Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

SUPPORTING INFORMATION

Electrophilic Phosphonium Cations (EPCs) with Perchlorinated-Aryl Substituents: Towards Air Stable Phosphorus-based Lewis Acid Catalysts

Shawn Postle^{† [a]}, Vitali Podgorny^{† [a]}, and Douglas W. Stephan^{*[a,b]}

^[a] Department of Chemistry, University of Toronto. 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.

^[b] Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.

† These authors have contributed equally to the publication.

General Procedures:

All manipulations were performed in a Glove box MB Unilab produced by MBraun or using standard Schlenk techniques under an inert atmosphere of anhydrous N₂. All glassware was oven-dried and cooled under vacuum before use. Dry, oxygen-free solvents (CH₂Cl₂, Et₂O, toluene and *n*-pentane) were prepared using an Innovative Technologies solvent purification system. CD₂Cl₂ and CD₃CN (Aldrich) were deoxygenated, distilled over CaH₂, then stored over 4 Å molecular sieves before use. C₆D₆ and C₆D₅Br (Aldrich) were deoxygenated and stored over 4 Å molecular sieves before use. Commercial reagents were purchased from Sigma-Aldrich, Strem Chemicals, Apollo Scientific, TCI Chemicals or Alfa Aesar, and were used without further purification unless indicated otherwise. $[Et_3Si][B(C_6F_5)_4] \cdot (C_7H_8)$ was prepared by the reported procedure.³⁴ NMR spectra were obtained on a Bruker AvanceIII-400 MHz spectrometer, Varian NMR system 400 MHz spectrometer, Agilent DD2-500 MHz spectrometer, or Agilent DD2-600 MHz spectrometer. ¹H NMR data, referenced to external Me₄Si, are reported as follows: chemical shift (δ), multiplicity (s = singlet, d = doublet, t = triplet, g = guartet, guin = guintet, m = multiplet, br = broad), coupling constant (Hz), normalized integrals. ${}^{13}C{}^{1}H$ NMR chemical shifts (δ) are referenced to external Me₄Si. Assignments of individual resonances were done using 2D NMR techniques (HMBC, HSQC, HH-COSY) when necessary. High-resolution mass spectra (HRMS) were obtained on an Agilent 6538 Q-TOF (ESI) or a JEOL AccuTOF (DART) mass spectrometer. Elemental analyses were performed at the University of Toronto employing a Perkin Elmer 2400 Series II CHNS Analyser. Crystals were coated in paratone oil and mounted in a cryo-loop. Data were collected on a Bruker APEX2 X-ray diffractometer using graphite monochromated Mo-Ka radiation (0.71073 Å). The temperature was maintained at 150(2) K using an Oxford cryo-stream cooler for both, initial indexing and full data collection. Data were collected using Bruker APEX-2 software and processed using SHELX and Olex2 an absorption correction applied using multiscan within the APEX-2 program. All structures were solved by direct methods within the SHELXTL package and refined with Olex2.

Scheme 1. Synthesis of phosphines, phosphoranes, and phosphinums

Synthesis of phosphines:

Perchlororophenyl(diphenyl) phosphine (1). A 100 mL Schlenk flask was charged with C₆Cl₆ (318 mg, 1.12 mmol), a large magnetic stir-bar and anhydrous Et₂O (30 mL), generating a white slurry. The reaction flask was cooled to -15 °C using a dry ice/acetone bath. A hexane solution of 2.5 M *n*-BuLi (0.44 mL, 1.12 mmol) was added dropwise to the stirring solution under an atmosphere of N₂; slowly turning the slurry to a clear light yellow solution. The solution was cooled to -78 °C and a solution of PPh₂Cl (247 mg, 1.12 mmol) in anhydrous Et₂O (3 mL) was added dropwise by syringe over 5 minutes. The stirring solution was left to warm to room temperature overnight. The solvent was removed *in vacuo* and the solid extracted with anhydrous CH₂Cl₂ (6 mL) before being filtered over Celite. The solvent was reduced and the solution cooled to -35 °C to produce a white precipitate, which was collected by filtration. The filtrate was then washed with *n*-pentane (2 x 2 mL) before removing the solvent *in vacuo*, producing a white solid (340 mg, 70% yield). Vapour diffusion of *n*-pentane into a solution of the compound in dichloromethane yielded X-Ray quality crystals. Anal. Calcd. for PC₁₈H₁₀Cl₅: C: 49.76, H: 2.32. Found: C: 49.82%, H: 1.99%.

