Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Protonation of Nitriles: Isolation and Characterization of Alkyl- and AryInitrilium Ions

Ralf Haiges,*^a Amanda F. Baxter,^a Nadine R. Goetz,^b Joachim A. Axhausen,^b Theresa Soltner,^b Andreas Kornath,^b and Karl O. Christe^a

- ^a Loker Hydrocarbon Research Institute and Department of Chemistry University of Southern California Los Angeles, CA 90089-1661 (USA)
- ^b Department of Chemistry
 Ludwig-Maximilian University Munich
 Butenandtstr. 5-13, 81377 Munich (Germany)

Contents

EXPERIMENTAL DETAILS	7
General	7
Crystal Structure determinations	7
Preparation of [RCNH][AsF ₆] (R = CH ₃ , C ₂ H ₅ , C ₃ H ₇ , C ₆ H ₅ , o-CH ₃ C ₆ H ₄)	7
Preparation of [(CH ₃) ₂ NCH ₂ CNH][AsF ₆] ₂ and [C ₆ H ₄ (CNH) ₂][AsF ₆] ₂	9
Preparation of [RCNH][SbF ₆] (R = CH ₃ , C ₂ H ₅ , C ₃ H ₇ , C ₆ H ₅ , o-CH ₃ C ₆ H ₄)	10
Preparation of [RCNH][Sb ₂ F ₁₁] (R = CH ₃ , C ₂ H ₅ , C ₃ H ₇ , C ₆ H ₅)	10
CRYSTALLOGRAPHIC DETAILS	11
Figure S1. The crystal structure of CH₃CNHAsF ₆ .	11
Figure S2. The unit cell in the crystal structure of $CH_3CNHAsF_6$.	11
Figure S3. The crystal structure of CH ₃ CNHSb ₂ F ₁₁ .	12
Figure S4. The unit cell in the crystal structure of $CH_3CNHSb_2F_{11}$.	12
Figure S5. The crystal structure of $C_2H_5CNHAsF_6$.	13
Figure S6. The unit cell in the crystal structure of $C_2H_5CNHAsF_6$.	13
Figure S7. The crystal structure of C ₃ H ₇ CNHAsF ₆ .	14
Figure S8. The unit cell in the crystal structure of C ₃ H ₇ CNHAsF ₆ .	14
Figure S9. The crystal structure of $(CH_3)_2NCH_2CNH(AsF_6)_2$.	15
Figure S10. The unit cell in the crystal structure of $(CH_3)_2NCH_2CNH(AsF_6)_2$.	15
Figure S11. The crystal structure of $C_6H_5CNHAsF_6$.	16
Figure S12. The unit cell in the crystal structure of $C_6H_5CNHAsF_6$.	16
Figure S13. The crystal structure of <i>o</i> -CH₃C ₆ H₄CNHAsF ₆ .	17
Figure S14. The unit cell in the crystal structure of <i>o</i> -CH ₃ C ₆ H ₄ CNHAsF ₆ .	17
Figure S15. The crystal structure of $C_6H_4(CNH)_2(AsF_6)_2$.	18
Figure S16. The unit cell in the crystal structure of $C_6H_4(CNH)_2(AsF_6)_2$.	18

Table S1. Sample and crystal data for MeCNHAsF ₆ .	19
Table S2. Data collection and structure refinement for MeCNHAsF ₆ .	20
Table S3. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å ²) for MeCNHAsF ₆ .	21
Table S4. Bond lengths (Å) for MeCNHAsF ₆ .	21
Table S5. Bond angles (°) for MeCNHAsF ₆ .	22
Table S6. Anisotropic atomic displacement parameters (Å ²) for MeCNHAsF ₆ .	23
Table S7. Hydrogen atomic coordinates and isotropic atomic displacement parameters ($Å^2$) for MeCNHAsF ₆ .	23
Table S8. Sample and crystal data for MeCNHSb ₂ F ₁₁ .	24
Table S9. Data collection and structure refinement for $MeCNHSb_2F_{11}$.	25
Table S10. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å ²) for MeCNHSb ₂ F	- ₁₁ . 26
Table S11. Bond lengths (Å) for MeCNHSb ₂ F_{11} .	27
Table S12. Bond angles (°) for MeCNHSb ₂ F ₁₁ .	28
Table S13. Anisotropic atomic displacement parameters (Å ²) for MeCNHSb ₂ F_{11} .	29
Table S14. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å ²) for MeCNHSb ₂ F_1	. 30
Table S15. Sample and crystal data for EtCNHAsF ₆ .	31
Table S16. Data collection and structure refinement for EtCNHAsF ₆ .	32
Table S17. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å ²) for EtCNHAsF ₆ .	33
Table S18. Bond lengths (Å) for EtCNHAsF ₆ .	34
Table S19. Bond angles (°) for EtCNHAsF ₆ .	34
Table S20. Anisotropic atomic displacement parameters (Å ²) for EtCNHAsF ₆ .	35
Table S21. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å ²) for EtCNHAsF ₆ .	35
Table S22. Sample and crystal data for PrCNHAsF ₆ .	36
Table S23. Data collection and structure refinement for PrCNHAsF ₆ .	37
Table S24. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å ²) for PrCNHAsF ₆ .	38
Table S25. Bond lengths (Å) for PrCNHAsF ₆ .	39

Table S26. Bond angles (°) for PrCNHAsF ₆ .	40
Table S27. Anisotropic atomic displacement parameters (Å ²) for PrCNHAsF ₆ .	41
Table S28. Hydrogen atomic coordinates and isotropic atomic displacement parameters ($Å^2$) for PrCNHAsF ₆ .	42
Table S29. Sample and crystal data for $C_4H_{10}As_2F_{12}N_2$.	43
Table S30. Data collection and structure refinement for $C_4H_{10}As_2F_{12}N_2$.	44
Table S31. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å ²) for $C_4H_{10}As_2F_{12}$	_! N₂. 45
Table S32. Bond lengths (Å) for C ₄ H ₁₀ As ₂ F ₁₂ N ₂ .	47
Table S33. Bond angles (°) for C ₄ H ₁₀ As ₂ F ₁₂ N ₂ .	48
Table S34. Torsion angles (°) for C ₄ H ₁₀ As ₂ F ₁₂ N ₂ .	50
Table S35. Anisotropic atomic displacement parameters (Å ²) for $C_4H_{10}As_2F_{12}N_2$.	51
Table S36. Hydrogen atomic coordinates and isotropic atomic displacement parameters ($Å^2$) for C ₄ H ₁₀ As ₂ F ₁₂ N	I ₂ . 53
Table S37. Sample and crystal data for PhCNHAsF ₆ .	54
Table S38. Data collection and structure refinement for PhCNHAsF ₆ .	55
Table S39. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å ²) for PhCNHAsF ₆	, . 5 6
Table S40. Bond lengths (Å) for PhCNHAsF ₆ .	57
Table S41. Bond angles (°) for PhCNHAsF ₆ .	58
Table S42. Torsion angles (°) for PhCNHAsF ₆ .	59
Table S43. Anisotropic atomic displacement parameters (Å ²) for PhCNHAsF ₆ .	59
Table S44. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å ²) for PhCNHAsF ₆ .	60
Table S45. Sample and crystal data for C ₈ H ₈ AsF ₆ N.	61
Table S46. Data collection and structure refinement for C ₈ H ₈ AsF ₆ N.	62
Table S47. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å ²) for $C_8H_8AsF_6N$.	63
Table S48. Bond lengths (Å) for C ₈ H ₈ AsF ₆ N.	64
Table S49. Bond angles (°) for C ₈ H ₈ AsF ₆ N.	65
Table S50. Torsion angles (°) for C ₈ H ₈ AsF ₆ N.	66

Table S51. Anisotropic atomic displacement parameters (Å ²) for C ₈ H ₈ AsF ₆ N.	66
Table S52. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å ²) for $C_8H_8AsF_6N$.	67
Table S53. Sample and crystal data for $C_8H_6As_2F_{12}N_2$.	68
Table S54. Data collection and structure refinement for C ₈ H ₆ As ₂ F ₁₂ N ₂ .	69
Table S55. Atomic coordinates and equivalent isotropic atomic displacement parameters ($Å^2$) for $C_8H_6As_2F_{12}N$	l₂ .70
Table S56. Bond lengths (Å) for C ₈ H ₆ As ₂ F ₁₂ N ₂ .	71
Table S57. Bond angles (°) for C ₈ H ₆ As ₂ F ₁₂ N ₂ .	71
Table S58. Torsion angles (°) for C ₈ H ₆ As ₂ F ₁₂ N ₂ .	72
Table S59. Anisotropic atomic displacement parameters (Å ²) for $C_8H_6As_2F_{12}N_2$.	72
Table S60. Hydrogen atomic coordinates and isotropic atomic displacement parameters ($Å^2$) for C ₈ H ₆ As ₂ F ₁₂ N ₂ .	. 73
SPECTROSCOPY	74
Table S61. Comparison of the $ u$ (CN) stretching frequencies for the nitrilium ions and free nitriles.	74
Figure S17. Raman spectrum of [CH₃CNH][AsF ₆].	74
Figure S18. Raman spectrum of [CH ₃ CNH][Sb ₂ F ₁₁].	75
Figure S19. Raman spectrum of $[C_2H_5CNH][AsF_6]$.	75
Figure S20. Raman spectrum of $[C_3H_7CNH][AsF_6]$.	76
Figure S21. Raman spectrum of [PhCNH][AsF ₆].	76
Figure S22. Raman spectrum of $[p-C_6H_4(CNH)_2][AsF_6]_2$.	77
Figure S22. Raman spectrum of [o-CH ₃ C ₆ H ₄ CNH][AsF ₆].	77
Figure S23. IR spectrum of [CH ₃ CNH][AsF ₆].	78
Figure S24. IR spectrum of [CH ₃ CNH][Sb ₂ F ₁₁].	78
Figure S25. IR spectrum of $[C_2H_5CNH][AsF_6]$.	79
Figure S26. IR spectrum of [C ₃ H ₇ CNH][AsF ₆].	79
Figure S27. IR spectrum of [PhCNH][AsF ₆].	80
Figure S28. IR spectrum of [Me ₂ HNCH ₂ CNH][AsF ₆] ₂ .	80

Figure S30. IR spectrum of [<i>p</i> -C ₆ H ₄ (CNH) ₂][AsF ₆] ₂ .	81
LITERATURE	82

Experimental Details

General

Caution! Anhydrous HF can cause severe burns and contact with the skin must be avoided. AsF₅ and SbF₅ are corrosive and highly poisonous and should only be handled in a well ventilated fume hood. Appropriate safety precautions should be taken when working with these materials.

Materials and apparatus: All reactions were carried out in either Teflon-FEP ampules or NMR tubes that were closed by stainless steel valves. Volatile materials were handled in grease-less Pyrex glass or stainless steel/Teflon-FEP vacuum lines.¹ Reaction vessels and the stainless steel vacuum line were passivated with CIF₃ prior to use. Non-volatile materials were handled in the dry nitrogen atmosphere of a glove box. HF (Galaxy Chemicals) was dried by storage over BiF₅.² AsF₅ was prepared from AsF₃ and F₂.³⁻⁵ SbF₅ (Ozark Mahoning) was triple distilled before use. Acetonitrile, propionitrile, butyronitrile, and benzonitrile (all Aldrich) were dried over molecular sieves and freshly distilled prior to use. Toluidine and dicyanobenzene (both Alrich) were used as received.

The NMR spectra were recorded at 298 K on Bruker AMX-500, Varian NMRS-600, or Varian NMRS-500 spectrometers. Spectra were externally referenced to neat nitromethane for ¹⁴N NMR spectra, neat tetramethylsilane for ¹H and ¹³C NMR spectra, and to 80% CFCl₃ in chloroform-d for ¹⁹F NMR spectra. Raman spectra were recorded directly in the Teflon reactors or in a 5mm J. Young nmr tube in the range 4000–80 cm⁻¹ on Bruker Equinox 55 FT-RA or Vertex 70/RAM II spectrophotometer, using Nd-YAG lasers at 1064 nm. Infrared spectra were recorded in the range 4000-400 cm⁻¹ on Bruker Alpha, Bruker Vertex 70, or Bruker Tensor FT-IR spectrometers using KBr pellets.

Crystal Structure determinations

The single-crystal X-ray diffraction data were collected on a Bruker SMART APEX DUO 3-circle platform diffractometer, equipped with an APEX II CCD, using Mo Kα radiation (TRIUMPH curved-crystal monochromator) from a fine-focus tube. The diffractometer was equipped with an Oxford Cryosystems Cryostream 700 apparatus for low-temperature data collection. The frames were integrated using the SAINT algorithm to give the *hkl* files corrected for Lp/decay.⁶ The absorption correction was performed using the SADABS program.^{7, 8} The structures were solved by the direct method and refined on *F*² using the Bruker SHELXTL Software Package and ShelXle.⁹⁻¹³ All non-hydrogen atoms were refined anisotropically. ORTEP drawings were prepared using the CRTEP-3 for Windows V2.02 program.¹⁴ Further crystallographic details can be obtained from the Cambridge Crystallographic Data Centre (CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk) on guoting the deposition no. CCDC 1469645-1469652.

Preparation of [RCNH][AsF₆] (R = CH₃, C_2H_5 , C_3H_7 , C_6H_5 , o-CH₃C₆H₄)

Anhydrous HF (2.0 mL) and AsF₅ (3.50 mmol) were condensed into a Teflon-FEP ampule containing a frozen sample of the corresponding nitrile (3.00 mmol) at -196 °C. The mixture was allowed to warm to ambient temperature and the colorless solution stirred for 30 min. The volatile compounds were removed *in vacuo*, first at -64 °C, then at ambient temperature, leaving behind a colourless solid. Single crystals were grown from HF solution by slow evaporation of the solvent *in vacuo* at -30 °C. [CH₃CNH][AsF₆] (687 mg; weight expected for 3.00 mmol: 693 mg).

