 0.10                  | -0.02          | 0.02   | 0.12                         | 0.07   | 0.06           | 0.04           | -0.02  |  |
| B18HFP86                                                          | 0.04          | 0.11            | 0.05                            | -0.01              | 0.07     | 0.09            | 0.07   | 0.06           | 0.08                  | -0.03          | 0.01   | 0.07                         | 0.05   | 0.04           | 0.03           | -0.03  |  |
| BP86                                                              | 0.05          | 0.11            | 0.05                            | -0.01              | 0.08     | 0.09            | 0.09   | 0.08           | 0.10                  | -0.02          | 0.02   | 0.09                         | 0.07   | 0.06           | 0.04           | -0.02  |  |

**Table S7** Comparison of experimental and calculated Cu-based bond lengths andintramolecular distances for  $M_s=1/2$  broken symmetry state employing various functionalsand using def2TZVP basis set

|                |          |                     |             |                  | Cu <sup>c</sup> en | vironmen    | t               |        | Cu                       | <sup>⊳</sup> enviror | nment       |                | Cu <sup>p+</sup> environment |        |         |               |                |
|----------------|----------|---------------------|-------------|------------------|--------------------|-------------|-----------------|--------|--------------------------|----------------------|-------------|----------------|------------------------------|--------|---------|---------------|----------------|
|                |          | Cu <sup>p</sup> ·…C | u° Cu°…(    | Cu <sup>p+</sup> | N <sup>p−</sup>    | 1           | N <sup>p+</sup> | Nª     |                          | N <sup>b</sup>       |             | N <sup>p</sup> | Na                           |        | N⁵      |               | N <sup>p</sup> |
| Experimental   | coupling | 3.83                | 3.7         | 7 1.94           | 2.01               | 1.93        | 1.91            | 2.22   | 2.02                     | 2.01                 | 1.97        | 1.93           | 2.22                         | 2.03   | 2.06    | 1.90          | 1.97           |
| HF             | aab      | 3.90                | 3.8         | 9 2.08           | 2.07               | 2.07        | 2.08            | 2.31   | 2.12                     | 2.14                 | 1.98        | 1.98           | 2.31                         | 2.12   | 2.14    | 1.98          | 1.98           |
|                | aba      | 3.89                | 3.8         | 9 2.08           | 2.07               | 2.07        | 2.08            | 2.31   | 2.12                     | 2.14                 | 1.98        | 1.98           | 2.31                         | 2.12   | 2.14    | 1.98          | 1.98           |
|                | baa      | 3.89                | 3.9         | 0 2.08           | 2.07               | 2.07        | 2.08            | 2.31   | 2.12                     | 2.14                 | 1.98        | 1.98           | 2.31                         | 2.12   | 2.14    | 1.98          | 1.98           |
| HFP86          | aab      | 3.90                | 3.8         | 9 2.08           | 2.07               | 2.07        | 2.08            | 2.31   | 2.12                     | 2.14                 | 1.98        | 1.98           | 2.31                         | 2.12   | 2.14    | 1.98          | 1.98           |
|                | aba      | 3.83                | 3.8         | 3 2.00           | 1.99               | 1.99        | 2.00            | 2.19   | 2.05                     | 2.07                 | 1.93        | 1.93           | 2.19                         | 2.05   | 2.07    | 1.93          | 1.93           |
|                | baa      | 3.83                | 3.8         | 3 2.00           | 1.99               | 1.99        | 2.00            | 2.19   | 2.05                     | 2.07                 | 1.93        | 1.93           | 2.19                         | 2.05   | 2.07    | 1.93          | 1.93           |
| B75HFP86       | aab      | 3.84                | 3.8         | 4 2.00           | 2.00               | 2.00        | 2.00            | 2.22   | 2.06                     | 2.07                 | 1.93        | 1.93           | 2.22                         | 2.06   | 2.07    | 1.93          | 1.93           |
|                | aba      | 3.84                | 3.8         | 4 2.00           | 2.00               | 2.00        | 2.00            | 2.22   | 2.06                     | 2.07                 | 1.93        | 1.93           | 2.22                         | 2.06   | 2.07    | 1.93          | 1.93           |
|                | baa      | 3.84                | 3.8         | 4 2.00           | 2.00               | 2.00        | 2.00            | 2.22   | 2.06                     | 2.07                 | 1.93        | 1.93           | 2.22                         | 2.06   | 2.07    | 1.93          | 1.93           |
| B38HFP86       | aab      | 3.86                | 3.8         | 6 2.00           | 1.99               | 1.99        | 2.00            | 2.26   | 2.07                     | 2.08                 | 1.93        | 1.94           | 2.26                         | 2.07   | 2.08    | 1.94          | 1.93           |