³¹P{¹H} NMR (162 MHz, C₆D₆): δ 10.68 (s) ppm.

¹H NMR (500 MHz, C₆D₆): δ 7.33 – 7.39 (m, 4H, *m*-C6H5), 7.08 – 7.03 (m, 6H, *o*-, *p*-C₆H₅) ppm.

¹³C NMR (125 MHz, C₆D₆): δ 139.70 (d, ²J_{PC} = 17.7 Hz, *o*-C₆Cl₅), 136.37 (s, *p*-C₆Cl₅), 135.97 (d, ¹J_{PC} = 24.2 Hz, *i*-C₆Cl₅), 134.26 (d, ¹J_{PC} = 15.4 Hz, *i*-C₆H₅), 133.28 (s, *m*-C₆Cl₅), 132.92 (d, ²J_{PC} = 20.7 Hz, *o*-C₆H₅), 129.14 (s, *p*-C₆H₅), 128.98 (d, ³J_{PC} = 6.3 Hz, *m*-C₆H₅) ppm.

HRMS (DART Ionization) m/z: [M+H]⁺ Calcd for C₁₈H₁₀Cl₅P: 432.90410, Found: 432.90360.

Figure 1. POV-Ray depiction of 1. P: yellow, CI: green, C: Black.

Bis(perchlorophenyl)phenyl phosphine (2). A 100 mL Schlenk flask was charged with C₆Cl₆ (597 mg, 2.10 mmol), a large magnetic stir-bar and anhydrous Et₂O (30 mL), generating a white slurry. The reaction flask was cooled to -15 °C using a dry ice/acetone bath. A hexane solution of 2.5 M *n*-BuLi (0.84 mL, 2.10 mmol) was added dropwise to the stirring solution under an atmosphere of N₂; slowly turning the slurry to a clear light yellow solution. The solution was cooled to -78 °C and a solution of PPhCl₂ (188 mg, 1.05 mmol) in anhydrous Et₂O (4 mL) was added dropwise by syringe over 6 minutes. The stirring solution was left to warm to room temperature overnight. The solvent was removed *in vacuo* and the solid extracted with anhydrous CH₂Cl₂ (6 mL) before being filtered over Celite. The solvent was reduced and the solution cooled to -35 °C to produce an off-white precipitate, which was collected by filtration. The filtrate was then washed with *n*-pentane (3 x 3 mL) before removing the solvent *in vacuo*, producing an off-white solid (231 mg, 36% yield). Anal. Calcd. for PC₁₈H₅Cl₁₀: C: 35.63, H: 0.83. Found: C: 35.29%, H: 0.92%.

³¹P{¹H} NMR (243 MHz, C₆D₆): δ 15.14 (s) ppm.

¹H NMR (500 MHz, C₆D₆): δ 7.44 (apparent triplet, ³J_{PH} = 7.0 Hz, ³J_{HH} = 7.0 Hz, 2H, *m*-C₆H₅), 6.98 - 7.07 (m, 4H, *o*-, *p*-C₆H₅) ppm.

¹³C NMR (125 MHz, C₆D₆): δ 137.07 (d, ²J_{PC} = 19.0 Hz, *o*-C₆Cl₅), 136.02 (d, ¹J_{PC} = 36.3 Hz, *i*-C₆Cl₅), 135.26 (d, ⁴J_{PC} = 1.4 Hz, *p*-C₆Cl₅), 133.42 (d, ³J_{PC} = 1.2 Hz, *m*-C₆H₅), 131.82 (d, ¹J_{PC} = 14.8 Hz, *i*-C₆H₅), 130.75 (s, *p*-C₆H₅), 128.94 (d, ²J_{PC} = 8.6 Hz, *o*-C₆H₅), 128.54 (d, ³J_{PC} = 14.2 Hz, *m*-C₆H₅) ppm.