Raman (200 mW): \tilde{v} (rel. Intensity) = 3039 (1.1), 3003 (1.5), 2945 (5.1), 2293 (0.9), 1744 (0.8), 1415 (1.3), 1361 (1.9), 1052 (0.5), 916 (0.5), 884 (3.4), 791 (0.7), 732 (0.8), 682 (10.0), 624 (0.8), 572 (1.5), 534 (1.5), 430 (0.8), 371 (5.0) cm⁻¹; IR (KBr): \tilde{v} = 2950 (w), 2345 (w), 2324 (w), 2293 (w), 2258 (vw), 1743 (m), 1706 (m), 1672 (m), 1558 (vw), 1534 (m), 1419 (m), 1404 (m sh), 1375 (vw), 1363 (vw), 1343 (vw), 1301 (vw), 1196 (w), 1151 (m), 1037 (m), 927 (m), 881 (vw), 701 (vs), 674 (s sh), 544 (w), 510 (vw) cm⁻¹. ¹H NMR (HF, unlocked, 25°C) δ = 2.54 ppm (s, CH₃), 10.44 ppm (t, ¹J(¹H¹⁴N) = 95.0 Hz, CNH); ¹³C NMR (HF, unlocked, 25°C) δ = 8.2 ppm (s, CH₃), 117.7 ppm (t, ¹J(¹³C¹⁴N) = 42.7 Hz, CNH); ¹⁴N NMR (HF, unlocked, 25°C) δ = -241.1 ppm (d, ¹J(¹H¹⁴N) = 95.7 Hz).

[C₂H₅CNH][AsF₆] (731 mg; weight expected for 3.00 mmol: 735 mg).

Raman (200 mW): \dot{v} (rel. Intensity) = 3022 (2.4), 2967 (5.4), 2943 (4.9), 2898 (2.7), 2262 (6.4), 1467 (4.5), 1411 (3.8), 1076 (4.1), 989 (4.2), 837 (3.2), 693 (10.0), 680 (8.8), 672 (10.0), 586 (3.9), 557 (4.6), 373 (7.9), 225 (5.6) cm⁻¹; IR (KBr): \tilde{v} = 2975 (m), 2943 (vw), 2884 (vw), 2326 (w), 2250 (w), 1743 (vw), 1725 (vw), 1572 (w sh), 1548 (m), 1536 (w sh), 1467 (w), 1389 (w), 1343 (vw), 1327 (vw), 1278 (vw), 1255 (w), 1155 (m), 1087 (m), 1040 (vw), 874 (vw), 745 (s sh), 702 (vs), 562 (vw) cm⁻¹. ¹H NMR (HF, unlocked, 25°C) δ = 1.24 ppm (t, ${}^{3}J({}^{1}H{}^{1}H)$ = 7.8 Hz, CH₃), 2.80 ppm (q, ${}^{3}J({}^{1}H{}^{1}H)$ = 7.8 Hz, CH₂), 10.58 ppm (t, ${}^{1}J({}^{1}H{}^{1}H)$ = 94.5 Hz, CNH); ${}^{13}C$ NMR (HF, unlocked, 25°C) δ = 9.1 ppm (s, CH₃), 18.2 ppm (s, CH₂), 111.0 ppm (t, ${}^{1}J({}^{1}C{}^{14}N)$ = 44.8 Hz, CNH); ${}^{14}N$ NMR (HF, unlocked, 25°C) δ = -241.0 ppm (d, ${}^{1}J({}^{1}H{}^{1}H)$ = 96.0 Hz).

 $[C_{3}H_{7}CNH][AsF_{6}]$ (775 mg; weight expected for 3.00 mmol: 777 mg).

Raman (200 mW): \tilde{v} (rel. Intensity) = 2952 (5.8), 2929 (6.9), 2890 (4.5), 2257 (7.2), 1276 (5.9), 1091 (6.0), 869 (5.5), 694 (10.0), 671 (8.7), 572 (5.5), 540 (7.4), 369 (8.3), 194 (6.2), 140 (7.3) cm⁻¹; IR (KBr): \tilde{v} = 2973 (w), 2940 (vw), 2884 (vw), 2354 (vw), 2326 (w), 2256 (vw), 1558 (m), 1541 (m), 1458 (w), 1251 (vw), 1152 (w), 1088 (w), 873 (vw), 743 (s sh), 701 (vs), 551 (w) cm⁻¹.

¹H NMR (HF, unlocked, 25°C) δ = 0.75 ppm (t, ³*J*(¹H¹H) = 8.0 Hz, C*H*₃), 1.59 ppm (tq, ³*J*(¹H¹H) = 8.0 Hz, ³*J*(¹H¹H) = 7.3 Hz, CH₃C*H*₂), 2.67 ppm (t, ³*J*(¹H¹H) = 7.3 Hz, C*H*₂CNH), 10.34 ppm (t, ¹*J*(¹H¹⁴N) = 94.5 Hz, CN*H*); ¹³C NMR (HF, unlocked, 25°C) δ = 10.8 ppm (s, CH₃), 16.6 ppm (s, CH₃CH₂), 16.8 ppm (s, CH₂CNH), 110.4 ppm (t, ¹*J*(¹³C¹⁴N) = 45.1 Hz, CNH); ¹⁴N NMR (HF, unlocked, 25°C) δ = -240.5 ppm (d, ¹*J*(¹H¹⁴N) = 94.6 Hz).

[C₆H₅CNH][AsF₆] (877 mg; weight expected for 3.00 mmol: 879 mg).

Raman (200 mW): \tilde{v} (rel. Intensity) = 3092 (0.9), 2230 (4.5), 1592 (8.2), 1200 (1.9), 1173 (3.6), 1025 (1.6), 1000 (10.0), 774 (1.2), 761 (1.5), 694 (2.7), 669 (1.6), 625 (1.9), 553 (1.4), 538 (1.1), 468 (1.3), 387 (1.6), 364 (1.4), 183 (2.3) cm⁻¹; IR (KBr): \tilde{v} = 3111 (vw), 3066 (vw), 2925 (vw), 2299 (m), 2264 (vw), 2229 (w), 1624 (m), 1591 (s), 1561 (m), 1495 (vw), 1474 (vw), 1450 (m), 1419 (vw), 1396 (vw), 1359 (m), 1339 (vw), 1307 (w), 1285 (vw), 1256 (vw), 1230 (vw), 1199 (w), 1174 (m), 1106 (vw), 1071 (vw), 1025 (w), 999 (w), 947 (vw), 830 (vw), 748 (s sh), 701 (vs), 656 (s sh), 552 (m), 533 (w), 467 (m) cm⁻¹. ¹H NMR (HF, unlocked, 25°C) δ = 7.1 – 7.8 ppm (m, C₆H₅), 11.48 ppm (t, ¹J(¹H¹⁴N) = 94.6 Hz, CNH); ¹³C NMR (HF, unlocked, 25°C) δ = 108.6 ppm (t, ¹J(¹C¹⁴N) = 45.0 Hz, CNH), 130.3 ppm, 133.1 ppm, 140.2 ppm, 150.1 ppm (**C**₆H₅); ¹⁴N NMR (HF, unlocked, 25°C) δ = -230.7 ppm (d, ¹J(¹H¹⁴N) = 95.3 Hz, C**N**H).

[o-CH₃C₆H₄CNH][AsF₆] (916 mg; weight expected for 3.00 mmol: 921 mg).

Raman (200 mW): \tilde{v} (rel. Intensity) = 3083 (1.2), 2936 (1.6), 2230 (10.0), 1597 (9.9), 1573 (2.2), 1483 (1.8), 1216 (6.7), 1192 (2.8), 1173 (3.9), 1112 (1.5), 1048 (7.0), 724 (8.7), 687 (6.4), 546 (3.3), 463 (1.9), 459 (2.0), 364 (1.9), 234 (1.8), 178 (4.2), 157 (3.2) cm⁻¹; IR (KBr): \tilde{v} = 3110 (vw), 3075 (vw), 2923 (w), 2298 (m), 2230 (w), 1621 (s), 1590 (s), 1563 (s), 1523 (w), 1496 (w), 1474 (m), 1450 (w), 1420 (vw), 1394 (vw), 1357 (m), 1307 (m), 1280 (m), 1193 (m), 1106 (w), 1025 (w), 999 (m), 895 (vw), 838 (vw), 748 (s sh), 702 (vs), 648 (m sh), 553 (w), 481 (vw), 467 (w) cm⁻¹.

¹H NMR (HF, unlocked, 25°C) δ = 2.58 ppm (s, C**H**₃), 7.4 – 8.1 ppm (m, C₆**H**₄), 10.90 ppm (t, ¹J(¹H¹⁴N) = 93.4 Hz, CN**H**); ¹³C NMR (HF, unlocked, 25°C) δ = 18.4 ppm (s, **C**H₃), 109.3 ppm (t, ¹J(¹³C¹⁴N) = 41.0 Hz, **C**NH), 127.6 ppm, 131.6 ppm, 136.0, 139.8 ppm, 148.6 ppm (**C**₆H₅); ¹⁴N NMR (HF, unlocked, 25°C) δ = -219 ppm (s, broad, C**N**H).

Preparation of $[(CH_3)_2NCH_2CNH][AsF_6]_2$ and $[C_6H_4(CNH)_2][AsF_6]_2$

Anhydrous HF (2.0 mL) and AsF₅ (6.50 mmol) were condensed into a Teflon-FEP ampule containing a frozen sample of the corresponding nitrile (3.00 mmol) at -196 °C. The mixture was allowed to warm to ambient temperature and the colorless solution stirred for 30 min. The volatile compounds were removed *in vacuo*, first at -64 °C, then at ambient temperature, leaving behind a colourless solid. Single crystals were grown from HF solution by slow evaporation of the solvent *in vacuo* at -30 °C.

[(CH₃)₂NCH₂CNH][AsF₆]₂ (1.387 g; weight expected for 3.00 mmol: 1.392 g).

Raman (200 mW): \tilde{v} (rel. Intensity) = 3059 (2.0), 2989 (4.4), 2964 (2.6), 2252 (1.0), 822 (2.7), 791 (1.4), 733 (5.2), 702 (2.8), 682 (10.0), 537 (3.7), 386 (2.8), 214 (1.1) cm⁻¹; IR (KBr): \tilde{v} =2978 (vw), 2940 (w), 2879 (vw), 2326 (w), 2256 (m), 1541 (w), 1523 (w), 1471 (w), 1419 (vw), 1407 (w), 1329 (vw), 1307 (vw), 1255 (w), 1240 (w), 1135 (vw), 1091 (vw), 1067 (vw), 1011 (vw), 959 (w), 846 (vw), 814 (m sh), 744 (s sh), 701 (vs), 671 (s sh), 583 (vw), 545 (m) cm⁻¹.

¹H NMR (HF, unlocked, 25°C) δ = 3.12 ppm (s, C*H*₃), 4.70 ppm (s, C*H*₂), 10.7 ppm (t, ¹*J*(¹H¹⁴N) = 96.0 Hz, CN*H*); ¹³C NMR (HF, unlocked, 25°C) δ = 46.4 ppm (s, *C*H₃), 54.9 ppm (s, *C*H₂), 108.0 ppm (t, ¹*J*(¹3C¹⁴N) = 45.6 Hz, *C*NH); ¹⁴N NMR (HF, unlocked, 25°C) δ = -222.0 ppm (d, ¹*J*(¹H¹⁴N) = 96 Hz, C*N*H), -346.7 ppm (d, ¹*J*(¹H¹⁴N) = 63 Hz, (CH₃)₂*N*H).

$[C_6H_4(CNH)_2][AsF_6]_2$ (1.517 g; weight expected for 3.00 mmol: 1.524 g).

Raman (200 mW): \tilde{v} (rel. Intensity) = 3105 (0.4), 3087 (0.4), 2223 (2.2), 1602 (10.0), 1317 (1.1), 1167 (6.9), 819 (3.1), 694 (3.4), 664 (1.7), 655 (1.5), 589 (1.4), 566 (1.7), 526 (2.2), 378 (1.7), 364 (1.8), 209 (1.9) cm⁻¹; IR (KBr): \tilde{v} = 3122 (vw), 3098 (w), 3054 (w), 2998 (vw), 2369 (vw), 2353 (vw), 2319 (w), 2233 (m), 1504 (w), 1403 (w), 1278 (w), 1255 (w), 1201 (w), 1181 (vw), 1125 (vw), 1021 (vw), 986 (vw), 845 (m), 743 (s sh), 702 (svs), 562 (m), 531 (vw) cm⁻¹.

¹H NMR (HF, unlocked, 25°C) δ = 7.0 ppm (s, C₆*H*₄), 10.8 ppm (s, broad, CN*H*); ¹³C NMR (HF, unlocked, 25°C) δ = 111.9 ppm (s, broad, *C*NH), 126.0 ppm, 136.8 ppm (*C*₆H₄); ¹⁴N NMR (HF, unlocked, 25°C) δ = - 223 ppm (s, broad, C*N*H).