|                | aba      | 3.86                | 3.8         | 6 2.00           | 1.99               | 1.99        | 2.00            | 2.26   | 2.07                     | 2.08                 | 1.93        | 1.94           | 2.26                         | 2.07   | 2.08    | 1.94          | 1.93           |
|                | baa      | 3.86                | 3.8         | 6 2.00           | 1.99               | 1.99        | 2.00            | 2.26   | 2.07                     | 2.08                 | 1.93        | 1.94           | 2.26                         | 2.07   | 2.08    | 1.94          | 1.93           |
| B3LYP          | aab      | 3.89                | 3.8         | 8 2.02           | 2.01               | 2.01        | 2.02            | 2.33   | 2.10                     | 2.11                 | 1.95        | 1.96           | 2.33                         | 2.10   | 2.11    | 1.95          | 1.95           |
|                | aba      | 3.88                | 3.8         | 8 2.02           | 2.01               | 2.01        | 2.02            | 2.33   | 2.10                     | 2.12                 | 1.95        | 1.95           | 2.33                         | 2.10   | 2.12    | 1.95          | 1.95           |
|                | baa      | 3.88                | 3.8         | 9 2.02           | 2.01               | 2.01        | 2.02            | 2.33   | 2.10                     | 2.11                 | 1.95        | 1.95           | 2.33                         | 2.10   | 2.11    | 1.96          | 1.95           |
| B18HFP86       | aab      | 3.94                | 3.9         | 4 2.03           | 2.03               | 2.02        | 2.03            | 2.33   | 2.12                     | 2.13                 | 1.97        | 1.98           | 2.33                         | 2.12   | 2.13    | 1.98          | 1.97           |
|                | aba      | 3.94                | 3.9         | 4 2.03           | 2.02               | 2.02        | 2.03            | 2.33   | 2.12                     | 2.14                 | 1.97        | 1.98           | 2.33                         | 2.12   | 2.14    | 1.98          | 1.97           |
|                | baa      | 3.94                | 3.9         | 4 2.03           | 2.02               | 2.03        | 2.03            | 2.33   | 2.12                     | 2.13                 | 1.97        | 1.98           | 2.33                         | 2.12   | 2.13    | 1.98          | 1.97           |
| BP86           | aab      | 3.88                | 3.8         | 7 2.01           | 2.00               | 2.00        | 2.01            | 2.31   | 2.10                     | 2.12                 | 1.95        | 1.95           | 2.31                         | 2.10   | 2.11    | 1.95          | 1.94           |
|                | aba      | 3.87                | 3.8         | 7 2.01           | 2.00               | 2.00        | 2.01            | 2.31   | 2.10                     | 2.12                 | 1.94        | 1.95           | 2.31                         | 2.10   | 2.12    | 1.95          | 1.94           |
|                | baa      | _ 3.87              | _ 3.8       | 8 _ 2.01         | _ 2.00             | _ 2.00      | _ 2.01          | _ 2.31 | _ 2.10                   | _ 2.11               | _ 1.94      | _ 1.95         | _ 2.31                       | _ 2.10 | _ 2.12  | _ 1.95        | _ 1.95         |
|                | min      | 3.83                | 3.8         | 3 2.00           | 1.99               | <b>1.99</b> | 2.00            | 2.19   | 2.05                     | 2.07                 | 1.93        | 1.93           | 2.19                         | 2.05   | 2.07    | 1.93          | 1.93           |
|                | max      | 3.94                | <b>3</b> .9 | 4 • 2.08         | 2.07               | 2.07        | 2.08            | 2.33   | * 2.12                   | 2.14                 | <b>1.98</b> | <b>1.98</b>    | 2.33                         | * 2.12 | 2.14    | <b>*</b> 1.98 | <b>1.98</b>    |
|                |          |                     |             | •                | Cu <sup>s</sup> en | vironmen    | IL              |        | Cu <sup>p-</sup> environ |                      | ment        |                | Cu <sup>pr</sup> envir       |        | enviror | onment        |                |
| xp. deviations |          | Cu <sup>p</sup> C   | u° Cu°(     | Ju               | N٩                 |             | N <sup>p.</sup> | Nª     |                          | N <sup>B</sup>       |             | NP             | Nª                           |        | N°      |               | NP             |
| HF             | aab      | 0.07                | 0.1         | 3 0.13           | 0.05               | 0.14        | 0.17            | 0.09   | 0.10                     | 0.13                 | 0.00        | 0.05           | 0.09                         | 0.09   | 0.09    | 0.08          | 0.01           |
|                | aba      | 0.06                | 0.1         | 3 0.13           | 0.05               | 0.14        | 0.17            | 0.09   | 0.10                     | 0.13                 | 0.00        | 0.05           | 0.09                         | 0.09   | 0.09    | 0.08          | 0.01           |
|                | baa      | 0.06                | 0.1         | 3 0.13           | 0.05               | 0.14        | 0.17            | 0.09   | 0.10                     | 0.13                 | 0.00        | 0.05           | 0.09                         | 0.09   | 0.09    | 0.08          | 0.01           |