HRMS (DART Ionization) m/z: [M+H]⁺ Calcd. for C₁₈H₅Cl₁₀P: 602.70924, Found: 602.70831.

ION MODE: POSITIVE

Tris(perchlorophenyl) phosphine (3). A 250 mL Schlenk flask was charged with C_6Cl_6 (1053 mg, 3.70 mmol), a large magnetic stir-bar and anhydrous Et₂O (60 mL), generating a white slurry. The reaction flask was cooled to -15 °C using a dry ice/acetone bath. A hexane solution of 2.5 M *n*-BuLi (1.47 mL, 3.70 mmol) was added dropwise to the stirring solution under an atmosphere of N₂; slowly turning the slurry to a clear light yellow solution. The solution was cooled to -78 °C and a solution of PBr₃ (333 mg, 1.23 mmol) in anhydrous Et₂O (4 mL) was added dropwise by syringe over 5 minutes. The stirring solution was left to warm to room temperature overnight. The solvent was removed *in vacuo* and the solid extracted with anhydrous CH₂Cl₂ (2 x 6 mL) before being filtered over Celite. The solvent was reduced and the solution cooled to -35 °C to produce an off-white precipitate, which was collected by filtration. The filtrate was then washed with *n*-pentane (2 x 3 mL) before removing the solvent *in vacuo*, producing an off-white solid (199 mg, 21% yield). Anal. Calcd. for PC₁₈Cl₁₈: C: 27.76. Found: C: % 25.87.

³¹P{¹H} NMR (162 MHz, C₆D₆): δ 19.07 (s) ppm.

HRMS (EI-TOF) m/z: [M+H]⁺ Calcd. for C₁₈HCl₁₅P: 778.50553, Found: 778.50594.

C₆Cl₅ C₆Cl₅ C₆Cl₅

 ${}^{31}P{}^{1}H$ -NMR in C₆D₆

240 -120 120 40 Ó -40 -160 -200 -240 -280 200 160 80 -80 -320 -360 f1 (ppm)

bis(perchlorophenyl)(perfluorophenyl) phosphine (4). A 250 mL Schlenk flask was charged with C₆Cl₆ (513 mg, 1.80 mmol), a large magnetic stir-bar and anhydrous Et₂O (40 mL), generating a white slurry. The reaction flask was cooled to -15 °C using a dry ice/acetone bath. A hexane solution of 2.5 M *n*-BuLi (0.72 mL, 1.80 mmol) was added dropwise to the stirring solution under an atmosphere of N₂; slowly turning the slurry to a clear light yellow solution. The solution was cooled to -78 °C and a solution of P(C₆F₅)Br₂ (323 mg, 0.90 mmol) in anhydrous Et₂O (3 mL) was added dropwise by syringe over 4 minutes. The stirring solution was left to warm to room temperature overnight. The solvent was removed *in vacuo* and the solid extracted with anhydrous CH₂Cl₂ (6 mL) before being filtered over Celite. The solvent was reduced and the solution cooled to -35 °C to produce a white precipitate, which was collected by filtration. The white filtrate was then washed with *n*-pentane (2 x 2 mL) before removing the solvent *in vacuo*, producing a white solid (261 mg, 42% yield). Vapour diffusion of *n*-pentane into a solution of the compound in dichloromethane yielded X-Ray quality crystals. Anal. Calcd. for PC₁₈F₅Cl₁₀: C: 31.03. Found: C: 31.19%.

³¹P{¹H} NMR (162 MHz, C₆D₆): δ -17.76 (t, ³J_{PF} = 40.0 Hz) ppm.

¹⁹F{¹H} NMR (376 MHz, C₆D₆): δ -129.20 to -129.61 (m, 2F, *o*-C₆F₅), -147.50 (tt, ³J_{FF} = 21.8 Hz, ⁵J_{FF} = 4.7 Hz, 1F, *p*-C₆F₅), -159.63 to -159.88 (m, 2F, *m*-C₆F₅) ppm.