Preparation of [RCNH][SbF₆] (R = CH₃, C₂H₅, C₃H₇, C₆H₅, o-CH₃C₆H₄)

Anhydrous HF (2.0 mL) was condensed into a Teflon-FEP ampule containing a frozen sample of SbF₅ (3.00 mmol) at -196°C. The mixture was allowed to warm to ambient temperature to form a clear colourless solution. The solution was cooled to about -50°C and, under a stream of dry nitrogen using an 18 gauge FEP tubing, transferred into a second Teflon-FEP ampule containing a frozen sample of the corresponding nitrile (3.00 mmol) at -196°C. The mixture was allowed to warm to ambient temperature and, after 30 min, the volatile compounds removed *in vacuo*, first at -64°C, then at ambient temperature, leaving behind a colourless crystalline solid.

[CH₃CNH][SbF₆] (830 mg; weight expected for 3.00 mmol: 833 mg).

[C₂H₅CNH][SbF₆] (874 mg; weight expected for 3.00 mmol: 875 mg).

 $[C_{3}H_{7}CNH]$ [SbF₆] (913 mg; weight expected for 3.00 mmol: 917 mg).

 $[C_6H_5CNH]$ [SbF₆] (1.009 g; weight expected for 3.00 mmol: 1.019 g).

Preparation of [RCNH][Sb₂F₁₁] (R = CH₃, C₂H₅, C₃H₇, C₆H₅)

Anhydrous HF (2.5 mL) was condensed into a Teflon-FEP ampule containing a frozen sample of SbF5 (4.00 mmol) at -196°C. The mixture was allowed to warm to ambient temperature to form a clear colourless solution. The solution was cooled to about -50°C and, under a stream of dry nitrogen using an 18 gauge FEP tubing, transferred into a second Teflon-FEP ampule containing a frozen sample of the corresponding nitrile (2.00 mmol) at -196°C. The mixture was allowed to warm to ambient temperature and, after 30 min, the volatile compounds removed *in vacuo*, first at -64°C, then at ambient temperature, leaving behind a colourless crystalline solid.

[CH₃CNH][Sb₂F₁₁] (0.981 g; weight expected for 2.00 mmol: 0.989 g).

Raman (200 mW): \tilde{v} (rel. Intensity) = 2944 (3.7), 2305 (4.4), 1743 (1.4), 1739 (1.3), 1358 (2.0), 1284 (1.2), 914 (0.7), 679 (10.0), 670 (5.3), 663 (4.4), 657 (6.1), 625 (1.7), 608 (1.2), 604 (1.2), 543 (0.5), 530 (0.9), 386 (1.1), 294 (3.7), 229 (2.7), 127 (2.1); IR (KBr): \tilde{v} = 2944 (w), 2339 (w), 2311 (w), 2290 (vw), 2254 (w), 1742 (w), 1701 (m), 1663 (m), 1607 (vw), 1530 (m), 1419 (m), 1361 (m), 1298 (vw), 1255 (w), 1194 (vw), 1181 (vw), 1154 (vw), 1035 (m), 919 (w), 695 (s sh), 664 (vs), 545 (w), 495 (w) cm⁻¹. ¹H NMR (HF, unlocked, 25°C) δ = 2.53 ppm (s, CH₃), 10.40 ppm (t, ¹J(¹H¹⁴N) = 94.6 Hz, CNH); ¹³C NMR (HF, unlocked, 25°C) δ = 8.1 ppm (s, CH₃), 117.7 ppm (t, ¹J(¹³C¹⁴N) = 43.2 Hz, CNH); ¹⁴N NMR (HF, unlocked, 25°C) δ = -239.2 ppm (d, ¹J(¹H¹⁴N) = 94.9 Hz). [C₂H₅NH][Sb₂F₁₁] (1.013 g; weight expected for 2.00 mmol: 1.017 g).

 $[C_{3}H_{5}NH][Sb_{2}F_{11}]$ (1.038 g; weight expected for 2.00 mmol: 1.045 g).

[C₆H₅CNH][Sb₂F₁₁] (1.107 g; weight expected for 2.00 mmol: 1.113 g).

Crystallographic Details

Figure S1. The crystal structure of CH₃CNHAsF₆.

Figure S2. The unit cell in the crystal structure of $CH_3CNHAsF_6$.

Figure S3. The crystal structure of $CH_3CNHSb_2F_{11}$.

Figure S4. The unit cell in the crystal structure of $CH_3CNHSb_2F_{11}$.

Figure S5. The crystal structure of C₂H₅CNHAsF₆.

Figure S6. The unit cell in the crystal structure of $C_2H_5CNHAsF_6$.

Figure S7. The crystal structure of C₃H₇CNHAsF₆.

Figure S8. The unit cell in the crystal structure of $C_3H_7CNHAsF_6$.

Figure S9. The crystal structure of $(CH_3)_2NCH_2CNH(AsF_6)_2$.

Figure S10. The unit cell in the crystal structure of $(CH_3)_2NCH_2CNH(AsF_6)_2$.

Figure S11. The crystal structure of $C_6H_5CNHAsF_6$.

Figure S12. The unit cell in the crystal structure of $C_6H_5CNHAsF_6$.

Figure S13. The crystal structure of *o*-CH₃C₆H₄CNHAsF₆.

Figure S14. The unit cell in the crystal structure of o-CH₃C₆H₄CNHAsF₆.

Figure S15. The crystal structure of $C_6H_4(CNH)_2(AsF_6)_2$.

Figure S16. The unit cell in the crystal structure of $C_6H_4(CNH)_2(AsF_6)_2$.

Identification code	MeCNHAsF6	- 0
Chemical formula	$C_2H_4AsF_6N$	
Formula weight	230.98 g/mol	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 5.2169(6) Å	α = 90°
	b = 6.5905(7) Å	$\beta=92.267(2)^\circ$
	c = 9.3342(10) Å	γ = 90°
Volume	320.68(6) Å ³	
Z	2	
Density (calculated)	2.392 g/cm ³	
Absorption coefficient	5.347 mm ⁻¹	
F(000)	220	

Table S1. Sample and crystal data for MeCNHAsF₆.

Table S2. Data collect	ion and structure	e refinement for
MeCNHAsF ₆ .		

Diffractometer	Bruker APEX DUO		
Radiation source	fine-focus tube, ΜοΚα		
Theta range for data collection	2.18 to 30.52°		
Index ranges	-7<=h<=7, -9<=k<=	=9, -13<= <=13	
Reflections collected	6612		
Independent reflections	1927 [R(int) = 0.02	268]	
Coverage of independent reflections	99.2%		
Absorption correction	multi-scan		
Structure solution technique	direct methods		
Structure solution program	SHELXTL XT 2013/1 (Bruker AXS, 2014)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXTL XL 2014/7 (Bruker AXS, 2014)		
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$		
Data / restraints / parameters	1927 / 1 / 95		
Goodness-of-fit on F ²	1.122		
Δ/σ_{max}	0.001		
Final R indices	1908 data; I>2σ(I)	R1 = 0.0169, wR2 = 0.0426	
	all data	R1 = 0.0173, wR2 = 0.0427	
Weighting scheme	w=1/ $[\sigma^{2}(F_{o}^{2})+(0.02)]$ where P= $(F_{o}^{2}+2F_{c}^{2})$	234P) ² +0.0179P])/3	
Absolute structure parameter	0.5(0)		
Largest diff. peak and hole	0.243 and -1.040 eÅ ⁻³		
R.M.S. deviation from mean	0.112 eÅ ⁻³		

Table S3. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for MeCNHAsF₆.

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.9815(4)	0.4792(5)	0.7187(3)	0.0146(5)
C2	0.1020(4)	0.5079(7)	0.8599(2)	0.0170(4)
N1	0.8871(4)	0.4570(4)	0.6102(2)	0.0168(5)
F1	0.6534(6)	0.3328(4)	0.3679(4)	0.0188(6)
F2	0.3121(5)	0.6685(4)	0.1451(4)	0.0197(5)
F3	0.6083(6)	0.6986(4)	0.3544(4)	0.0197(5)
F4	0.7340(2)	0.5058(8)	0.14466(14)	0.0207(3)
F5	0.3573(6)	0.2959(4)	0.1612(4)	0.0204(6)
F6	0.2275(3)	0.4858(8)	0.36802(16)	0.0213(5)
As1	0.47792(3)	0.50056(15)	0.25471(2)	0.01045(7)

Table S4. Bond lengths (Å) for MeCNHAsF₆.

C1-N1	1.119(3)	C1-C2	1.449(3)
C2-H2A	0.98	C2-H2B	0.98
C2-H2C	0.98	N1-H1	0.79(3)
F1-As1	1.761(3)	F2-As1	1.718(3)
F3-As1	1.727(3)	F4-As1	1.7174(12)
F5-As1	1.713(3)	F6-As1	1.7158(13)

Table S5. Bond angles (°) for MeCNHAsF₆.

N1-C1-C2	179.6(2)	C1-C2-H2A	109.5
C1-C2-H2B	109.5	H2A-C2-H2B	109.5
C1-C2-H2C	109.5	H2A-C2-H2C	109.5
H2B-C2-H2C	109.5	C1-N1-H1	175.(2)
F5-As1-F6	89.77(18)	F5-As1-F4	89.43(18)
F6-As1-F4	177.5(3)	F5-As1-F2	92.15(9)
F6-As1-F2	91.49(16)	F4-As1-F2	90.91(15)
F5-As1-F3	177.14(19)	F6-As1-F3	90.21(18)
F4-As1-F3	90.46(18)	F2-As1-F3	90.72(19)
F5-As1-F1	89.03(17)	F6-As1-F1	89.14(16)
F4-As1-F1	88.48(17)	F2-As1-F1	178.66(17)
F3-As1-F1	88.10(9)		

Table S6. Anisotropic atomic displacement parameters (Å²) for $MeCNHAsF_{6}$.

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [$h^2 a^{*2} U_{11}$ + ... + 2 h k $a^* b^* U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0154(8)	0.0122(16)	0.0164(9)	0.0026(12)	0.0019(7)	0.0008(10)
C2	0.0198(8)	0.0180(10)	0.0130(9)	0.0018(15)	-0.0032(7)	-0.0019(18)
N1	0.0196(9)	0.0168(15)	0.0139(9)	0.0000(7)	-0.0011(7)	-0.0008(7)
F1	0.0220(11)	0.0196(11)	0.0144(11)	0.0026(8)	-0.0040(8)	0.0040(8)
F2	0.0239(12)	0.0197(11)	0.0151(9)	0.0004(8)	-0.0042(9)	0.0067(9)
F3	0.0236(12)	0.0174(10)	0.0177(10)	-0.0065(8)	-0.0021(9)	-0.0034(8)
F4	0.0192(5)	0.0256(8)	0.0179(6)	0.0029(15)	0.0076(5)	-0.0026(15)
F5	0.0239(11)	0.0165(11)	0.0202(13)	-0.0046(9)	-0.0068(8)	-0.0034(8)
F6	0.0165(5)	0.0275(14)	0.0205(6)	0.0030(12)	0.0072(5)	0.0002(11)
As1	0.01088(10)	0.01240(10)	0.00799(11)	-0.00047(13)	-0.00059(6)	-0.0008(2)

Table S7. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for MeCNHAsF₆.

	x/a	y/b	z/c	U(eq)
H2A	0.2600	0.4277	0.8680	0.026
H2B	-0.0156	0.4635	0.9330	0.026
H2C	0.1429	0.6518	0.8741	0.026
H1	-0.186(6)	0.432(5)	0.536(3)	0.02

Identification code	C2H4F11NSb2		
Chemical formula	$C_2H_4F_{11}NSb_2$		
Formula weight	494.56 g/mol		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal size	0.043 x 0.102 x 0.191 mm		
Crystal habit	clear colourless plateplate		
Crystal system	monoclinic		
Space group	P 1 21/n 1		
Unit cell dimensions	a = 7.7010(15) Å	α = 90°	
	b = 16.831(3) Å	$\beta=98.287(3)^\circ$	
	c = 8.4837(17) Å	γ = 90°	
Volume	1088.1(4) Å ³		
Z	4		
Density (calculated)	3.019 g/cm ³		
Absorption coefficient	brption coefficient 5.092 mm ⁻¹		
F(000)	896		

Table S8. Sample and crystal data for MeCNHSb₂F₁₁.

Table S9. Data collection and structure refinement for $MeCNHSb_{2}F_{11}$.

Diffractometer	Bruker APEX DUO	
Radiation source	fine-focus tube, M	ΙοΚα
Theta range for data collection	2.42 to 30.51°	
Reflections collected	3267	
Coverage of independent reflections	98.9%	
Absorption correction	multi-scan	
Max. and min. transmission	0.8110 and 0.4430)
Structure solution technique	direct methods	
Structure solution program	SHELXTL XT 2013/	1 (Bruker AXS, 2014)
Refinement method	Full-matrix least-se	quares on F ²
Refinement program	SHELXTL XL 2014/	7 (Bruker AXS, 2014)
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	3267 / 0 / 150	
Goodness-of-fit on F ²	1.108	
Δ/σ_{max}	0.001	
Final R indices	2985 data; I>2σ(I)	R1 = 0.0183, wR2 = 0.0369
	all data	R1 = 0.0229, wR2 = 0.0382
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.01) where P=(F_o^2 +2 F_c^2	119P) ² +1.3064P])/3
Largest diff. peak and hole	0.626 and -0.727 e	eÅ- ³
R.M.S. deviation from mean	0.111 eÅ ⁻³	

Table S10. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for MeCNHSb₂F₁₁.

