Supplementary Material W. Paschinger et al. "Ba-filled Ni-Sb-Sn based skutterudites with anomalously high lattice thermal conductivity"

Ba-filled Ni-Sb-Sn based Skutterudites with anomalously high lattice thermal conductivity

W. Paschinger^{1,#}, G. Rogl^{1,2,3,4}, A. Grytsiv^{1,2,3}, H. Michor³, P. R. Heinrich³, H. Müller³, S. Puchegger⁴, B. Klobes^{5,*}, R. P. Hermann^{5,6}, M. Reinecker⁴, Ch. Eisenmenger-Sitter³, P. Broz⁷, E. Bauer^{2,3}, G. Giester⁸, M. Zehetbauer⁴, P. F. Rogl^{1,2}

¹Institute of Materials Chemistry & Research, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria ²Christian Doppler Laboratory for Thermoelectricity, Vienna, Austria

³Institute for Solid State Physics, TU-Wien, Wiedner Hauptstr. 8, A-1040 Vienna, Austria

⁴ Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria

⁵Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI, JARA-FIT, Forschungszentrum Jülich GmbH, D-

52425 Jülich, Germany

⁶Faculté des Sciences, Université de Liège, B-4000 Liège, Belgium

⁷Faculty of Science, Department of Chemistry, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
⁸Institute of Mineralogy and Crystallography, University of Vienna, Althanstr. 14 (UZA 2), A-1090 Vienna, Austria

Figure I: DTA curves of the single phase-sample Ni₄Sb_{8.2}Sn_{3.8}.

[#] Author to whom any correspondence should be addressed. e-mail: werner.paschinger@univie.ac.at

present address: Gesellschaft für Anlagen- und Reaktionssicherheit (GRS) gGmbH, Schwertnergasse 1, 50667 Köln, Germany

Supplementary Material

W. Paschinger et al. "Ba-filled Ni-Sb-Sn based skutterudites with anomalously high lattice thermal conductivity"

Figure II: DTA curves of the single-phase sample $Ba_{0.29}Ni_4Sb_{9.1}Sn_{2.9}$.

Figure 3.III: DTA curves of the single-phase sample Ba_{0.42}Ni₄Sb_{8.2}Sn_{3.8}.

Supplementary Material

W. Paschinger et al. "Ba-filled Ni-Sb-Sn based skutterudites with anomalously high lattice thermal conductivity"

Figure 3IV: DTA curves of the single-phase sample $Ba_{0.92}Ni_4Sb_{6.7}Sn_{5.3}$. Curves are shown twice a) and b) to present all the evaluated temperatures for the occurring thermal effects.

Supplementary Material W. Paschinger et al. "Ba-filled Ni-Sb-Sn based skutterudites with anomalously high lattice thermal conductivity"

Table I: Temperature dependent	¹¹⁹ Sn Mössbauer parameters,	i.e. isomer s	shift δ, quadrupole
splitting ΔE_Q and linewidth Γ .	Component I, II, and III 1	represent the	different possible
coordinations of Sn with 2, 1, or 0	b next neighbors.		

sample	temperature	component	δ (mm/s)	$\Delta E_Q (mm/s)$	Γ (mm/s)
$Ni_4Sb_{8.2}Sn_{3.8}$	290	Ι	2.47(6)	0.94(6)	0.88(5)
		II	2.71(7)	0.82(9)	1.0(1)
	200	Ι	2.44(1)	0.95(1)	0.84(2)
		II	2.65(2)	0.85(2)	0.88(3)
	100	Ι	2.45(1)	0.94(1)	0.83(1)
		II	2.71(1)	0.89(1)	0.91(2)
	10	Ι	2.43(1)	0.93(1)	0.85(1)
		II	2.75(1)	0.91(1)	0.91(1)
Ba _{0.29} Ni ₄ Sb _{9.2} Sn _{2.9}	290	Ι	2.53(1)	1.07(2)	0.77(1)
		II	2.56(1)	0.55(2)	0.75(5)
	200	Ι	2.56(1)	1.13(1)	0.77(1)
		II	2.57(1)	0.53(1)	0.68(2)
	75	Ι	2.59(1)	1.14(2)	0.78(2)
		II	2.57(1)	0.54(1)	0.66(3)
	10	Ι	2.58(1)	1.15(1)	0.81(1)
		II	2.58(1)	0.85(1)	0.68(2)
Ba _{0.42} Ni ₄ Sb _{8.2} Sn _{3.8}	290	Ι	2.41(1)	0.91(1)	0.77(1)
		II	2.64(1)	0.89(1)	0.82(2)
	200	Ι	2.42(1)	0.91(1)	0.82(2)
		II	2.70(1)	0.90(1)	0.80(1)
	100	Ι	2.45(1)	0.89(1)	0.82(2)
		II	2.71(1)	0.90(1)	0.82(2)
	10	Ι	2.44(1)	0.91(1)	0.80(1)
		II	2.73(1)	0.90(1)	0.81(2)
Ba _{0.92} Ni ₄ Sb _{6.7} Sn _{5.3}	290	Ι	2.30(9)	0.8(1)	0.9(1)
		II	2.53(3)	0.98(3)	0.82(3)
		III	2.56(9)	0.5(1)	0.8(1)
	200	Ι	2.44(5)	0.9(1)	1.0(1)
		II	2.55(2)	1.00(3)	0.83(3)
		III	2.56(4)	0.46(5)	0.70(7)
	100	Ι	2.42(4)	0.83(5)	0.96(7)
		II	2.58(2)	1.02(3)	0.85(2)
		III	2.60(3)	0.48(5)	0.71(5)
	10	Ι	2.41(6)	0.85(8)	0.97(8)
		II	2.55(3)	1.02(3)	0.85(2)
		III	2.61(5)	0.44(7)	0.75(8)

sample	δ (mm/s)	$\Delta E_Q (mm/s)$	Γ (mm/s)
$Ni_4Sb_{8.2}Sn_{3.8}$	-1.2(1)	3.1(5)	2.9(2)
$Ba_{0.29}Ni_4Sb_{9.2}Sn_{2.9}$	-1.3(1)	2.7(7)	3.2(2)
$Ba_{0.42}Ni_4Sb_{8.2}Sn_{3.8}$	-1.2(1)	2.6(8)	3.1(2)
$Ba_{0.92}Ni_4Sb_{6.7}Sn_{5.3}$	-1.0(1)	3.1(5)	3.0(1)

Table II: ¹²¹Sb Mössbauer parameters at 10 K, i.e. isomer shift δ , quadrupole splitting ΔE_Q and linewidth Γ .