¹³C NMR (125 MHz, C₆D₆): δ 147.92 (br d, ¹J_{FC} = 244.8 Hz, *o*-C₆F₅), 143.17 (br d, ¹J_{FC} = 258.0 Hz, *p*-C₆F₅), 137.90 (br d, ¹J_{FC} = 247.5 Hz, *m*-C₆F₅), 137.12 (d, ²J_{PC} = 20.7 Hz, *o*-C₆Cl₅), 136.43 (s, *p*-C₆Cl₅), 133.59 (s, *m*-C₆Cl₅), 132.39 (d, ¹J_{PC} = 34.2 Hz, *i*-C₆Cl₅), 108.64 (br s, *i*-C₆F₅) ppm.

HRMS (DART Ionization) m/z: [M+H]⁺ Calcd. for C₁₈F₅Cl₁₀P: 692.66213, Found: 692.66280.

Figure 2. POV-Ray depiction of 4. P: orange, CI: green, C: black, F: pink.

fluorobis(perchlorophenyl) phosphineoxide (11). A 20 mL vial was charged with $P(C_6Cl_5)_3$ (78 mg, 0.10 mmol), MeCN (3 mL), and a magnetic stir bar. A solution of 1-chloromethyl-4-fluoro-1,4-diazonia-bicyclo-[2.2.2]octane bis(tetrafluoroborate) {Selectfluor} in MeCN was added. The solution briefly turns dark purple as a black precipitate is formed before returning to a pale green colour. The supernatant is decanted off and the solvent is removed *in vacuo* resulting in a yellow solid (24 mg, 43 %).

 $^{31}P{^{1}H} NMR$ (162 MHz, CH₂Cl₂): δ 21.15 (d, $^{1}J_{PF}$ = 1065.8 Hz) ppm.

¹⁹F{¹H} NMR (376 MHz, CH₂Cl₂): δ –54.30 (d, ¹J_{PF} = 1063.8 Hz) ppm.

HRMS (EI-TOF) m/z: [M]⁺ Calcd. for C₁₂Cl₁₀FPO: 564.65753, Found: 564.65713.

Synthesis of phosphoranes:

Difluoro perchlorophenyl(diphenyl) phosphorane (5). In a cold well, a 20 mL vial was charged with $Ph_2P(C_6Cl_5)$ (257 mg, 0.59 mmol), CH_2Cl_2 (4 mL), and a magnetic stir bar, forming a light yellow solution. XeF₂ (100 mg, 0.59 mmol) was quickly added to the stirring solution. The solution gradually lightens as it was left to stir and warm up to room temperature for 2 hours. The solvent was reduced and the solution cooled to -35 °C to produce a white precipitate, which was collected by filtration. The white filtrate was then washed with *n*-pentane (2 x 2 mL) before removing the solvent *in vacuo*, producing a white solid (230 mg, 83% yield). X-Ray quality crystals were obtained from CH_2Cl_2 in glovebox freezer. Anal. Calcd. for $PC_{18}H_{10}Cl_5F_2$: C: 45.76, H: 2.13. Found: C: 45.24%, H: 2.00%.

³¹P{¹H} NMR (162 MHz, C₆D₆): δ -50.69 (t, ¹J_{PF} = 715.3 Hz) ppm.

¹⁹F{¹H} NMR (376 MHz, C₆D₆): δ -41.79 (d, ¹J_{PF} = 715.7 Hz, PF₂) ppm.

¹H NMR (500 MHz, C₆D₆): δ 8.17 – 8.10 (m, 4H, *m*-C₆H₅), 7.08 – 7.01 (m, 6H, *o*-, *p*-C₆H₅) ppm.

