Supporting Information for

Waste Polyethylene Terephthalate (PET) Material as Sustainable Precursor for the Synthesis of Nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr)[†]

Sheng-Han Lo,^a Duraisamy Senthil Raja,^a Chia-Wei Chen,^a Yu-Hao Kang,^b Jiun-Jen Chen*^b and Chia-Her Lin*^{ac}

^aDepartment of Chemistry, Chung Yuan Christian University, Taoyuan 320, Taiwan.

^bGreen Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.

^cR&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan.

Corresponding Author

*Tel: (+886) 03-5917468. E-mail: JiunJenChen@itri.org.tw (J. J. Chen) *Tel: (+886) 03-2653315. E-mail: chiaher@cycu.edu.tw (C. H. Lin)

Figure S1. Comparison of PXRD pattern of the solid product obtained in the hydrothermal reaction of VCl₃ (1 mmol) with PET (0.25 mmol), HF (2.0 mmol) and H₂O (4.5 mL) at 200 $^{\circ}$ C for 4 d for the synthesis of MIL-47 (as-synthesized), with its calculated PXRD pattern.

Figure S2. The PXRD pattern of the solid obtained in the hydrothermal reaction of $Cr(NO_3)_3 \cdot 9H_2O$ (1 mmol) with PET (1 mmol), HF (1 mmol), and H₂O (4.8 mL) at 220 °C for 72 h for the synthesis of MIL-53(Cr).

Figure S3. Comparison of PXRD pattern of the solid product obtained in the hydrothermal reaction of $Al(NO_3)_3 \cdot 9H_2O$ (1 mmol) with PET (0.5 mmol), and H_2O (3.0 mL) at 220 °C for 72 h for the synthesis of MIL-53(Al), with calculated PXRD patterns of AlOOH and MIL-53(Al).

Figure S4. Comparison of PXRD pattern of the solid product obtained in the hydrothermal reaction of $Ga(NO_3)_3 \cdot xH_2O$ (1 mmol) with PET (1 mmol), HF (1.2 mmol) and H₂O (5.0 mL) at 210 °C for 5 h for the synthesis of MIL-53(Ga), with PXRD patterns of H₂BDC.

Figure S5. The PXRD pattern of the solid obtained in the hydrothermal reaction of $Cr(NO_3)_3 \cdot 9H_2O$ (1 mmol) with PET (1 mmol), HF (1 mmol), and H₂O (4.8 mL) at 220 °C for 8 h for the synthesis of MIL-101(Cr).

Figure S6. The FT-IR spectrum of activated sample of MIL-47 synthesized using PET as the source of H₂BDC.

Figure S7. The TGA curve of activated sample of MIL-47 synthesized using PET as the source of H_2BDC .

Figure S8. Comparison of PXRD pattern of the product obtained in the hydrothermal reaction of $CrCl_3 \cdot 6H_2O$ (1 mmol) with PET (1 mmol), HF (2 mmol), and H_2O (5 mL) at 160 °C for 72 h for the synthesis of MIL-53(Cr) with calculated PXRD pattern of MIL-53(Cr) and PXRD pattern of H₂BDC.

Figure S9. The FT-IR spectrum of MIL-53(Cr) synthesized using PET as the source of H_2BDC .

Figure S10. The TGA curve of activated sample of MIL-53(Cr) synthesized using PET as the source of H_2BDC .

Figure S11. The FT-IR spectrum of MIL-53(Al) synthesized using PET as the source of H_2BDC .

Figure S12. The TGA curve of activated sample of MIL-53(Al) synthesized using PET as the source of H_2BDC .

Figure S13. The FT-IR spectrum of MIL-53(Ga) synthesized using PET as the source of H_2BDC .

Figure S14. The TGA curve of activated sample of MIL-53(Ga) synthesized using PET as the source of H_2BDC .

Figure S15. Comparison of PXRD pattern of the product obtained in the hydrothermal reaction of $CrCl_3 \cdot 6H_2O$ (1 mmol) with PET (1 mmol), HF (1 mmol), and H₂O (5 mL) at 220 °C for 8 h for the synthesis of MIL-101(Cr) with calculated PXRD pattern of MIL-101 and PXRD pattern of H₂BDC.

Figure S16. The FT-IR spectrum of MIL-101(Cr) synthesized using PET as the source of H_2BDC .

Figure S17. The TGA curve of activated sample of MIL-101(Cr) synthesized using PET as the source of H_2BDC .