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.4083(3)	0.41311(15)	0.8111(3)	0.0217(5)
C2	0.5673(3)	0.36625(14)	0.8275(3)	0.0171(4)
N1	0.6910(3)	0.33073(13)	0.8396(3)	0.0203(4)
F1	0.5068(2)	0.23917(10)	0.3402(2)	0.0306(4)
F2	0.5967(2)	0.37794(11)	0.49167(19)	0.0308(4)
F3	0.8265(2)	0.26078(11)	0.5079(2)	0.0349(4)
F4	0.7952(2)	0.25772(9)	0.19739(19)	0.0259(3)
F5	0.5748(2)	0.37602(9)	0.18066(18)	0.0238(3)
F6	0.88586(19)	0.39243(9)	0.35863(17)	0.0225(3)
F7	0.1825(2)	0.33498(10)	0.2804(3)	0.0397(4)
F8	0.9564(3)	0.40582(13)	0.06564(19)	0.0449(5)
F9	0.9705(2)	0.53258(10)	0.2465(2)	0.0364(4)
F10	0.1927(2)	0.46040(12)	0.4592(2)	0.0357(4)
F11	0.2711(2)	0.47639(9)	0.1557(2)	0.0287(3)
Sb1	0.68729(2)	0.31401(2)	0.34517(2)	0.01491(4)
Sb2	0.08931(2)	0.43661(2)	0.25424(2)	0.01419(4)

Table S11. Bond lengths (Å) for $MeCNHSb_2F_{11}$.

C1-C2	1.446(3)	C1-H1A	0.98
C1-H1B	0.98	C1-H1C	0.98
C2-N1	1.117(3)	N1-H1	0.74(3)
F1-Sb1	1.8718(15)	F2-Sb1	1.8545(16)
F3-Sb1	1.8524(15)	F4-Sb1	1.8603(15)
F5-Sb1	1.8544(14)	F6-Sb1	2.0107(14)
F6-Sb2	2.0474(14)	F7-Sb2	1.8559(17)
F8-Sb2	1.8449(17)	F9-Sb2	1.8530(16)
F10-Sb2	1.8485(16)	F11-Sb2	1.8562(14)

C2-C1-H1A	109.5	C2-C1-H1B	109.5
H1A-C1-H1B	109.5	C2-C1-H1C	109.5
H1A-C1-H1C	109.5	H1B-C1-H1C	109.5
N1-C2-C1	179.3(3)	C2-N1-H1	177.(3)
Sb1-F6-Sb2	146.82(8)	F3-Sb1-F5	172.08(7)
F3-Sb1-F2	90.83(8)	F5-Sb1-F2	89.88(8)
F3-Sb1-F4	89.37(8)	F5-Sb1-F4	89.14(7)
F2-Sb1-F4	174.24(7)	F3-Sb1-F1	92.26(7)
F5-Sb1-F1	95.57(7)	F2-Sb1-F1	93.19(8)
F4-Sb1-F1	92.55(7)	F3-Sb1-F6	85.49(7)
F5-Sb1-F6	86.68(7)	F2-Sb1-F6	86.42(7)
F4-Sb1-F6	87.86(6)	F1-Sb1-F6	177.71(7)
F8-Sb2-F10	170.49(8)	F8-Sb2-F9	90.27(10)
F10-Sb2-F9	89.32(9)	F8-Sb2-F7	90.08(10)
F10-Sb2-F7	88.87(9)	F9-Sb2-F7	171.17(8)
F8-Sb2-F11	94.06(8)	F10-Sb2-F11	95.44(8)
F9-Sb2-F11	94.03(7)	F7-Sb2-F11	94.75(7)
F8-Sb2-F6	84.82(7)	F10-Sb2-F6	85.67(7)
F9-Sb2-F6	85.83(7)	F7-Sb2-F6	85.41(7)
F11-Sb2-F6	178.88(7)		

Table S13. Anisotropic atomic displacement parameters (Ų) for MeCNHSb $_2F_{11}$.

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0165(11)	0.0178(11)	0.0298(12)	-0.0027(9)	0.0003(9)	0.0031(9)
C2	0.0192(11)	0.0166(11)	0.0147(10)	-0.0026(8)	0.0000(8)	-0.0011(8)
N1	0.0218(10)	0.0172(10)	0.0214(10)	-0.0039(8)	0.0009(8)	0.0036(8)
F1	0.0205(7)	0.0320(9)	0.0386(9)	0.0091(7)	0.0017(6)	-0.0116(7)
F2	0.0299(8)	0.0400(10)	0.0264(8)	-0.0055(7)	0.0170(7)	-0.0038(7)
F3	0.0272(8)	0.0415(10)	0.0323(9)	0.0216(8)	-0.0081(7)	-0.0022(7)
F4	0.0261(8)	0.0195(7)	0.0333(8)	-0.0041(6)	0.0090(6)	0.0023(6)
F5	0.0236(7)	0.0246(8)	0.0223(7)	0.0084(6)	0.0004(6)	0.0051(6)
F6	0.0209(7)	0.0265(8)	0.0217(7)	-0.0030(6)	0.0089(6)	-0.0101(6)
F7	0.0411(10)	0.0153(8)	0.0688(13)	0.0062(8)	0.0284(9)	0.0073(7)
F8	0.0466(11)	0.0714(14)	0.0161(7)	-0.0040(8)	0.0026(7)	-0.0298(10)
F9	0.0316(9)	0.0258(8)	0.0571(11)	0.0178(8)	0.0241(8)	0.0165(7)
F10	0.0304(9)	0.0470(11)	0.0266(8)	-0.0043(7)	-0.0068(7)	-0.0111(8)
F11	0.0205(7)	0.0239(8)	0.0459(10)	0.0048(7)	0.0189(7)	-0.0014(6)
Sb1	0.01181(7)	0.01702(7)	0.01603(7)	0.00467(5)	0.00247(5)	-0.00083(5)
Sb2	0.01212(7)	0.01372(7)	0.01727(7)	0.00105(5)	0.00394(5)	-0.00056(5)

Table S14. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for MeCNHSb₂F₁₁.

	x/a	y/b	z/c	U(eq)	
H1A	0.3364	0.4009	0.7090	0.032	
H1B	0.4385	0.4697	0.8148	0.032	
H1C	0.3423	0.4005	0.8984	0.032	
H1	0.771(4)	0.3064(19)	0.843(4)	0.024	

Identification code	EtCNHAsF6		
Chemical formula	C ₃ H ₆ AsF ₆ N		
Formula weight	245.01		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal size	0.243 x 0.264 x 0.278 mm	1	
Crystal habit	clear pale yellow prism		
Crystal system	monoclinic		
Space group	P 1 21/n 1		
Unit cell dimensions	a = 8.6760(10) Å	α = 90°	
	b = 7.8918(9) Å	$\beta = 108.7610(17)^{\circ}$	
	c = 11.7685(14) Å	γ = 90°	
Volume	762.97(15) ų		
Z	4		
Density (calculated)	2.133 g/cm ³		
Absorption coefficient	4.502 mm ⁻¹		
F(000)	472		

Table S15. Sample and crystal data for EtCNHAsF₆.

Diffractometer	Bruker APEX DUO		
Radiation source	fine-focus tube, M	οΚα	
Theta range for data collection	2.56 to 30.59°		
Index ranges	-12<=h<=12, -11<=	=k<=11, -16<=l<=16	
Reflections collected	17027		
Independent reflections	2325 [R(int) = 0.03	86]	
Coverage of independent reflections	99.1%		
Absorption correction	multi-scan		
Max. and min. transmission	0.4080 and 0.3680)	
Structure solution technique	direct methods		
Structure solution program	SHELXTL XT 2013/6 (Sheldrick, 2013)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXTL XLMP 2014/1 (Bruker AXS, 2013)		
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	2325 / 1 / 105		
Goodness-of-fit on F ²	1.124		
Δ/σ_{max}	0.001		
Final R indices	1985 data; I>2σ(I)	R1 = 0.0395, wR2 = 0.0992	
	all data	R1 = 0.0488, wR2 = 0.1042	
Weighting scheme	w=1/ $[\sigma^{2}(F_{o}^{2})+(0.05)]$ where P= $(F_{o}^{2}+2F_{c}^{2})$	596P) ² +0.8354P])/3	
Largest diff. peak and hole	2.218 and -0.721 e	2Å-3	
R.M.S. deviation from mean	0.169 eÅ ⁻³		

Table S16. Data collection and structure refinement for EtCNHAsF₆.

Table S17. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for EtCNHAsF₆.

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
As1	0.19050(3)	0.77854(4)	0.40384(2)	0.01716(11)
C1	0.3316(5)	0.1970(5)	0.7213(3)	0.0311(7)
C2	0.3259(4)	0.3378(4)	0.6318(3)	0.0248(6)
C3	0.3385(4)	0.2740(4)	0.5190(3)	0.0208(6)
F1	0.0663(3)	0.9532(3)	0.3676(2)	0.0388(5)
F2	0.3156(3)	0.6055(3)	0.4353(2)	0.0377(5)
F3	0.3159(2)	0.8702(3)	0.33315(17)	0.0320(4)
F4	0.0787(3)	0.6860(3)	0.26728(17)	0.0318(5)
F5	0.0639(3)	0.6847(3)	0.46961(19)	0.0379(5)
F6	0.3019(2)	0.8712(3)	0.53698(16)	0.0303(4)
N1	0.3502(4)	0.2278(3)	0.4326(2)	0.0233(5)

Table S18. Bond lengths (Å) for EtCNHAsF₆.

As1-F5	1.703(2)	As1-F2	1.709(2)
As1-F1	1.716(2)	As1-F6	1.7174(18)
As1-F3	1.7263(19)	As1-F4	1.7477(19)
C1-C2	1.521(5)	C1-H1A	0.98
C1-H1B	0.98	C1-H1C	0.98
C2-C3	1.456(4)	C2-H2A	0.99
C2-H2B	0.99	C3-N1	1.115(4)
N1-H1	0.881(19)		

Table S19. Bond angles (°) for EtCNHAsF₆.

F5-As1-F2	90.66(12)	F5-As1-F1	90.97(12)
F2-As1-F1	178.00(11)	F5-As1-F6	91.51(10)
F2-As1-F6	90.61(11)	F1-As1-F6	90.50(11)
F5-As1-F3	178.22(10)	F2-As1-F3	89.11(11)
F1-As1-F3	89.23(11)	F6-As1-F3	90.25(10)
F5-As1-F4	89.31(10)	F2-As1-F4	89.50(11)
F1-As1-F4	89.36(11)	F6-As1-F4	179.17(10)
F3-As1-F4	88.92(10)	C2-C1-H1A	109.5
C2-C1-H1B	109.5	H1A-C1-H1B	109.5
C2-C1-H1C	109.5	H1A-C1-H1C	109.5
H1B-C1-H1C	109.5	C3-C2-C1	112.5(3)
C3-C2-H2A	109.1	C1-C2-H2A	109.1
C3-C2-H2B	109.1	C1-C2-H2B	109.1
H2A-C2-H2B	107.8	N1-C3-C2	178.6(3)
C3-N1-H1	168.(3)		

Table S20. Anisotropic atomic displacement parameters $(Å^2)$ for EtCNHAsF₆.

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
As1	0.01983(16)	0.01939(17)	0.01242(15)	0.00089(9)	0.00542(11)	-0.00197(10)
C1	0.0388(18)	0.036(2)	0.0223(15)	0.0037(13)	0.0159(14)	0.0035(14)
C2	0.0287(15)	0.0261(15)	0.0211(13)	-0.0034(12)	0.0101(11)	-0.0016(12)
C3	0.0225(13)	0.0189(13)	0.0204(13)	0.0035(10)	0.0060(11)	-0.0014(10)
F1	0.0350(11)	0.0307(11)	0.0453(12)	0.0010(9)	0.0055(9)	0.0121(9)
F2	0.0400(11)	0.0175(9)	0.0503(13)	0.0030(9)	0.0072(10)	0.0052(9)
F3	0.0376(10)	0.0337(11)	0.0294(10)	-0.0001(8)	0.0175(9)	-0.0112(9)
F4	0.0395(11)	0.0358(12)	0.0191(9)	-0.0060(8)	0.0080(8)	-0.0124(9)
F5	0.0401(12)	0.0510(14)	0.0257(10)	0.0023(9)	0.0150(9)	-0.0181(10)
F6	0.0328(10)	0.0351(11)	0.0202(9)	-0.0058(7)	0.0046(7)	-0.0066(8)
N1	0.0288(13)	0.0223(12)	0.0185(11)	-0.0002(9)	0.0070(10)	-0.0038(10)

Table S21. Hydrogen atomic coordinates and isotropic atomic displacement parameters ($Å^2$) for EtCNHAsF₆.

	x/a	y/b	z/c	U(eq)
H1A	0.3203	0.2459	0.7948	0.047
H1B	0.4358	0.1372	0.7405	0.047
H1C	0.2423	0.1173	0.6863	0.047
H2A	0.2224	0.4009	0.6155	0.03
H2B	0.4163	0.4180	0.6675	0.03
H1	0.361(7)	0.215(6)	0.361(3)	0.057(16)

Identification code	PrCNHAsF6	Ŭ
Chemical formula	$C_4H_8AsF_6N$	
Formula weight	259.03 g/mol	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal size	0.009 x 0.010 x 0.105 mm	
Crystal habit	clear colourless needle	
Crystal system	triclinic	
Space group	P -1	
Unit cell dimensions	a = 6.0657(3) Å	α = 94.120(4)°
	b = 8.0332(4) Å	$\beta = 105.177(4)^{\circ}$
	c = 8.9481(5) Å	γ = 94.836(4)°
Volume	417.30(4) Å ³	
Z	2	
Density (calculated)	2.061 g/cm ³	
Absorption coefficient	6.142 mm ⁻¹	
F(000)	252	

Table S22. Sample and crystal data for PrCNHAsF₆.
Table S23. Data collection and structure refinement for $PrCNHAsF_{6}$.