¹³C NMR (125 MHz, C₆D₆): δ 140.11 (dt, ¹J_{PC} = 217.3 Hz, ²J_{FC} = 42.3 Hz, *i*-C₆Cl₅), 137.54 (dt, ¹J_{PC} = 180.8 Hz, ²J_{FC} = 23.7 Hz, *i*-C₆H₅), 134.98 (dt, ²J_{PC} = 13.1 Hz, ³J_{FC} = 10.2 Hz, *o*-C₆H₅), 134.53 (dt, ²J_{PC} = 3.4 Hz, ³J_{FC} = 1.8 Hz, *o*-C₆Cl₅), 133.50 (d, ⁴J_{PC} = 16.6 Hz, *p*-C₆Cl₅), 132.58 (dt, ³J_{PC} = 3.0 Hz, ⁴J_{FC} = 2.8 Hz, *m*-C₆Cl₅), 131.72 (dt, ⁴J_{PC} = 3.8 Hz, ⁵J_{FC} = 1.2 Hz, *p*-C₆H₅), 128.57 (dt, ³J_{PC} = 13.1 Hz, ⁴J_{PC} = 10.2 Hz, *m*-C₆H₅) ppm.

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

F $C_6H_5, ..., P - C_6CI_5$ $C_6H_5 - F$ ¹⁹F{¹H}-NMR in C₆D₆

-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

Figure 3. POV–Ray depiction of 5. P: orange, CI: green, C: black, F: pink.

Difluoro bis(perchlorophenyl)(phenyl) phosphorane (6). In a cold well, a 20 mL vial was charged with PhP(C₆Cl₅)₂ (153 mg, 0.25 mmol), CH₂Cl₂ (6 mL), and a magnetic stir bar, forming a yellow solution. XeF₂ (43 mg, 0.25 mmol) was quickly added to the stirring solution. The solution gradually lightens as it was left to stir and warm up to room temperature for 1.5 hours. The solvent was reduced and the solution cooled to -35 °C to produce an off-white precipitate, which was collected by filtration. The filtrate was then washed with *n*-pentane (3 x 2 mL) before removing the solvent *in vacuo*, producing an off-white solid. (123 mg, 76% yield). Anal. Calcd. for PC₁₈H₅Cl₁₀F₂: C: 33.53, H: 0.78. Found: C: 34.16%, H: 0.86%.

³¹P{¹H} NMR (202 MHz, C_6D_6): δ -44.91 (t, ¹J_{PF} = 746.5 Hz) ppm.

¹⁹F{¹H} NMR (470 MHz, C₆D₆): δ -28.9 (d, ¹J_{PF} = 746.5 Hz, PF₂) ppm.

¹H NMR (500 MHz, C₆D₆): δ 8.11 – 8.04 (m, 2H, *m*-C₆H₅), 7.16 – 7.08 (m, 3H, *o*-, *p*-C₆H₅) ppm.

¹³C NMR (125 MHz, C₆D₆): δ 137.73 (dt, ¹J_{PC} = 209.6 Hz, ²J_{FC} = 31.5 Hz, *i*-C₆Cl₅), 136.70 – 136.55 (m, *o*-C₆Cl₅), 135.84 (dt, ²J_{PC} = 13.6 Hz, ³J_{FC} = 9.7 Hz, *o*-C₆H₅), 135.43 (dt, ¹J_{PC} = 187.3 Hz, ²J_{FC} = 22.8 Hz, *i*-C₆H₅), 134.26 (d, ⁴J_{PC} = 17.5 Hz, *p*-C₆Cl₅), 133.98 – 133.81 (m, *m*-C₆Cl₅), 132.98 (br d, ⁴J_{PC} = 4.1 Hz, *p*-C₆H₅), 129.28 (dm, ³J_{PC} = 18.1 Hz, *m*-C₆H₅) ppm.

Difluoro bis(perchlorophenyl)(perfluorophenyl) phosphorane (7). In a cold well, a 20 mL vial was charged with $(C_6F_5)P(C_6Cl_5)_2$ (228 mg, 0.33 mmol), CH_2Cl_2 (5 mL), and a magnetic stir bar, forming a light yellow solution. XeF₂ (56 mg, 0.33 mmol) was quickly added to the stirring solution. The solution gradually lightens as it was left to stir and warm up to room temperature for 2 hours. The solvent was reduced and the solution cooled to -35 °C to produce a white precipitate, which was collected by filtration. The filtrate was then washed with *n*-pentane (2 x 3 mL) before removing the solvent *in vacuo*, producing a white solid (192 mg, 80% yield). Anal. Calcd. for PC₁₈Cl₁₀F₇: C: 29.43. Found: C: 28.52%.