Table S1. Coupling of propylene oxide (PO) and CO_2 to propylene carbonate (PC) catalyzed by various MOF/*n*-Bu₄NBr catalytic systems.

Entry	MOF	<i>n</i> -Bu ₄ NBr	Reaction Condition	Yield (%)	Ref.
1	MOF-5: 0.1 g	2.5 mol%	PO: 20 mmol, 6 MPa CO ₂ , 50	97.6	66
			°C, 4 h		
2	Cu(tactmb): 0.125	0.58 g	PO: 25 mmol, 1 atm CO ₂ , 25	47.5	67
	mol%		°C, 48 h		
3	HKUST-1: 0.125	0.58 g	PO: 25 mmol, 1 atm CO ₂ , 25	49.2	67
	mol%		°C, 48 h		
4	MOF-505: 0.125	0.58 g	PO: 25 mmol, 1 atm CO ₂ , 25	48.0	67
	mol%		°C, 48 h		
5	MMCF-2: 0.125	0.58 g	PO: 25 mmol, 1 atm CO ₂ , 25	95.4	67
	mol%		°C, 48 h		
6	MMPF-9:	0.58 g	PO: 25 mmol, 1 atm CO ₂ , 25	87.4	68
	0.03125 mmol		°C, 48 h		
7	HKUST-1: 0.0313	0.58 g	PO: 25 mmol, 1 atm CO ₂ , 25	49.2	68
	mmol		°C, 48 h		
8	ZnGlu: 1.6 mol%	1.6 mol%	PO: 42.6 mmol, 1 MPa CO ₂ , 25	92	69
			°C, 24 h		
9	Ni(saldpen)-MOF:	2 mol%	PO: 15 mmol, 2 MPa CO ₂ , 80	86	70
	0.1 g		°C, 4 h		
10	In-MOF: 0.056	0.5 mmol	PO: 20 mmol, 2 MPa CO ₂ , 80	93.4	71
	mmol		°C, 4 h		
11	HKUST-1: 0.2	10 mol%	PO: 20 mmol, 1 atm CO ₂ , 25	65	72
	mol%		°C, 48 h		
12	MOF1: 0.2 mol%	10 mol%	PO: 20 mmol, 1 atm CO ₂ , 25	96	72
			°C, 48 h		
13	ZnGlu: 0.47	0.94 mol%	PO: 42.6 mmol, 1.2 MPa CO ₂ ,	99	73
	mol%		25 °C, 6 h		
14	MIL-101(Cr): 0.2	0.3 mmol	PO: 18 mmol, 8 bar CO ₂ , 25 °C,	82	74
	mmol		48 h		
15	MIL-101(Fe): 0.2	0.3 mmol	PO: 18 mmol, 8 bar CO ₂ , 25 °C,	95	74
	mmol		48 h		
16	MOF-5: 0.2 mmol	0.3 mmol	PO: 18 mmol, 8 bar CO_2 , 25 °C,	67	74
			48 h		
17	MIL-47: 0.1 g	2.5 mol%	PO: 5 mL, 2 MPa CO ₂ , 50 °C,	95	+
			24 h		

+: Present Work

Table S2. Coupling of cyclohexene oxide (CHO) and CO_2 to cyclohexene carbonate (CHC) catalyzed by various MOF/*n*-Bu₄NBr catalytic systems.

Entry	MOF	<i>n</i> -Bu ₄ NBr	Reaction Condition	Yield (%)	Ref.
1	UMCM-1-NH ₂ :	0.64 mol%	CHO: 42.8 mmol, 1.2 MPa CO ₂ ,	10	75
	0.64 mol%		25 °C, 24 h		
2	IL-ZIF-90: 0.49	-	CHO: 18.1 mmol, 1 MPa CO ₂ ,	9	76
	mol%		120 °C, 3 h		
3	MIL-101(Cr):	0.62 mmol	CHO: 18 mmol, 8 atm CO ₂ , 25	5	77
	50 mg		°C, 64 h		
4	MIL-101(Cr):	5.0 mol%	CHO: 5 mL, 2 MPa CO ₂ , 80 °C,	53	+
	0.1 g		24 h		
5	MIL-101(Cr):	5.0 mol%	CHO: 5 mL, 2 MPa CO ₂ , 80 °C,	74	+
	0.1 g		48 h		
6	MIL-101(Cr):	5.0 mol%	CHO: 5 mL, 2 MPa CO ₂ , 80 °C,	92	+
	0.1 g		72 h		

+: Present Work