Diffractometer	Bruker APEX DUO	
Radiation source	IuS microsource, C	CuKα
Theta range for data collection	5.15 to 68.31°	
Reflections collected	1473	
Coverage of independent reflections	97.4%	
Absorption correction	multi-scan	
Max. and min. transmission	0.9470 and 0.5650)
Structure solution technique	direct methods	
Structure solution program	SHELXTL XT 2014/4	4 (Bruker AXS, 2014)
Refinement method	Full-matrix least-so	quares on F ²
Refinement program	SHELXTL XL 2014/2	7 (Bruker AXS, 2014)
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	1473/0/114	
Goodness-of-fit on F ²	1.063	
Final R indices	1284 data; I>2σ(I)	R1 = 0.0600, wR2 = 0.1512
	all data	R1 = 0.0704, wR2 = 0.1601
Weighting scheme	w=1/ $[\sigma^2(F_o^2)+(0.08)]$ where P= $(F_o^2+2F_c^2)$	870P) ² +2.2221P])/3
Largest diff. peak and hole	0.977 and -1.120 e	eÅ- ³
R.M.S. deviation from mean	0.199 eÅ ⁻³	

Table S24. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for PrCNHAsF₆.

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.4951(13)	0.2894(9)	0.6824(8)	0.0201(16)
C2	0.7053(12)	0.3182(10)	0.8095(9)	0.0203(17)
C3	0.8491(13)	0.1692(9)	0.8092(9)	0.0207(16)
C4	0.0759(13)	0.2086(11)	0.9355(9)	0.0246(17)
N1	0.3345(10)	0.2687(8)	0.5849(8)	0.0200(14)
F1	0.9860(7)	0.1943(7)	0.3383(5)	0.0313(11)
F2	0.4443(8)	0.3290(6)	0.2795(5)	0.0293(11)
F3	0.8014(7)	0.3766(6)	0.4843(5)	0.0242(10)
F4	0.7997(9)	0.4274(6)	0.2203(6)	0.0363(12)
F5	0.6309(7)	0.1441(6)	0.1310(5)	0.0261(10)
F6	0.6288(9)	0.0927(6)	0.3943(6)	0.0318(11)
As1	0.71005(13)	0.26065(10)	0.30650(8)	0.0157(3)

Table S25. Bond lengths (Å) for PrCNHAsF₆.

C1-N1	1.115(10)	C1-C2	1.459(10)
C2-C3	1.540(10)	C2-H2A	0.99
C2-H2B	0.99	C3-C4	1.527(10)
C3-H3A	0.99	C3-H3B	0.99
C4-H4A	0.98	C4-H4B	0.98
C4-H4C	0.98	N1-H1	0.88(9)
F1-As1	1.758(4)	F2-As1	1.709(4)
F3-As1	1.716(4)	F4-As1	1.712(5)
F5-As1	1.700(4)	F6-As1	1.710(5)

Table S26. Bond angles (°) for PrCNHAsF₆.

N1-C1-C2	179.4(9)	C1-C2-C3	110.4(6)
C1-C2-H2A	109.6	C3-C2-H2A	109.6
C1-C2-H2B	109.6	C3-C2-H2B	109.6
H2A-C2-H2B	108.1	C4-C3-C2	109.2(6)
C4-C3-H3A	109.8	C2-C3-H3A	109.8
C4-C3-H3B	109.8	C2-C3-H3B	109.8
НЗА-СЗ-НЗВ	108.3	C3-C4-H4A	109.5
C3-C4-H4B	109.5	H4A-C4-H4B	109.5
C3-C4-H4C	109.5	H4A-C4-H4C	109.5
Н4В-С4-Н4С	109.5	C1-N1-H1	173.(6)
F5-As1-F2	92.2(2)	F5-As1-F6	90.6(2)
F2-As1-F6	91.0(2)	F5-As1-F4	89.6(2)
F2-As1-F4	90.7(3)	F6-As1-F4	178.3(3)
F5-As1-F3	177.6(2)	F2-As1-F3	90.1(2)
F6-As1-F3	89.7(2)	F4-As1-F3	90.0(2)
F5-As1-F1	89.2(2)	F2-As1-F1	178.5(2)
F6-As1-F1	89.3(2)	F4-As1-F1	89.0(3)
F3-As1-F1	88.5(2)		

Table S27. Anisotropic atomic displacement parameters $(Å^2)$ for PrCNHAsF₆.

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.023(4)	0.017(4)	0.024(4)	0.003(3)	0.009(3)	0.013(3)
C2	0.017(3)	0.011(4)	0.029(4)	0.002(3)	-0.002(3)	0.009(3)
C3	0.023(4)	0.007(4)	0.028(4)	0.004(3)	-0.001(3)	0.005(3)
C4	0.022(4)	0.026(5)	0.024(4)	0.006(3)	0.000(3)	0.008(3)
N1	0.015(3)	0.014(3)	0.026(3)	-0.003(3)	-0.003(3)	0.006(3)
F1	0.023(2)	0.038(3)	0.030(2)	-0.008(2)	0.0009(18)	0.013(2)
F2	0.026(2)	0.030(3)	0.029(2)	-0.003(2)	-0.0004(18)	0.014(2)
F3	0.024(2)	0.020(3)	0.028(2)	-0.0052(19)	0.0083(18)	-0.0028(19)
F4	0.048(3)	0.025(3)	0.038(3)	0.005(2)	0.016(2)	-0.002(2)
F5	0.024(2)	0.025(3)	0.024(2)	-0.008(2)	0.0011(18)	0.003(2)
F6	0.040(3)	0.012(2)	0.041(3)	0.004(2)	0.008(2)	-0.002(2)
As1	0.0160(4)	0.0122(4)	0.0170(4)	-0.0014(3)	0.0015(3)	0.0024(3)

Table S28. Hydrogen atomic coordinates and isotropic
atomic displacement parameters ($Å^2$) for PrCNHAsF ₆ .

	x/a	y/b	z/c	U(eq)
H2A	0.6660	0.3326	0.9100	0.024
H2B	0.7964	0.4224	0.7981	0.024
H3A	0.7635	0.0664	0.8289	0.025
H3B	0.8796	0.1492	0.7063	0.025
H4A	1.1773	0.1221	0.9257	0.037
H4B	1.0462	0.2105	1.0381	0.037
H4C	1.1497	0.3184	0.9239	0.037
H1	0.218(15)	0.260(11)	0.502(10)	0.024

Table S29. Sa	mple and	crystal	data for	$C_4H_{10}As_2F_{12}N_2$.
---------------	----------	---------	----------	----------------------------

Identification code	DiNH2acetonitrileH	
Chemical formula	$C_4H_{10}As_2F_{12}N_2$	
Formula weight	463.98 g/mol	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	orthorhombic	
Space group	P c a 21	
Unit cell dimensions	a = 14.703(4) Å	α = 90°
	b = 10.260(3) Å	β = 90°
	c = 16.759(4) Å	γ = 90°
Volume	2528.1(11) Å ³	
Z	8	
Density (calculated)	2.438 g/cm ³	
Absorption coefficient	5.426 mm ⁻¹	
F(000)	1776	

Table S30. Data collection and structure refinement for $C H_{2}A_{2}E_{2}N_{2}$

$C_4 \Pi_{10} A S_2 \Gamma_{12} N_2.$			
Diffractometer	Bruker APEX DUO		
Radiation source	fine-focus tube, M	ΙοΚα	
Theta range for data collection	1.99 to 30.48°		
Index ranges	-20<=h<=20, -14<=	=k<=14, -23<=l<=23	
Reflections collected	59685		
Independent reflections	7636 [R(int) = 0.05	57]	
Coverage of independent reflections	99.4%		
Absorption correction	multi-scan		
Structure solution technique	direct methods		
Structure solution program	SHELXTL XT 2013/	1 (Bruker AXS, 2014)	
Refinement method	Full-matrix least-se	quares on F ²	
Refinement program	SHELXTL XL 2014/	7 (Bruker AXS, 2014)	
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	7636 / 5 / 378		
Goodness-of-fit on F ²	1.032		
Δ/σ_{max}	0.001		
Final R indices	6795 data; I>2σ(I)	R1 = 0.0263, wR2 = 0.0547	
	all data	R1 = 0.0331, wR2 = 0.0568	
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})$ +(0.01) where P=(F_{o}^{2} +2 F_{c}^{2}	178P) ² +2.3671P])/3	
Absolute structure parameter	0.5(0)		
Largest diff. peak and hole	0.718 and -0.596 e	eÅ- ³	
R.M.S. deviation from mean	0.102 eÅ ⁻³		

Table S31. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for $C_4H_{10}As_2F_{12}N_2$.

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.1219(3)	0.5777(5)	0.5751(3)	0.0156(10)
C2	0.1079(3)	0.5684(5)	0.6612(3)	0.0176(9)
N1	0.1288(2)	0.5868(5)	0.5082(3)	0.0169(9)
N2	0.1583(2)	0.4580(3)	0.6990(2)	0.0114(6)
C3	0.1344(3)	0.3288(5)	0.6616(4)	0.0237(12)
C4	0.1384(3)	0.4591(5)	0.7874(3)	0.0193(9)
C5	0.3817(3)	0.0879(5)	0.5401(3)	0.0147(10)
C6	0.3796(3)	0.0920(5)	0.4525(3)	0.0179(10)
N3	0.3815(3)	0.0879(5)	0.6065(3)	0.0173(9)
N4	0.4170(3)	0.9742(4)	0.4168(2)	0.0212(8)
C7	0.3789(3)	0.8495(5)	0.4526(4)	0.0233(11)
C8	0.3951(4)	0.9758(5)	0.3275(3)	0.0231(9)
As1	0.37446(3)	0.46335(5)	0.52521(3)	0.01211(10)
F1	0.29677(17)	0.3398(3)	0.50909(19)	0.0244(6)
F2	0.45301(17)	0.5835(3)	0.54379(17)	0.0221(6)
F3	0.43147(16)	0.3625(3)	0.59112(17)	0.0192(5)
F4	0.30669(17)	0.5204(3)	0.60191(16)	0.0187(6)
F5	0.31727(18)	0.5626(3)	0.45951(17)	0.0224(6)
F6	0.44051(19)	0.4032(3)	0.44872(17)	0.0241(6)
As2	0.13285(3)	0.95935(5)	0.58442(3)	0.01398(11)
F7	0.20995(18)	0.8352(3)	0.5749(2)	0.0317(8)
F8	0.05395(19)	0.0807(3)	0.5923(2)	0.0383(9)
F9	0.1957(2)	0.0515(4)	0.5194(2)	0.0410(9)
F10	0.19359(19)	0.0222(3)	0.66268(18)	0.0253(6)
F11	0.07069(19)	0.8635(3)	0.64891(17)	0.0240(6)
F12	0.07017(19)	0.8970(3)	0.50564(17)	0.0296(7)
As3	0.13102(3)	0.75023(4)	0.28460(3)	0.01421(11)

F13	0.23158(19)	0.7049(3)	0.24068(19)	0.0309(7)
F14	0.03210(19)	0.7875(3)	0.3338(2)	0.0340(8)
F15	0.0777(2)	0.6208(3)	0.24041(19)	0.0328(7)
F16	0.1033(2)	0.8488(3)	0.2066(2)	0.0367(8)
F17	0.1846(2)	0.8749(3)	0.3332(2)	0.0376(8)
F18	0.1614(2)	0.6484(3)	0.36453(19)	0.0371(8)
As4	0.62392(3)	0.74491(4)	0.32252(3)	0.01263(11)
F19	0.66891(19)	0.6583(3)	0.24418(19)	0.0327(8)
F20	0.57880(18)	0.8396(3)	0.39626(16)	0.0246(6)
F21	0.73026(17)	0.8076(3)	0.34183(18)	0.0250(7)
F22	0.6420(2)	0.6203(3)	0.3870(2)	0.0367(8)
F23	0.51719(18)	0.6889(3)	0.29910(19)	0.0270(7)
F24	0.6047(2)	0.8769(3)	0.25729(17)	0.0274(6)

Table S32. Bond lengths (A	Å) for C4	$_{\rm H_{10}}$ As ₂ F ₁₂ N ₂ .
----------------------------	-----------	--

C1-N1	1.129(8)	C1-C2	1.461(8)
C2-N2	1.494(6)	C2-H2A	0.99
C2-H2B	0.99	N1-H1N	0.86(3)
N2-C3	1.508(6)	N2-C4	1.511(6)
N2-H2N	0.89(2)	C3-H3A	0.98
C3-H3B	0.98	C3-H3C	0.98
C4-H4A	0.98	C4-H4B	0.98
C4-H4C	0.98	C5-N3	1.112(7)
C5-C6	1.470(7)	C6-N4	1.457(6)
C6-H6A	0.99	C6-H6B	0.99
N3-H3N	0.94(3)	N4-C7	1.520(6)
N4-C8	1.530(6)	N4-H4N	0.95(3)
C7-H7A	0.98	С7-Н7В	0.98
C7-H7C	0.98	C8-H8A	0.98
C8-H8B	0.98	C8-H8C	0.98
As1-F2	1.718(3)	As1-F5	1.719(3)
As1-F6	1.723(3)	As1-F1	1.728(3)
As1-F4	1.729(3)	As1-F3	1.730(3)
As2-F8	1.707(3)	As2-F7	1.712(3)
As2-F10	1.713(3)	As2-F9	1.714(3)
As2-F11	1.723(3)	As2-F12	1.733(3)
As3-F16	1.702(3)	As3-F17	1.708(3)
As3-F15	1.711(3)	As3-F14	1.715(3)
As3-F13	1.716(3)	As3-F18	1.757(3)
As4-F22	1.696(3)	As4-F20	1.706(3)
As4-F23	1.717(3)	As4-F19	1.718(3)
As4-F21	1.721(3)	As4-F24	1.763(3)