³¹P{¹H} NMR (162 MHz, C₆D₅Br): δ -41.22 (t, ¹J_{PF} = 756.6 Hz) ppm.

¹⁹F{¹H} NMR (376 MHz, C₆D₅Br): δ -10.92 (dm, ¹J_{PF} = 756.4 Hz, PF₂), -129.24 to -129.64 (m, 2F, *o*-C₆F₅), -145.91 (t, ³J_{FF} = 21.7 Hz, 1F, *p*-C₆F₅), -158.50 to -158.72 (m, 2F, *m*-C₆F₅) ppm.

¹³C NMR (125 MHz, C₆D₅Br): δ 146.53 (br d, ¹J_{FC} = 254.4 Hz, o-C₆F₅), 143.91 (br d, ¹J_{FC} = 259.1 Hz, *p*-C₆F₅), 137.89 (br dm, ¹J_{FC} = 255.1 Hz, *m*-C₆F₅), 136.91 (d, ⁴J_{PC} = 3.7 Hz, *p*-C₆Cl₅), 134.96 (br d, ²J_{PC} = 264.0 Hz, o-C₆Cl₅), 134.53 (dt, ¹J_{PC} = 217.0 Hz, ²J_{FC} = 28.7 Hz, *i*-C₆Cl₅), 134.46 (dm, ³J_{PC} = 17.8 Hz, *m*-C₆Cl₅), 112.95 (br dm, ¹J_{PC} = 200.8 Hz, *i*-C₆F₅) ppm.

Synthesis of phosphoniums:

Fluoro bis(perchlorophenyl)(diphenyl)phosphonium tetrakis(perfluorophenyl)borate (8). A 20 mL vial was charged with (C_6Cl_5)PF₂Ph₂ (382 mg, 0.81 mmol), toluene (3 mL), and a magnetic stir bar. To the stirring solution, [Et₃Si][B(C_6F_5)₄] (682 mg, 0.77 mmol) was added as a solid. The dark orange solution was stirred for an hour, before allowing it to settle. Upon settling, a dark orange oil collected at the bottom of the vial, leaving a clear supernatant. After decanting the toluene from the oil, additional toluene (2 x 3 mL) was used to wash the oil before being decanted off. The oil was subsequently washed with *n*-pentane (3 x 4 mL) before removing the solvent *in vacuo* resulting in a fluffy white solid (697 mg, 80% yield) upon trituration. Anal. Calcd. for PC₄₂H₁₀Cl₅F₂₁B: C: 44.54, H: 0.89. Found: C: 45.15%, H: 0.94%.

³¹P{¹H} NMR (162 MHz, C_6D_5Br): δ 89.50 (d, ¹J_{PF} = 1008.5 Hz) ppm.

¹⁹F{¹H} NMR (376 MHz, C₆D₅Br): δ -116.01 (d, ¹J_{PF} = 1009.8 Hz, PF₂), -131.98 (m/br, 8F, B(o-C₆F₅)), -162.30 (t, ³J_{FF} = 21.0 Hz, 4F, B(p-C₆F₅)), -166.18 (m/br, 8F, B(m-C₆F₅)) ppm.

¹¹B NMR (128 MHz, C₆D₅Br): -16.52 (s) ppm.