| HFP86          | aab      | 0.07                | 0.1         | 3 0.13           | 0.05               | 0.14        | 0.17            | 0.09   | 0.10                     | 0.13                 | 0.00        | 0.05           | 0.09                         | 0.09   | 0.09    | 0.08          | 0.01           |
|                | aba      | 0.00                | 0.0         | 6 0.05           | -0.02              | 0.07        | 0.09            | -0.03  | 0.03                     | 0.05                 | -0.05       | 0.00           | -0.03                        | 0.02   | 0.01    | 0.03          | -0.05          |
|                | baa      | -0.01               | 0.0         | 6 0.05           | -0.02              | 0.07        | 0.09            | -0.03  | 0.03                     | 0.05                 | -0.05       | 0.00           | -0.03                        | 0.02   | 0.01    | 0.03          | -0.05          |
| B75HFP86       | aab      | 0.01                | 0.0         | 7 0.05           | -0.02              | 0.07        | 0.09            | 0.00   | 0.04                     | 0.06                 | -0.04       | 0.00           | 0.00                         | 0.03   | 0.02    | 0.03          | -0.04          |
|                | aba      | 0.01                | 0.0         | 7 0.05           | -0.02              | 0.07        | 0.09            | 0.00   | 0.04                     | 0.06                 | -0.05       | 0.00           | 0.00                         | 0.03   | 0.02    | 0.03          | -0.04          |
|                | baa      | 0.01                | 0.0         | 7 0.05           | -0.02              | 0.07        | 0.09            | 0.00   | 0.04                     | 0.06                 | -0.05       | 0.00           | 0.00                         | 0.03   | 0.02    | 0.03          | -0.04          |
| B38HFP86       | aab      | 0.03                | 0.0         | 9 0.05           | -0.02              | 0.07        | 0.09            | 0.04   | 0.05                     | 0.07                 | -0.04       | 0.01           | 0.04                         | 0.04   | 0.03    | 0.03          | -0.04          |
|                | aba      | 0.03                | 0.0         | 9 0.05           | -0.02              | 0.07        | 0.09            | 0.04   | 0.05                     | 0.07                 | -0.04       | 0.01           | 0.04                         | 0.04   | 0.03    | 0.03          | -0.04          |
|                | baa      | 0.03                | 0.0         | 9 0.05           | -0.02              | 0.07        | 0.09            | 0.04   | 0.05                     | 0.07                 | -0.04       | 0.01           | 0.04                         | 0.04   | 0.03    | 0.03          | -0.04          |
| B3LYP          | aab      | 0.06                | 0.1         | 2 0.08           | 0.00               | 0.09        | 0.11            | 0.12   | 0.08                     | 0.10                 | -0.03       | 0.03           | 0.12                         | 0.07   | 0.06    | 0.05          | -0.03          |
|                | aba      | 0.05                | 0.1         | 2 0.08           | 0.00               | 0.09        | 0.11            | 0.12   | 0.08                     | 0.10                 | -0.03       | 0.02           | 0.12                         | 0.07   | 0.06    | 0.05          | -0.03          |
|                | baa      | 0.05                | 0.1         | 2 0.08           | 0.00               | 0.09        | 0.12            | 0.12   | 0.08                     | 0.10                 | -0.03       | 0.02           | 0.12                         | 0.07   | 0.06    | 0.05          | -0.02          |
| B18HFP86       | aab      | 0.11                | 0.1         | 7 0.09           | 0.01               | 0.10        | 0.12            | 0.11   | 0.10                     | 0.12                 | 0.00        | 0.05           | 0.11                         | 0.09   | 0.08    | 0.07          | 0.00           |
|                | aba      | 0.11                | 0.1         | 7 0.09           | 0.01               | 0.10        | 0.13            | 0.11   | 0.10                     | 0.12                 | 0.00        | 0.05           | 0.11                         | 0.09   | 0.08    | 0.07          | 0.00           |
|                | baa      | 0.11                | 0.1         | 8 0.09           | 0.01               | 0.10        | 0.13            | 0.11   | 0.10                     | 0.12                 | 0.00        | 0.05           | 0.11                         | 0.09   | 0.08    | 0.07          | 0.00           |
| BP86           | aab      | 0.05                | 0.1         | 0.07             | -0.01              | 0.07        | 0.10            | 0.09   | 0.08                     | 0.11                 | -0.03       | 0.02           | 0.09                         | 0.07   | 0.06    | 0.04          | -0.03          |
|                | aba      | 0.04                | 0.1         | U 0.07           | -0.01              | 0.08        | 0.11            | 0.09   | 0.08                     | 0.10                 | -0.03       | 0.02           | 0.09                         | 0.07   | 0.06    | 0.04          | -0.03          |
|                | baa      | 0.04                | 0.1         | 1 0.06           | -0.02              | 0.08        | 0.11            | 0.09   | 0.08                     | U.10                 | -0.04       | 0.02           | 0.09                         | 0.07   | 0.06    | 0.05          | -0.03          |