Table S33	. Bond angles	(°) for	$C_4H_{10}As_2F_{12}N_2$.
-----------	---------------	---------	----------------------------

N1-C1-C2	176.9(5)	C1-C2-N2	113.5(4)
C1-C2-H2A	108.9	N2-C2-H2A	108.9
C1-C2-H2B	108.9	N2-C2-H2B	108.9
H2A-C2-H2B	107.7	C1-N1-H1N	178.(4)
C2-N2-C3	112.0(4)	C2-N2-C4	108.3(3)
C3-N2-C4	111.7(4)	C2-N2-H2N	107.(3)
C3-N2-H2N	110.(3)	C4-N2-H2N	107.(3)
N2-C3-H3A	109.5	N2-C3-H3B	109.5
НЗА-СЗ-НЗВ	109.5	N2-C3-H3C	109.5
НЗА-СЗ-НЗС	109.5	НЗВ-СЗ-НЗС	109.5
N2-C4-H4A	109.5	N2-C4-H4B	109.5
H4A-C4-H4B	109.5	N2-C4-H4C	109.5
H4A-C4-H4C	109.5	H4B-C4-H4C	109.5
N3-C5-C6	177.8(6)	N4-C6-C5	112.2(4)
N4-C6-H6A	109.2	C5-C6-H6A	109.2
N4-C6-H6B	109.2	C5-C6-H6B	109.2
H6A-C6-H6B	107.9	C5-N3-H3N	175.(4)
C6-N4-C7	113.4(4)	C6-N4-C8	108.2(4)
C7-N4-C8	108.5(4)	C6-N4-H4N	109.(3)
C7-N4-H4N	109.(3)	C8-N4-H4N	108.(3)
N4-C7-H7A	109.5	N4-C7-H7B	109.5
Н7А-С7-Н7В	109.5	N4-C7-H7C	109.5
H7A-C7-H7C	109.5	Н7В-С7-Н7С	109.5
N4-C8-H8A	109.5	N4-C8-H8B	109.5
H8A-C8-H8B	109.5	N4-C8-H8C	109.5
H8A-C8-H8C	109.5	H8B-C8-H8C	109.5
F2-As1-F5	91.14(14)	F2-As1-F6	90.74(14)

F5-As1-F6	90.66(14)	F2-As1-F1	178.18(14)
F5-As1-F1	90.65(14)	F6-As1-F1	89.62(14)
F2-As1-F4	90.55(13)	F5-As1-F4	89.64(13)
F6-As1-F4	178.67(14)	F1-As1-F4	89.07(13)
F2-As1-F3	89.29(13)	F5-As1-F3	179.57(14)
F6-As1-F3	89.29(13)	F1-As1-F3	88.92(13)
F4-As1-F3	90.41(13)	F8-As2-F7	178.44(15)
F8-As2-F10	91.15(16)	F7-As2-F10	90.34(15)
F8-As2-F9	90.76(17)	F7-As2-F9	89.68(17)
F10-As2-F9	89.89(15)	F8-As2-F11	90.42(15)
F7-As2-F11	89.13(15)	F10-As2-F11	90.64(14)
F9-As2-F11	178.70(18)	F8-As2-F12	88.12(16)
F7-As2-F12	90.38(16)	F10-As2-F12	179.24(15)
F9-As2-F12	90.34(16)	F11-As2-F12	89.14(14)
F16-As3-F17	91.79(17)	F16-As3-F15	91.11(17)
F17-As3-F15	177.04(17)	F16-As3-F14	91.93(17)
F17-As3-F14	89.72(16)	F15-As3-F14	89.57(15)
F16-As3-F13	92.15(16)	F17-As3-F13	90.57(16)
F15-As3-F13	89.93(16)	F14-As3-F13	175.90(16)
F16-As3-F18	179.08(17)	F17-As3-F18	87.99(17)
F15-As3-F18	89.12(17)	F14-As3-F18	88.97(16)
F13-As3-F18	86.95(15)	F22-As4-F20	91.62(17)
F22-As4-F23	92.12(15)	F20-As4-F23	90.03(14)
F22-As4-F19	92.10(17)	F20-As4-F19	176.26(16)
F23-As4-F19	90.24(14)	F22-As4-F21	91.11(15)
F20-As4-F21	90.25(13)	F23-As4-F21	176.75(15)
F19-As4-F21	89.27(14)	F22-As4-F24	178.70(16)
F20-As4-F24	87.12(14)	F23-As4-F24	88.22(14)

F19-As4-F24 89.15(16) F21-As4-F24 88.56(14)

Table S34. Torsion angles (°) for $C_4H_{10}As_2F_{12}N_2$.

C1-C2-N2-C3	-56.5(5)	C1-C2-N2-C4	179.9(4)
C5-C6-N4-C7	48.6(5)	C5-C6-N4-C8	169.1(4)

 	 (

Table S35. Anisotropic atomic displacement parameters (Ų) for $C_4H_{10}As_2F_{12}N_2$.

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
C1	0.0098(19)	0.015(2)	0.022(3)	0.0023(19)	-0.0030(17)	0.0007(14)
C2	0.024(2)	0.016(2)	0.013(2)	-0.0031(17)	-0.0037(18)	0.0088(18)
N1	0.0146(19)	0.021(2)	0.015(2)	0.0018(17)	-0.0001(14)	0.0008(14)
N2	0.0115(15)	0.0117(16)	0.0109(16)	0.0002(12)	-0.0013(12)	0.0006(12)
C3	0.033(3)	0.012(2)	0.026(3)	-0.0044(19)	0.005(2)	-0.0031(18)
C4	0.024(2)	0.025(2)	0.008(2)	0.0030(17)	-0.0009(17)	0.0015(17)
C5	0.0114(18)	0.016(2)	0.016(3)	0.0040(18)	-0.0008(16)	0.0008(16)
C6	0.020(2)	0.021(2)	0.012(2)	0.0019(17)	-0.0026(17)	-0.0004(17)
N3	0.0151(19)	0.019(2)	0.018(2)	-0.0014(17)	0.0011(14)	-0.0005(14)
N4	0.024(2)	0.0185(19)	0.021(2)	0.0001(15)	-0.0007(16)	0.0011(15)
C7	0.033(3)	0.015(2)	0.022(3)	0.0026(19)	0.006(2)	-0.0004(19)
C8	0.035(2)	0.021(2)	0.013(2)	-0.0041(18)	-0.002(2)	0.0034(19)
As1	0.0106(2)	0.0155(2)	0.0102(2)	-0.00017(17)	-0.00037(15)	0.00188(15)
F1	0.0170(12)	0.0230(14)	0.0331(17)	-0.0057(12)	-0.0061(11)	-0.0027(10)
F2	0.0170(12)	0.0205(13)	0.0287(16)	-0.0002(11)	0.0024(11)	-0.0028(10)
F3	0.0158(11)	0.0216(13)	0.0202(13)	0.0064(11)	-0.0044(11)	0.0022(10)
F4	0.0161(12)	0.0262(14)	0.0138(13)	-0.0002(11)	0.0031(10)	0.0026(10)
F5	0.0213(13)	0.0280(15)	0.0178(14)	0.0079(11)	-0.0003(11)	0.0075(11)
F6	0.0206(13)	0.0350(17)	0.0165(14)	-0.0040(12)	0.0021(11)	0.0078(12)
As2	0.0109(2)	0.0165(2)	0.0145(3)	0.00085(19)	0.00064(17)	-0.00181(15)
F7	0.0199(13)	0.0319(16)	0.043(2)	-0.0132(15)	0.0013(13)	0.0078(11)
F8	0.0214(14)	0.0169(14)	0.077(3)	-0.0021(17)	-0.0055(16)	0.0050(11)
F9	0.0213(15)	0.069(2)	0.0331(19)	0.0317(17)	-0.0071(14)	-0.0198(15)
F10	0.0255(15)	0.0272(15)	0.0234(15)	-0.0085(12)	-0.0036(12)	-0.0070(12)

 U_{11} **U**₁₃ U_{12} U_{22} U₃₃ U₂₃ F11 0.0216(13) 0.0285(16) 0.0218(15) 0.0073(12) 0.0013(11) -0.0080(11) F12 0.0204(14) 0.051(2) 0.0177(15) -0.0040(13) -0.0021(11) -0.0111(13) As3 0.0126(2) 0.0158(2) 0.0143(3) 0.00325(17) 0.00111(19) 0.00143(15) F13 0.0176(13) 0.0468(18) 0.0283(17) 0.0043(14) 0.0070(12) 0.0072(13) F14 0.0219(14) 0.0367(16) 0.043(2) -0.0073(15) 0.0125(14) 0.0062(12) F15 0.0295(16) 0.0271(16) 0.0416(19) -0.0114(14) 0.0040(14) -0.0062(13) F16 0.0466(19) 0.0326(18) 0.0310(18) 0.0150(14) -0.0059(15) 0.0082(15) F17 0.0354(16) 0.0372(17) 0.040(2) -0.0084(15) -0.0074(15) -0.0098(14) F18 0.052(2) 0.0387(18) 0.0203(15) 0.0156(14) 0.0071(15) 0.0151(16) As4 0.0126(2) 0.0135(2) 0.0118(3) -0.00129(17) -0.00186(19) 0.00001(14) F19 0.0249(15) 0.0430(19) 0.0303(17) -0.0239(15) -0.0020(13) 0.0075(13) F20 0.0216(13) 0.0354(17) 0.0169(14) -0.0094(12) -0.0008(11) 0.0070(12) F21 0.0149(13) 0.0308(15) 0.0292(17) -0.0090(13) -0.0029(11) -0.0050(11) F22 0.047(2) 0.0255(17) 0.0376(19) 0.0150(14) -0.0151(15) -0.0007(14) F23 0.0155(13) 0.0274(15) 0.038(2) -0.0056(14) -0.0060(11) -0.0055(10) F24 0.0394(16) 0.0262(15) 0.0165(14) 0.0079(11) -0.0057(12) -0.0002(13)

Table S36. Hydrogen atomic coordinates and isotropic atomic
displacement parameters ($Å^2$) for C ₄ H ₁₀ As ₂ F ₁₂ N ₂ .

•	x/a	y/b	z/c	U(eq)
H2A	0.0421	0.5577	0.6719	0.021
H2B	0.1276	0.6510	0.6864	0.021
H1N	0.134(3)	0.591(6)	0.4572(16)	0.02
H2N	0.2175(18)	0.475(4)	0.693(3)	0.014
НЗА	0.0684	0.3163	0.6633	0.035
НЗВ	0.1643	0.2584	0.6911	0.035
нзс	0.1550	0.3278	0.6059	0.035
H4A	0.1567	0.5431	0.8101	0.029
H4B	0.1726	0.3889	0.8135	0.029
H4C	0.0732	0.4458	0.7961	0.029
H6A	0.3159	1.1033	0.4345	0.022
H6B	0.4148	1.1683	0.4338	0.022
H3N	0.378(3)	1.095(6)	0.6623(16)	0.021
H4N	0.4815(18)	0.975(5)	0.423(3)	0.025
H7A	0.3921	0.8473	0.5099	0.035
H7B	0.4071	0.7741	0.4266	0.035
H7C	0.3129	0.8467	0.4443	0.035
H8A	0.3292	0.9694	0.3200	0.035
H8B	0.4250	0.9019	0.3014	0.035
H8C	0.4172	1.0574	0.3040	0.035

Table S37. Sample and crystal data for PhCNHAsF₆.

Identification code	PhCNHAsF6	
Chemical formula	C ₇ H ₆ AsF ₆ N	
Formula weight	293.05 g/mol	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	orthorhombic	
Space group	Pbca	
Unit cell dimensions	a = 10.3956(10) Å	α = 90°
	b = 9.5385(9) Å	β = 90°
	c = 19.5358(19) Å	γ = 90°
Volume	1937.1(3) Å ³	
Z	8	
Density (calculated)	2.010 g/cm ³	
Absorption coefficient	3.565 mm ⁻¹	
F(000)	1136	

Diffractometer	Bruker APEX DUO		
Radiation source	fine-focus tube, N	ΙοΚα	
Theta range for data collection	2.09 to 30.53°		
Reflections collected	2954		
Coverage of independent reflections	99.8%		
Absorption correction	multi-scan		
Structure solution technique	direct methods		
Structure solution program	SHELXTL XT 2013/1 (Bruker AXS, 2014)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXTL XL 2014/	7 (Bruker AXS, 2014)	
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	2954 / 6 / 152		
Goodness-of-fit on F ²	1.123		
Final R indices	2160 data; I>2σ(I)	R1 = 0.0606, wR2 = 0.1092	
	all data	R1 = 0.0966, wR2 = 0.1187	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.02) where P=(F_o^2 +2 F_c^2	182P) ² +14.0236P])/3	
Largest diff. peak and hole	1.127 and -1.222 e	eÅ- ³	
R.M.S. deviation from mean	0.135 eÅ ⁻³		

Table S38. Data collection and structure refinement for PhCNHAsF₆.

Table S39. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for PhCNHAsF₆.