¹H NMR (500 MHz, CDCl₃): δ 8.09 – 8.04 (m, 1H, *p*-C₆H₅), 7.88 – 7.78 (m, 4H, *o*-, *m*-C₆H₅) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 148.25 (br d, ¹J_{FC} = 241.4 Hz, B(o-C₆F₅)), 145.26 (d, ⁴J_{PC} = 3.2 Hz, P(*p*-C₆Cl₅)), 139.48 (dd, ⁴J_{PC} = 2.4 Hz, ⁵J_{FC} = 2.4 Hz, P(*p*-C₆H₅)), 138.25 (br d, ¹J_{FC} = 238.0 Hz, B(*p*-C₆F₅)), 137.74 (dd, ²J_{PC} = 6.2 Hz, ³J_{FC} = 1.0 Hz, P(*o*-C₆Cl₅)), 137.06 (d, ³J_{PC} = 12.3 Hz, P(*m*-C₆Cl₅)), 136.26 (br d, ¹J_{FC} = 234.6 Hz, B(*m*-C₆F₅)), 133.53 (dd, ²J_{PC} = 13.8 Hz, ³J_{FC} = 1.3 Hz, P(*o*-C₆H₅)), 131.48 (d, ³J_{PC} = 15.4 Hz, P(*m*-C₆H₅)), 123.80 (br s, B(*i*-C₆F₅)), 116.12 (dd, ¹J_{PC} = 112.0 Hz, ²J_{FC} = 14.0 Hz, P(*i*-C₆H₅)), 115.91 (dd, ¹J_{PC} = 121.1 Hz, ²J_{FC} = 11.1 Hz, P(*i*-C₆Cl₅)) ppm.

HRMS (DART Ionization) m/z: [M]⁺ Calcd. for C₁₈H₁₀Cl₅PF: 450.89468, Found 450.89445.

ION MODE: POSITIVE

Fluoro bis(perchlorophenyl)(phenyl)phosphonium tetrakis(perfluorophenyl)borate (9). A 20 mL vial was charged with $(C_6Cl_5)_2PF_2Ph$ (186 mg, 0.29 mmol), toluene (5 mL), and a magnetic stir bar. To the stirring solution, $[Et_3Si][B(C_6F_5)_4]$ (243 mg, 0.28 mmol) was added as a solid. The dark orange solution was stirred for an hour, before allowing it to settle. Upon settling, a dark orange oil collected at the bottom of the vial, leaving a clear supernatant. After decanting the toluene from the oil, additional toluene (2 x 3 mL) was used to wash the oil before being decanted off. The oil was triturated in *n*-pentane (4 mL) until an off-white solid was formed. The solid was subsequently washed with *n*-pentane (2 x 4 mL) before removing the solvent *in vacuo* yielding an off-white solid (320 mg, 90% yield). X-Ray quality crystals were obtained from CH₂Cl₂ in glovebox freezer. Anal. Calcd. for PC₄₂H₅Cl₁₀F₂₁B: C: 38.66. H: 0.39. Found: C: 42.17%, H: 0.87%.

³¹P{¹H} NMR (162 MHz, CD₂Cl₂): δ 84.38 (d, ¹J_{PF} = 1009.0 Hz) ppm.

¹⁹F{¹H} NMR (470 MHz, C₆H₅Br): δ -125.64 (d, ¹J_{PF} = 1010.7 Hz, PF₂), -138.89 (m/br, 8F, B(o-C₆F₅)), -169.24 (m/br, 4F, B(p-C₆F₅)), -173.12 (m/br, 8F, B(m-C₆F₅)) ppm.

¹¹B NMR (128 MHz, CD₂Cl₂): -16.66 (s) ppm.

¹H NMR (500 MHz, CDCl₃): δ 8.13 – 8.08 (m, 1H, *p*-C₆H₅), 7.98 – 7.76 (m, 4H, *o*-, *m*-C₆H₅) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 148.28 (br d, ¹J_{FC} = 240.3 Hz, B(*o*-C₆F₅)), 145.51 (dm, ⁴J_{PC} = 3.2 Hz, P(*p*-C₆Cl₅)), 140.54 (m, P(*p*-C₆H₅)), 138.25 (br d, ¹J_{FC} = 239.2 Hz, B(*p*-C₆F₅)), 137.20 (d, ³J_{PC} = 13.3 Hz, P(*m*-C₆Cl₅)), 136.65 (d, ²J_{PC} = 6.2 Hz, P(*o*-C₆Cl₅)), 136.33 (br d, ¹J_{FC} = 239.0 Hz, B(*m*-C₆F₅)), 133.12 (d, ²J_{PC} = 13.5 Hz, P(*o*-C₆H₅)), 132.15 (d, ³J_{PC} = 16.6 Hz, P(*m*-C₆H₅)), 124.12 (br s, B(*i*-C₆F₅)), 118.30 (dd, ¹J_{PC} = 130.7 Hz, ²J_{FC} = 10.8 Hz, P(*i*-C₆H₅)), 115.99 (dd, ¹J_{PC} = 113.9 Hz, ²J_{FC} = 12.5 Hz, P(*i*-C₆Cl₅)) ppm.

