<Electronic Supporting Information>

Photoreaction of adsorbed diiodomethane: halide effects of a series of neutral palladium(II) coordination cages

Tae Hwan Noh,^a Haeri Lee,^a Doeon Kim,^a Dohyun Moon,^b Young-A Lee^{*c} and Ok-Sang

Jung*a

^aDepartment of Chemistry, Pusan National University, Pusan 46241, Korea ^bBeamline Department, Pohang Accelerator Laboratory/POSTECH, Pohang 37673, Korea ^cDepartment of Chemistry, Chonbuk National University, Jeonju 54896, Korea

Refinements of structures with the SQUEEZE routine in *PLATON*.

For the present $[Pd_6Cl_{12}L_4] \cdot 6Me_2SO \cdot 5H_2O$, $[Pd_6Br_{12}L_4] \cdot 7Me_2SO \cdot 4H_2O$, and $[Pd_6I_{12}L_4] \cdot 6Me_2SO \cdot 6H_2O$, the solvate molecules in the voids were highly disordered and were impossible to refine using conventional discrete-atom models. Therefore, the residual electron density was treated as diffuse contributions using the SQUEEZE of the *PLATON* software¹ and located a series of voids:

For $[Pd_6Cl_{12}L_4]$ ·6Me₂SO·5H₂O,

_platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons platon_squeeze_void_content 1 0.011 -0.012 -0.003 30342 10926 ''

For $[Pd_6Br_{12}L_4]$ ·7Me₂SO·4H₂O,

_platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons _platon_squeeze_void_content 1 -0.013 0.379 0.007 10105 4432 ''

For $[Pd_6I_{12}L_4]$ ·6Me₂SO·6H₂O,

_platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons _platon_squeeze_void_content 1 -0.009 0.003 0.001 9482 3145 ''

Reference for the SQUEEZE routine in *PLATON*.

1 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.

Fig. S1 IR (top) and ¹H NMR (bottom, Me₂SO- d_6) spectra of [Pd₆Cl₁₂L₄] (a), [Pd₆Br₁₂L₄] (b), [Pd₆I₁₂L₄] (c), and L (d). See Scheme 1 for the assignments in part (d).

Fig. S2 TGA (red) and DSC (blue) curves of $[Pd_6Cl_{12}L_4]$ (top), $[Pd_6Br_{12}L_4]$ (middle), and $[Pd_6I_{12}L_4]$ (bottom).

Fig. S3 ORTEP drawing of $[Pd_6Br_{12}L_4]$ with anisotropic displacement parameters at 20% probability. Hydrogen atoms and solvate molecules were omitted for clarity.

Fig. S4 Crystal structure of $[Pd_6Br_{12}L_4]$ showing octahedral edges (a) and inner-cavity with dummy-ball diameter of 8.3 Å (b).

Fig. S5 ¹H NMR (Me₂SO-*d*₆) spectra of [Pd₆Br₁₂L₄] showing iodization of the coordinating bromides in the presence of CH_2I_2 (10 *equiv.*) at room temperature in the dark for 0 d (a), 4 d (b), 9 d (c), and 22 d (d). Circle denotes the free CH_2I_2 , and the peak at 4.88 ppm corresponds to the resulting CH_2BrI .

Fig. S6 ¹H NMR (Me₂SO- d_6 +Me₂CO- d_6 , v/v = 10 : 1) spectra showing adsorption of CH₂I₂ into each [Pd₆Cl₁₂L₄] (a), [Pd₆Br₁₂L₄] (b), and [Pd₆I₁₂L₄] (c) from a mixed CH₂I₂/diethyl ether solution. The peak at 4.06 ppm corresponds to the adsorbed CH₂I₂.