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.7836(5)	0.6166(5)	0.3508(2)	0.0229(10)
C2	0.8383(4)	0.5167(5)	0.3963(2)	0.0174(9)
C3	0.9616(5)	0.4681(5)	0.3831(2)	0.0228(9)
C4	0.0121(5)	0.3649(6)	0.4249(2)	0.0279(11)
C5	0.9396(5)	0.3147(5)	0.4796(2)	0.0261(11)
C6	0.8184(5)	0.3659(5)	0.4934(2)	0.0260(10)
C7	0.7650(5)	0.4681(5)	0.4515(2)	0.0237(9)
N1	0.7385(4)	0.6937(5)	0.3139(2)	0.0252(9)
As1	0.59179(4)	0.96071(5)	0.16329(2)	0.01965(12)
F1	0.6411(4)	0.8940(3)	0.24233(15)	0.0431(9)
F2	0.5460(4)	0.0262(4)	0.08567(17)	0.0559(10)
F3	0.6517(7)	0.8192(6)	0.1246(3)	0.074(2)
F4	0.5380(6)	0.1073(6)	0.2065(3)	0.0532(15)
F5	0.7405(5)	0.0396(7)	0.1597(3)	0.0652(17)
F6	0.4444(5)	0.8907(8)	0.1703(3)	0.070(2)
F3'	0.551(2)	0.7832(17)	0.1446(9)	0.074(2)
F4'	0.6194(16)	0.1214(15)	0.1870(8)	0.0532(15)
F5'	0.7292(13)	0.932(2)	0.1263(8)	0.0652(17)
F6'	0.4450(15)	0.964(2)	0.2036(10)	0.070(2)

Table S40. Bond lengths (Å) for PhCNHAsF₆.

C1-N1	1.132(6)	C1-C2	1.422(6)
C2-C3	1.387(6)	C2-C7	1.399(6)
C3-C4	1.383(7)	C3-H3	0.95
C4-C5	1.392(7)	C4-H4	0.95
C5-C6	1.378(7)	C5-H5	0.95
C6-C7	1.389(7)	C6-H6	0.95
C7-H7	0.95	N1-H1	0.99(6)
As1-F5'	1.624(14)	As1-F4'	1.626(15)
As1-F3	1.668(5)	As1-F6	1.677(5)
As1-F2	1.708(3)	As1-F6'	1.718(16)
As1-F5	1.721(5)	As1-F4	1.726(5)
As1-F1	1.747(3)	As1-F3'	1.783(16)

Table S41. Bond angles (°) for PhCNHAsF₆.

N1-C1-C2	178.4(5)	C3-C2-C7	122.4(4)
C3-C2-C1	118.5(4)	C7-C2-C1	119.1(4)
C4-C3-C2	118.6(4)	C4-C3-H3	120.7
С2-С3-Н3	120.7	C3-C4-C5	119.5(5)
С3-С4-Н4	120.2	C5-C4-H4	120.2
C6-C5-C4	121.6(5)	C6-C5-H5	119.2
C4-C5-H5	119.2	C5-C6-C7	119.9(4)
С5-С6-Н6	120.0	C7-C6-H6	120.0
C6-C7-C2	118.0(4)	C6-C7-H7	121.0
С2-С7-Н7	121.0	C1-N1-H1	178.(3)
F5'-As1-F4'	97.5(9)	F3-As1-F6	93.2(4)
F5'-As1-F2	84.9(6)	F4'-As1-F2	87.6(6)
F3-As1-F2	89.9(2)	F6-As1-F2	87.9(2)
F5'-As1-F6'	171.3(10)	F4'-As1-F6'	90.5(8)
F2-As1-F6'	98.8(6)	F3-As1-F5	90.0(4)
F6-As1-F5	176.6(4)	F2-As1-F5	93.1(2)
F3-As1-F4	176.5(3)	F6-As1-F4	89.2(3)
F2-As1-F4	92.7(2)	F5-As1-F4	87.5(3)
F5'-As1-F1	94.2(6)	F4'-As1-F1	92.3(6)
F3-As1-F1	89.8(2)	F6-As1-F1	92.9(2)
F2-As1-F1	179.11(19)	F6'-As1-F1	82.1(6)
F5-As1-F1	86.1(2)	F4-As1-F1	87.6(2)
F5'-As1-F3'	87.5(9)	F4'-As1-F3'	174.3(9)
F2-As1-F3'	95.7(6)	F6'-As1-F3'	84.3(9)
F1-As1-F3'	84.5(6)		

Table 342.	10151011 at		FIICINHASE
C7-C2-C3-C4	2.0(7)	C1-C2-C3-C4	-176.2(4)
C2-C3-C4-C5	-1.2(7)	C3-C4-C5-C6	-0.4(7)
C4-C5-C6-C7	1.4(7)	C5-C6-C7-C2	-0.6(7)
C3-C2-C7-C6	-1.0(7)	C1-C2-C7-C6	177.2(4)

Table S42. Torsion angles (°) for PhCNHAsF₆.

Table S43. Anisotropic atomic displacement parameters $(Å^2)$ for PhCNHAsF₆.

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.027(2)	0.023(2)	0.018(2)	-0.0026(17)	-0.0015(18)	-0.001(2)
C2	0.019(2)	0.016(2)	0.0178(19)	-0.0011(16)	-0.0033(17)	-0.0001(17)
C3	0.024(2)	0.026(2)	0.0186(19)	0.0014(19)	-0.0008(18)	-0.003(2)
C4	0.027(3)	0.030(3)	0.027(2)	-0.003(2)	-0.005(2)	0.006(2)
C5	0.036(3)	0.020(2)	0.023(2)	-0.0006(18)	-0.011(2)	0.002(2)
C6	0.034(3)	0.024(2)	0.020(2)	0.0016(18)	0.002(2)	-0.005(2)
C7	0.022(2)	0.027(2)	0.021(2)	-0.002(2)	0.0015(18)	0.000(2)
N1	0.030(2)	0.023(2)	0.0231(17)	-0.0015(16)	-0.0017(18)	0.0031(18)
As1	0.0206(2)	0.0222(2)	0.01615(19)	0.0015(2)	-0.0029(2)	0.0037(2)
F1	0.072(2)	0.0355(17)	0.0219(15)	0.0056(13)	-0.0127(16)	0.0168(18)
F2	0.071(3)	0.067(3)	0.0303(17)	0.0152(18)	-0.0171(17)	0.008(2)
F3	0.111(6)	0.055(4)	0.054(3)	-0.032(3)	-0.027(4)	0.051(4)
F4	0.065(4)	0.049(3)	0.045(3)	-0.014(2)	-0.011(3)	0.040(3)
F5	0.033(2)	0.107(5)	0.055(3)	0.015(3)	-0.003(2)	-0.031(3)
F6	0.039(2)	0.090(5)	0.080(5)	0.029(4)	-0.019(3)	-0.043(3)
F3'	0.111(6)	0.055(4)	0.054(3)	-0.032(3)	-0.027(4)	0.051(4)
F4'	0.065(4)	0.049(3)	0.045(3)	-0.014(2)	-0.011(3)	0.040(3)
F5'	0.033(2)	0.107(5)	0.055(3)	0.015(3)	-0.003(2)	-0.031(3)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F6'	0.039(2)	0.090(5)	0.080(5)	0.029(4)	-0.019(3)	-0.043(3)

Table S44. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for PhCNHAsF₆.

	x/a	y/b	z/c	U(eq)
H3	1.0103	0.5050	0.3461	0.027
H4	1.0957	0.3286	0.4164	0.034
H5	0.9744	0.2433	0.5080	0.031
H6	0.7715	0.3315	0.5316	0.031
H7	0.6812	0.5040	0.4600	0.028
H1	0.697(5)	0.763(6)	0.283(3)	0.03

Identification code	TolHAsF6		
Chemical formula	C ₈ H ₈ AsF ₆ N		
Formula weight	307.07 g/mol		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal size	0.176 x 0.201 x 0.320 mm		
Crystal habit	clear colourless prism		
Crystal system	monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 11.1940(9) Å	α = 90°	
	b = 9.7842(8) Å	$\beta = 92.4450(10)^{\circ}$	
	c = 9.5122(8) Å	γ = 90°	
Volume	1040.87(15) Å ³		
Z	4		
Density (calculated)	1.960 g/cm ³		
Absorption coefficient	3.322 mm ⁻¹		
F(000)	600		

Table S45. Sample and crystal data for C₈H₈AsF₆N.

Diffractometer	Bruker APEX DUO	
Radiation source	fine-focus tube, ΜοΚα	
Theta range for data collection	1.82 to 30.68°	
Index ranges	-16<=h<=16, -13<=k<=13, -13<=l<=1	13
Reflections collected	25393	
Independent reflections	3197 [R(int) = 0.0307]	
Coverage of independent reflections	99.1%	
Absorption correction	multi-scan	
Structure solution technique	direct methods	
Structure solution program	SHELXTL XT 2013/1 (Bruker AXS, 20	14)
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXTL XL 2014/7 (Bruker AXS, 20	14)
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	3197 / 0 / 149	
Goodness-of-fit on F ²	1.060	
Δ/σ_{max}	0.001	
Final R indices	2871 data; I>2σ(I) R1 = 0.0184, wR	2 = 0.0439
	all data R1 = 0.0226, wR	2 = 0.0453
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0205P) ² +0.3924P] where P=(F_o^2 +2 F_c^2)/3	
Largest diff. peak and hole	0.388 and -0.327 eÅ ⁻³	
R.M.S. deviation from mean	0.060 eÅ ⁻³	

Table S46. Data collection and structure refinement for $C_8H_8AsF_6N$.

Table S47. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for $C_8H_8AsF_6N$.

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.33356(11)	0.34452(12)	0.05843(12)	0.0157(2)
C2	0.23082(11)	0.40164(12)	0.12073(13)	0.0149(2)
C3	0.24799(11)	0.50905(13)	0.21759(13)	0.0170(2)
C4	0.14849(11)	0.56471(13)	0.27804(13)	0.0183(2)
C5	0.03551(11)	0.51400(13)	0.24122(13)	0.0176(2)
C6	0.01977(11)	0.40816(13)	0.14446(13)	0.0166(2)
C7	0.11713(11)	0.34845(12)	0.08149(12)	0.0144(2)
C8	0.10201(12)	0.23469(13)	0.97672(13)	0.0183(2)
N1	0.41460(10)	0.29880(12)	0.00960(12)	0.0195(2)
As1	0.66121(2)	0.43454(2)	0.30257(2)	0.01374(4)
F1	0.58239(8)	0.28683(9)	0.34798(10)	0.02906(19)
F2	0.73694(7)	0.58031(8)	0.25681(9)	0.02596(18)
F3	0.79135(7)	0.36170(9)	0.36721(9)	0.02676(18)
F4	0.63618(8)	0.50116(9)	0.46507(8)	0.02729(18)
F5	0.52967(7)	0.50472(10)	0.23709(10)	0.03015(19)
F6	0.68313(8)	0.36385(10)	0.14078(8)	0.02920(19)

Table S48. Bond lengths (Å) for $C_8H_8AsF_6N$.

C1-N1	1.1291(17)	C1-C2	1.4298(16)
C2-C3	1.4054(17)	C2-C7	1.4103(16)
C3-C4	1.3864(17)	C3-H3	0.95
C4-C5	1.3895(18)	C4-H4	0.95
C5-C6	1.3917(18)	C5-H5	0.95
C6-C7	1.3942(17)	C6-H6	0.95
C7-C8	1.4988(17)	C8-H8A	0.98
C8-H8B	0.98	C8-H8C	0.98
N1-H1	0.789(17)	As1-F4	1.7117(8)
As1-F3	1.7122(8)	As1-F6	1.7144(8)
As1-F5	1.7173(8)	As1-F2	1.7244(8)
As1-F1	1.7569(8)		

Table S49. Bond angles (°) for $C_8H_8AsF_6N$.

N1-C1-C2	179.64(15)	C3-C2-C7	123.10(11)
C3-C2-C1	118.30(11)	C7-C2-C1	118.60(11)
C4-C3-C2	118.41(11)	C4-C3-H3	120.8
C2-C3-H3	120.8	C3-C4-C5	119.60(12)
C3-C4-H4	120.2	C5-C4-H4	120.2
C4-C5-C6	121.37(11)	C4-C5-H5	119.3
C6-C5-H5	119.3	C5-C6-C7	121.11(12)
C5-C6-H6	119.4	С7-С6-Н6	119.4
C6-C7-C2	116.41(11)	C6-C7-C8	121.92(11)
C2-C7-C8	121.67(11)	C7-C8-H8A	109.5
C7-C8-H8B	109.5	H8A-C8-H8B	109.5
C7-C8-H8C	109.5	H8A-C8-H8C	109.5
H8B-C8-H8C	109.5	C1-N1-H1	174.1(13)
F4-As1-F3	90.22(4)	F4-As1-F6	178.21(4)
F3-As1-F6	90.13(4)	F4-As1-F5	90.25(4)
F3-As1-F5	178.97(4)	F6-As1-F5	89.37(4)
F4-As1-F2	90.81(4)	F3-As1-F2	90.86(4)
F6-As1-F2	90.94(4)	F5-As1-F2	90.05(4)
F4-As1-F1	89.31(4)	F3-As1-F1	89.87(4)
F6-As1-F1	88.94(4)	F5-As1-F1	89.21(5)
F2-As1-F1	179.26(4)		

Table S50. Torsion angles (°) for C ₈ H ₈ AsF ₆ N.
-----------------------------	--

C7-C2-C3-C4	0.42(18)	C1-C2-C3-C4	179.93(11)
C2-C3-C4-C5	-0.34(18)	C3-C4-C5-C6	-0.06(19)
C4-C5-C6-C7	0.42(19)	C5-C6-C7-C2	-0.34(17)
C5-C6-C7-C8	-179.80(11)	C3-C2-C7-C6	-0.08(18)
C1-C2-C7-C6	-179.59(11)	C3-C2-C7-C8	179.38(11)
C1-C2-C7-C8	-0.13(17)		

Table S51. Anisotropic atomic displacement parameters (Å²) for $C_8H_8AsF_6N$.