HRMS (DART Ionization) m/z: [M]⁺ Calcd. for C₁₈H₅Cl₁₀PF: 620.69982, Found 620.69896.

ION MODE: POSITIVE

Figure 4. POV-Ray depiction of 9. P: orange, CI: green, C: black, F: pink.

Fluoro bis(perchlorophenyl)(perfluorophenyl)phosphonium tetrakis(perfluorophenyl) borate (10). A 20 mL vial was charged with $(C_6CI_5)_2PF_2(C_6F_5)$ (172 mg, 0.23 mmol), toluene (5 mL), and a magnetic stir bar. To the stirring solution, $[Et_3Si][B(C_6F_5)_4]$ (197 mg, 0.22 mmol) was added as a solid. The clear solution was stirred for an hour, before allowing it to settle. Upon settling, a brown oil collected at the bottom of the vial, leaving a clear supernatant. After decanting the toluene from the oil, additional toluene (2 x 3 mL) was used to wash the oil before being decanted off. The oil was triturated in *n*-pentane (4 mL) until an off-white solid was formed. The solid was subsequently washed with *n*-pentane (2 x 4 mL) before removing the solvent *in vacuo* resulting in an off-white solid (229 mg, 74% yield). Anal. Calcd. for $PC_{42}Cl_{10}F_{26}B$: C: 36.17. Found: C: 37.21%

³¹P{¹H} NMR (162 MHz, C₆D₅Br): δ 71.02 (d, ¹J_{PF} = 1030.8 Hz) ppm.

¹⁹F{¹H} NMR (470 MHz, C₆H₅Br): δ -117.04 (dd, ¹J_{PF} = 1030.3 Hz, ³J_{FF} = 25.5 Hz, 1F, PF), -123.43 (br s, P(o-C₆F₅)), -124.73 (m, 1F, P(p-C₆F₅)), -126.84 (m, 1F, P(o-C₆F₅)), -132.24 (m/br, 8F, B(o-C₆F₅)), -150.35 (br s, P(m-C₆F₅)), -162.36 (t, ³J_{FF} = 20.8 Hz, 4F, B(p-C₆F₅)), -166.43 (m/br, 8F, B(p-C₆F₅)) ppm.

¹¹B NMR (128 MHz, CD₂Cl₂): -16.59 (s) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 150.58 (br d, ¹J_{FC} = 276.5 Hz, P(o-C₆F₅)), 148.28 (br d, ¹J_{FC} = 241.2 Hz, B(o-C₆F₅)), 147.07 (d, ⁴J_{PC} = 3.2 Hz, P(p-C₆Cl₅)), 139.38 (br d, ¹J_{FC} = 269.2 Hz, P(p-C₆F₅)), 138.27 (br d, ¹J_{FC} = 241.2 Hz, B(p-C₆F₅)), 137.69 (d, ³J_{PC} = 15.3 Hz, P(*m*-C₆Cl₅)), 136.69 (d, ²J_{PC} = 6.1 Hz, P(o-C₆Cl₅)), 136.38 (br d, ¹J_{FC} = 234.7 Hz, B(*m*-C₆F₅)), 134.90 (br d, ¹J_{FC} = 259.8 Hz, P(*m*-C₆F₅)), 124.01 (br s, B(*i*-C₆F₅)), 116.32 (dd, ¹J_{PC} = 143.6 Hz, ²J_{FC} = 9.9 Hz, P(*i*-C₆Cl₅)), 95.79 (br d, ¹J_{PC} = 136.8 Hz, P(*i*-C₆F₅)) ppm.

HRMS (DART Ionization) *m/z*. [M]⁺ Calcd. for C₁₈F₆Cl₁₀P: 710.65271, Found 710.65339.

ION MODE: POSITIVE