Figure S5. The UV-VIS/near IR spectrum of CuL ([Cu] = [L] = 3.7 mM) at pH 5



**Figure S6.** Single-crystal EPR spectra of  $[Cu_3H_4L_2](ClO_4)_2 \times 5H_2O(1)$  (the needles crystal was positioned parallel (red) and perpendicular (blue) to the applied magnetic field).



**Figure S7.** The individual spectra of the complexes formed in the copper(II)-tachpyz (L) system



**Figure S8.** Cyclic voltammogram of the copper(II)-tachpyz 3:2 system in 50 w% ethanolwater at pH 5.3 (T = 298 K, I = 0.1 M NaCl,  $[Cu^{2+}] = 0.002$  M, 100 mVs<sup>-1</sup>).



**Figure S9.** Changes in the UV-Vis spectrum upon addition of H<sub>2</sub>dtbc to the copper(II)tachpyz 3:2 system in anaerobic conditions (50 w% ethanol-water, pH 5.7,  $[Cu^{2+}]/3 = 0.129$  mM,  $[H_2dtbc] = 0, 0.172, 0.344$  and 0.516 mM).



**Figure S10.** The dependence of the rate constant of H<sub>2</sub>dtbc oxidation catalyzed by the Cu(II)/tachpyz 3/2 system on the hydrogen peroxide concentration ( $[Cu^{2+}]/3 = 0.025 \text{ mM}$ , pH = 5.7,  $[H_2dtbc]_0 = 1.0 \text{ mM}$ ).