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0153(5)	0.0161(5)	0.0155(5)	0.0017(4)	-0.0009(4)	-0.0014(4)
C2	0.0131(5)	0.0166(5)	0.0151(5)	0.0024(4)	0.0023(4)	0.0014(4)
C3	0.0147(5)	0.0170(6)	0.0192(6)	0.0004(5)	0.0009(4)	-0.0010(4)
C4	0.0205(6)	0.0154(5)	0.0191(6)	-0.0006(5)	0.0022(5)	0.0013(5)
C5	0.0162(5)	0.0183(6)	0.0187(6)	0.0030(5)	0.0048(4)	0.0042(4)
C6	0.0133(5)	0.0202(6)	0.0162(5)	0.0044(4)	0.0016(4)	0.0003(4)
C7	0.0155(5)	0.0149(5)	0.0127(5)	0.0033(4)	0.0008(4)	0.0001(4)
C8	0.0206(6)	0.0188(6)	0.0155(5)	-0.0010(5)	0.0005(4)	-0.0017(5)
N1	0.0167(5)	0.0213(5)	0.0207(5)	-0.0020(4)	0.0039(4)	0.0017(4)
As1	0.01083(6)	0.01556(6)	0.01498(6)	0.00050(5)	0.00227(4)	-0.00219(4)
F1	0.0303(4)	0.0220(4)	0.0361(5)	-0.0006(4)	0.0156(4)	-0.0112(3)
F2	0.0228(4)	0.0229(4)	0.0320(4)	0.0081(3)	-0.0003(3)	-0.0092(3)
F3	0.0188(4)	0.0308(4)	0.0307(4)	0.0071(4)	0.0007(3)	0.0068(3)
F4	0.0331(4)	0.0287(4)	0.0204(4)	-0.0064(3)	0.0055(3)	0.0015(4)
F5	0.0143(4)	0.0392(5)	0.0365(5)	0.0039(4)	-0.0048(3)	0.0031(3)
F6	0.0315(5)	0.0375(5)	0.0192(4)	-0.0070(4)	0.0076(3)	-0.0041(4)

	x/a	y/b	z/c	U(eq)
H3	0.3259	0.5427	0.2411	0.02
H4	0.1575	0.6371	0.3442	0.022
H5	-0.0324	0.5524	0.2830	0.021
H6	-0.0586	0.3761	0.1209	0.02
H8A	0.0167	0.2150	-0.0396	0.027
H8B	0.1430	0.1528	0.0133	0.027
H8C	0.1364	0.2620	-0.1120	0.027
H1	0.4686(15)	0.2698(18)	-0.0321(18)	0.023

Table S52. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for $C_8H_8AsF_6N$.

Identification code	Dicyanobenzene		
Chemical formula	$C_8H_6As_2F_{12N_2}$		
Formula weight	507.99 g/mol		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal size	0.065 x 0.141 x 0.269 mm		
Crystal habit	clear colourless rod		
Crystal system	monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 6.1068(5) Å	α = 90°	
	b = 12.0339(10) Å	$\beta = 98.3970(10)^{\circ}$	
	c = 9.5336(8) Å	γ = 90°	
Volume	693.10(10) Å ³		
Z	2		
Density (calculated)	2.434 g/cm ³		
Absorption coefficient	4.961 mm ⁻¹		
F(000)	484		

Table S53. Sample and crystal data for $C_8H_6As_2F_{12}N_2$.

Diffractometer	Bruker APEX DUO		
Radiation source	fine-focus tube, M	οΚα	
Theta range for data collection	2.74 to 30.51°		
Index ranges	-8<=h<=8, -17<=k<	=17, -13<=l<=13	
Reflections collected	13844		
Independent reflections	2116 [R(int) = 0.02	17]	
Coverage of independent reflections	99.9%		
Absorption correction	multi-scan		
Max. and min. transmission	0.7390 and 0.3490)	
Structure solution technique	direct methods		
Structure solution program	SHELXTL XT 2013/1 (Bruker AXS, 2014)		
Refinement method	Full-matrix least-so	quares on F ²	
Refinement program	SHELXTL XL 2014/2	7 (Bruker AXS, 2014)	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	2116/0/112		
Goodness-of-fit on F ²	1.072		
Δ/σ_{max}	0.001		
Final R indices	1958 data; I>2σ(I)	R1 = 0.0145, wR2 = 0.0355	
	all data	R1 = 0.0171, wR2 = 0.0363	
Weighting scheme	w=1/ $[\sigma^{2}(F_{o}^{2})+(0.01)]$ where P= $(F_{o}^{2}+2F_{c}^{2})$.62P) ² +0.2971P])/3	
Largest diff. peak and hole	0.476 and -0.323 e	A ⁻³	
R.M.S. deviation from mean	0.060 eÅ ⁻³		

Table S54. Data collection and structure refinement for $C_8H_6As_2F_{12}N_2$.

Table S55. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for $C_8H_6As_2F_{12}N_2$. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.84317(19)	0.59048(10)	0.23655(12)	0.0150(2)
C2	0.92383(19)	0.54421(9)	0.11485(12)	0.0135(2)
C3	0.12466(19)	0.48689(10)	0.13571(12)	0.0148(2)
C4	0.20306(19)	0.44215(10)	0.01861(12)	0.0151(2)
N1	0.77712(18)	0.62615(9)	0.33111(11)	0.0178(2)
As1	0.68887(2)	0.31457(2)	0.41911(2)	0.01170(4)
F1	0.42102(13)	0.29715(7)	0.46720(9)	0.02271(17)
F2	0.94651(13)	0.33234(8)	0.37160(9)	0.02534(18)
F3	0.57326(13)	0.39898(7)	0.28259(8)	0.02144(16)
F4	0.72493(13)	0.42804(6)	0.53002(8)	0.02191(16)
F5	0.79476(14)	0.22925(7)	0.55548(8)	0.02509(17)
F6	0.63581(13)	0.20098(6)	0.31078(8)	0.01990(15)

Table S56. Bond lengths (Å) for $C_8H_6As_2F_{12}N_2$.

C1-N1	1.1250(16)	C1-C2	1.4373(16)
C2-C3	1.3958(16)	C2-C4	1.3994(16)
C3-C4	1.3863(16)	C3-H3	0.95
C4-C2	1.3994(16)	C4-H4	0.95
N1-H1	0.886(17)	As1-F5	1.7080(8)
As1-F2	1.7130(8)	As1-F6	1.7153(7)
As1-F3	1.7193(7)	As1-F4	1.7214(7)
As1-F1	1.7745(8)		

Table S57. Bond angles (°) for $C_8H_6As_2F_{12}N_2$.

N1-C1-C2	179.02(13)	C3-C2-C4	123.09(10)
C3-C2-C1	118.29(10)	C4-C2-C1	118.62(10)
C4-C3-C2	118.48(10)	C4-C3-H3	120.8
C2-C3-H3	120.8	C3-C4-C2	118.43(11)
C3-C4-H4	120.8	C2-C4-H4	120.8
C1-N1-H1	175.0(11)	F5-As1-F2	90.92(4)
F5-As1-F6	89.80(4)	F2-As1-F6	92.31(4)
F5-As1-F3	178.02(4)	F2-As1-F3	91.01(4)
F6-As1-F3	89.68(4)	F5-As1-F4	90.52(4)
F2-As1-F4	91.34(4)	F6-As1-F4	176.33(4)
F3-As1-F4	89.88(4)	F5-As1-F1	89.61(4)
F2-As1-F1	179.47(4)	F6-As1-F1	87.78(4)
F3-As1-F1	88.47(4)	F4-As1-F1	88.57(4)

Table S58. Torsion angles (°) for $C_8H_6As_2F_{12}N_2$.C4-C2-C3-C40.5(2)C1-C2-C3-C4-179.99(11)C2-C3-C4-C2-0.52(19)

Table S59. Anisotropic atomic displacement parameters (Å²) for $C_8H_6As_2F_{12}N_2$.

The anisotropic atomic displacement factor exponent takes the form: -2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0139(5)	0.0152(5)	0.0156(5)	0.0007(4)	0.0009(4)	-0.0008(4)
C2	0.0156(5)	0.0126(5)	0.0128(5)	-0.0014(4)	0.0039(4)	-0.0020(4)
C3	0.0153(5)	0.0155(5)	0.0133(5)	0.0001(4)	0.0014(4)	-0.0003(4)
C4	0.0145(5)	0.0150(5)	0.0156(5)	0.0001(4)	0.0022(4)	0.0006(4)
N1	0.0172(5)	0.0202(5)	0.0164(5)	-0.0024(4)	0.0043(4)	0.0008(4)
As1	0.01129(6)	0.01389(6)	0.01009(6)	-0.00030(4)	0.00215(4)	0.00146(4)
F1	0.0167(4)	0.0282(4)	0.0255(4)	-0.0069(3)	0.0107(3)	-0.0029(3)
F2	0.0133(3)	0.0423(5)	0.0212(4)	-0.0011(3)	0.0053(3)	-0.0029(3)
F3	0.0252(4)	0.0205(4)	0.0167(3)	0.0037(3)	-0.0031(3)	0.0045(3)
F4	0.0268(4)	0.0193(4)	0.0187(3)	-0.0065(3)	0.0002(3)	-0.0009(3)
F5	0.0352(5)	0.0259(4)	0.0140(3)	0.0054(3)	0.0028(3)	0.0113(3)
F6	0.0246(4)	0.0175(4)	0.0180(4)	-0.0058(3)	0.0045(3)	0.0016(3)
Table S60. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for $C_8H_6As_2F_{12}N_2$.

	x/a	y/b	z/c	U(eq)	
H3	0.2058	0.4787	0.2280	0.018	
H4	0.3397	0.4031	0.0287	0.018	
H1	-0.286(3)	0.6514(15)	0.4027(17)	0.021	

Spectroscopy

Table S61. Comparison of the v(CN) stretching frequencies for the nitrilium ions and free nitriles.

	ν(CN) [cm ⁻¹] ^a	
Compound	Nitrilium ion [RCNH] ⁺	Free nitrile
[CH ₃ CNH][Sb ₂ F ₁₁]	2305	2253
[C ₂ H ₅ CNH][AsF ₆]	2262	2247
[C ₃ H ₇ CNH][AsF ₆]	2257	2250
[Me ₂ HNCH ₂ CNH][AsF ₆] ₂	2252	2231
[PhCNH][AsF ₆]	2230	2230
[o-MeC ₆ H ₄ CNH][AsF ₆]	2230	2227
$[p-C_6H_4(CNH)_2][AsF_6]_2$	2223	2230

a: In the Raman spectrum.

Figure S17. Raman spectrum of [CH₃CNH][AsF₆].

Figure S18. Raman spectrum of [CH₃CNH][Sb₂F₁₁].

Figure S19. Raman spectrum of $[C_2H_5CNH][AsF_6]$.

Figure S20. Raman spectrum of $[C_3H_7CNH][AsF_6]$.

Figure S21. Raman spectrum of [PhCNH][AsF₆].

Figure S22. Raman spectrum of $[p-C_6H_4(CNH)_2][AsF_6]_2$.

Figure S22. Raman spectrum of [o-CH₃C₆H₄CNH][AsF₆].

Figure S23. IR spectrum of [CH₃CNH][AsF₆].

Figure S24. IR spectrum of [CH₃CNH][Sb₂F₁₁].

Figure S25. IR spectrum of $[C_2H_5CNH]$ [AsF₆].

Figure S26. IR spectrum of $[C_3H_7CNH]$ [AsF₆].

Figure S27. IR spectrum of [PhCNH][AsF₆].

Figure S28. IR spectrum of $[Me_2HNCH_2CNH][AsF_6]_2$.

Figure S29. IR spectrum of $[o-CH_3C_6H_4CNH][AsF_6]$.

Figure S30. IR spectrum of $[p-C_6H_4(CNH)_2][AsF_6]_2$.

Literature

- 1. K. O. Christe, R. D. Wilson, C. J. Schack and D. D. Desmarteau, in *Inorganic Syntheses*, John Wiley & Sons, Inc., 1986, pp. 3-6.
- 2. K. O. Christe, W. W. Wilson and C. J. Schack, *J. Fluorine Chem.*, 1978, **11**, 71-85.
- 3. H. Moissan, *La fluor et ses composés*, G. Steinheil, Paris, 1900.
- 4. O. Ruff and H. Graf, Ber. Dtsch. Chem. Ges., 1906, **39**, 67-71.
- 5. H. P. A. Mercier, J. C. P. Sanders, G. J. Schrobilgen and S. S. Tsai, *Inorg. Chem.*, 1993, **32**, 386-393.
- 6. SAINT+ V8.27B, Bruker AXS 2011.
- 7. SADABS 2012-1, Bruker AXS 2012.
- 8. L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, J. Appl. Cryst., 2015, 48, 3-10.
- 9. G. M. S. C. B. Hübschle, B. Dittrich, J. Appl. Crystallogr., 2011, 1281-1284.
- 10. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 112-122.
- 11. G. M. Sheldrick, Acta Crystallogr. Sect. C, 2015, 3-8.
- 12. ShelX 2014/7, G. M. Sheldrick 2012.
- 13. SHELXTL 2014/7, Bruker AXS 2014.
- 14. L. J. Farrugia, J. Appl. Cryst., 1997, **30**, 565-565.